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ABSTRACT

This paper, introduces the fuzzy poisson process that plays an important role in the fuzzy

sets and systems; specially, The spatial Poisson point process features prominently in spa-

tial statistics, stochastic geometry, and continuum percolation theory. This point process is

applied in various physical sciences such as a model developed for alpha particles being de-

tected. In recent years, it has been frequently used to model seemingly disordered spatial

configurations of certain wireless communication networks. For example, models for cellu-

lar or mobile phone networks have been developed where it is assumed the phone network

transmitters, known as base stations, are positioned according to a homogeneous Poisson

point process.

1 Introduction
Since fuzzy set theory was initiated by Zadeh [8] in 1965, it has become a hot point of study in theory and ap-
plications to control theory, optimizations, intelligent systems, inferential statistics of the parametric and non-
parametric, information sciences, and so on. Fuzzy sets were characteristic with their membership functions by
Zadeh. The term fuzzy variables was first introduced by Kaufmann [4] in 1975, and then appeared in zadeh [9]
and Nahmias [6] as fuzzy sets of real numbers. Possibility theory was presented by Zadeh [10], and developed
by many reserchers such as Dubois and Prade [2]. In order to deal with the mathematics of fuzzy variables, fuzzy
variables may be defined as function from possibility space to the set of real numbers. Li and et. have introduced
a type Fuzzy Random Homogeneous Poisson Process [7].

In this paper, we will use the fuzzy variable as an interval rate instead of the point rate in the poisson process
and then the fuzzy poisson process is introduced. This process can apply in queueing systems and many others
systems operate on customer, e.g electron, photon, tumor cell, telephone call, data packet and etc. Therefore, the
fuzzy poisson process can be as a prominent stochastic process, mainly because it frequently appears in a wealth
of physical phenomena and because it is relatively simple to analyze.

2 Preliminaries
The basic definitions of a fuzzy number are given in [2, 8, 11] as follows Definition 1. Let R be the set of all

real numbers. A fuzzy number is a fuzzy set like A : R → I = [0, 1] that satisfies:
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1. A is upper semicontinuous ,

2. A(x) = 0 outside some interval [a, d],

3. There are real numbers b, c such that a ≤ b ≤ c ≤ d and

3.1 A(x) is increasing on [a, b],

3.2 A(x) is decreasing on [c, d],

3.3 A(x) = 1, b ≤ x ≤ c.

The membership function A can be expressed as

A(x) =


AL(x) x ∈ [a, b],

1 x ∈ [b, c], (I)

AR(x) x ∈ [c, d],

0 otherwise,

where AL : [a, b] → [0, 1] and AR : [c, d] → [0, 1] are left and right membership functions of fuzzy number A. AL is
real valued function that is increasing and right continues and AR is a real valued function that is decreasing and
left continues. Each fuzzy number A described by (I) has the following α-level sets (α− cuts) :

Aα = [A−1
L (α), A−1

R (α)] = [a(α), a(α)] where a(α), a(α) ∈ R, α ∈ [0, 1].
An equivalent parametric is
Definition 2. A fuzzy numberA in parametric form is a pair [a(α), a(α)] of function a(α), a(α), 0 ≤ α ≤ 1, which
satisfies the following requirements:

1. a(α) is a bounded increasing left continuous function,

2. a(α) is a bounded decreasing left continuous function,

3. a(α) ≤ a(α), 0 ≤ α ≤ 1.

We denote this family of fuzzy number by F . A popular fuzzy number is the trapezoidal fuzzy number A =

(a, b, c, d) with membership function A(x) that is defined as follows

A(x) =



x− a

b− a
x ∈ [a, b],

1 x ∈ [b, c],
d− x

d− c
x ∈ [c, d],

0 Otherwise.

Its α-level sets is:
[A]α = [a(α), a(α)] = [a+ (b− a)α, d− (d− c)α].

Note that if b = c, then A(x) is membership function of triangular fuzzy number A = (a, b, d). Support function is
defined as follows:

supp(A) = {x|A(x) > 0}
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which {x|A(x) > 0} is closure of set {x|A(x) > 0}. The addition and scalar multiplication of fuzzy numbers are
defined by Zadeh’s extension principle [10] and can be equivalently represented in [2, 8, 11] as follows:
For arbitrary [A]α = [a(α), a(α)], [B]α = [b(α), b(α)] and k > 0 we define addition (A + B) and multiplication by
scaler k as:

(a+ b)(α) = a(α) + b(α), (a+ b)(α) = a(α) + b(α), (2.1)

(ka)(α) = ka(α), (ka)(α) = ka(α). (2.2)

Definition 3. A Poisson process with parameter or rate λ > 0 is an integer-valued, continuous time stochastic
process {N(t), t > 0} satisfying

(i) N(0) = 0.

(ii) for all t0 < t1 < ... < tn, the incrementN(t1)−N(t0), N(t2)−N(t1), ..., N(tn)−N(tn−1) are independent
random variables.

(iii) for t > 0 and non-negative integers k, the increments have the Poisso distribution

Pr[N(t+ s)−N(s) = k] =
(λt)ke−λt

k!
(2.3)

It is convenient to view the Poisson process N(t)as a special counting process, where the number of event in
any interval of length t is specified via condition (iii). From this definition, a number of properties can be derived:

(a) Condition (iii) implies that the increments are stationary because the right-hand side dose not on s. In
other words, the increments only depend on the length of the interval t and not on the time s when the interval
begins. Further, the mean E[N(t+ s)−N(s)] = λt and because the increments are stationary, this holds for any
value of s. In particular with s = 0 and condition (i), the expected number of events in a time interval with length
t is E[N(t)] = λt, and this relation explains why λ is called the rate of the Poisson process, namely, the derivative
over time t or the number of events per time unit.

(b) The probability that exactly one event occurs in an arbitrarily small time interval of length h fellows from
condition (iii) as

Pr[N(s+ h)−N(s) = 1] = λh+ o(h) (2.4)

while the probability that no even occurs in an arbitrarily small time interval of length h is

Pr[N(s+ h)−N(s) = 1] = 1− λh+ o(h) (2.5)

Similarly, the probability that more than one event occers in an arbitrarily small time interval of length h is

Pr[N(s+ h)−N(s) > 1] = o(h) (2.6)

where limh→0
o(h)
h = 0.

Theorem 1. [5] A counting process N(t) that satisfies the condition (i) N(0) = 0, (ii) the process N(t) has
stationary and independent increments, (iii) Pr[N(h) = 1] = λh+ o(h) and (iv) Pr[N(h) > 1] = o(h) is a Poisson
process with rate λ > 0.

3 Fuzzy poisson process
In this section we introduce the fuzzy poisson process, In fact we will suppose that the parameter λ > 0 is a

positive fuzzy number as λ(α) = [λ(α), λ(α)] = [λ, λ], α ∈ [0, 1].

2021, Volume 15, No.2 132 Theory of Approximation and Applications



Poisson Process with Fuzzy Parameter A. Saeidifar

Definition 4. A fuzzy poisson process with fuzzy parameter or rate λ(α) = [λ(α), λ(α)] is an interval-valued,
continuous time stochastic process {Ñ(t), t > 0} satisfying

(i) Ñ(0) = 0.

(ii) for all t0 < t1 < ... < tn, the incrementN(t1)−N(t0), N(t2)−N(t1), ..., N(tn)−N(tn−1) are independent
random variables.

(iii) for t > 0 and non-negative integers k, the increments have the fuzzy poisso distribution

P̃ rα[N(t+ s)−N(s) = k] = [Prα, P rα] (3.1)

where for any α ∈ [0, 1]

Prα =
(λ(α)t)ke−λ(α)t

k!
, P rα =

(λ(α)t)ke−λ(α)t

k!
(3.2)

note that
Prα = min{P̃ rα[N(t+ s)−N(s) = k] | α ∈ [0, 1]},

P rα = max{P̃ rα[N(t+ s)−N(s) = k] | α ∈ [0, 1]}

It is convenient to view the fuzzy poisson process N(t)as a special interval process, where the number of event in
any interval of length t is specified via condition (iii). From this definition, a number of properties can be derived:

(á) Condition (iii) implies that the increments are stationary because the right-hand side dose not on s. In
other words, the increments only depend on the length of the interval t and not on the time s when the interval
begins. Further, the interval-valued mean E[N(t + s) − N(s)] = [λ(α)t, λ(α)t] and because the increments are
stationary, this holds for any value of s. In particular with s = 0 and condition (i), the expected number of events
in a time interval with length t is E[N(t)] = [λ(α)t, λ(α)t], and this interval shows that the interval [λ(α), λ(α)] is
called the interval rate of the fuzzy poisson process, namely, the derivative over time t or the number of events per
time unit in an interval.

(b́) The probability that exactly one event occurs in an arbitrarily small time interval of length h fellows from
condition (iii) as

P̃ r[N(s+ h)−N(s) = 1] = [λ(α), λ(α)]h+ o(h) (3.3)

while the probability that no even occurs in an arbitrarily small time interval of length h is

P̃ r[N(s+ h)−N(s) = 0] = 1− [λ(α), λ(α)]h+ o(h) (3.4)

Similarly, the probability that more than one event occers in an arbitrarily small time interval of length h is

P̃ r[N(s+ h)−N(s) > 1] = o(h) (3.5)

where limh→0
o(h)
h = 0.

Theorem2. A counting processN(t) that satisfies the condition (i)N(0) = 0, (ii) the processN(t) has stationary
and independent increments, (iii) P̃ r[N(h) = 1] = [λ(α), λ(α)]h + o(h) and (iv) P̃ r[N(h) > 1] = o(h) is a fuzzy
poisson process with interval rate [λ(α), λ(α)].

Prof: We must show conditions (iii) and (iv) are equal to condition (iii) in the definition of the fuzzy poisson

2021, Volume 15, No.2 133 Theory of Approximation and Applications



Poisson Process with Fuzzy Parameter A. Saeidifar

process. Denote P̃n(t) = P̃ r[N(h) = n] and consider first the case n = 0, then

P̃0(t+ h) = P̃ r[N(t+ h) = 0] = P̃ r[N(t+ h)−N(t) = 0, N(t) = 0] (3.6)

Invoking independence via (ii)

P̃0(t+ h) = P̃ r[N(t+ h)−N(t) = 0]P̃ r[N(t) = 0] (3.7)

By definition, P̃0(t) = P̃ r[N(t) = 0] and from (iii), (iv) and the fact
∑∞

k=0 P̃ r[N(h) = k] = 1̃ = [1, 1], it follows that

P̃ r[N(h) = 0] = 1̃− [λ(α), λ(α)]h+ o(h) (3.8)

Combing these with the stationarity in (ii), we obtain

P̃0(t+ h) = P̃0(t)(1̃− [λ(α), λ(α)]h+ o(h))

or

P 0(t+h)−P 0(t)
h = −λP 0(t) +

o(h)
h

P 0(t+h)−P 0(t)
h = −λP 0(t) +

o(h)
h

from which, in the limit h → 0, the differential equations

P
′
0(t) = −λP 0(t)

P
′

0(t) = −λP 0(t)

are immediate. The solution is P 0(t) = C1e
−λt and the integration constant C1 follows from (i) and P 0(0) =

Pr[N(0) = 0] = 1 as C1 = 1. Similarly, P 0(t) = e−λt. These establish condition (iii) in the definition of fuzzy
poisson process for k = 0.

The verification for n > 0 is more involved. Applying the law of total probability
P̃n(t+ h) = P̃ r[N(t+ h) = n]

=
∑n

k=0 P̃ r[N(t+ h)−N(t) = k|N(t) = n− k]P̃ r[N(t) = n− k] By independence (ii),

P̃ r[N(t+ h)−N(t) = k|N(t) = n− k]P̃ r[N(t) = n− k] = P̃ r[N(t+ h)−N(t) = k]

and by definition P̃ r[N(t) = n− k] = P̃n−k(t), we have

P̃n(t+ h) =

n∑
k=0

P̃ r[N(t+ h)−N(t) = k|N(t) = n− k]P̃n−k(t)

By the stationarity (ii)

P̃ r[N(t+ h)−N(t) = k] = P̃ r[N(h)−N(0) = k]
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we obtain using (i)

P̃n(t+ h) =
n∑

k=0

P̃ r[N(h) = k]P̃n−k(t)

while (v) and (iii) suggest to write the sum as

P̃n(t+ h) = P̃n(t)P̃ r[N(h) = 0] + P̃n−1(t)P̃ r[N(h) = 1]

+

n∑
k=2

P̃n−k(t)P̃ r[N(h) = k]

Since P̃n(t) ≤ 1̃ and using (iv),

n∑
k=2

P̃n−k(t)P̃ r[N(h) = k] ≤
n∑

k=2

P̃ r[N(h) = k] = P̃ r[N(h) > 1] = o(h)

we arrive with (v),(iii) at

P̃n(t+ h) = P̃n(t)(1̃− [λ, λ]h+ o(h)) + P̃n−1(t)([λ, λ]h+ o(h)) + o(h)

or

Pn(t+h)−Pn(t)
h = −λ Pn(t) + λ Pn−1(t) +

o(h)
h

Pn(t+h)−Pn(t)
h = −λ Pn(t) + λ Pn−1(t) +

o(h)
h

which leads, after taking the limit h → 0, to the differential equations

P
′
n(t) = −λPn(t) + λ Pn−1(t)

P
′

0(t) = −λP 0(t) + λ Pn−1(t)

with initial conditions Pn(0) = Pr[N(0) = n] = 1n=0 and Pn(0) = Pr[N(0) = n] = 1n=0. These differential
equations are rewritten as

d

dt
[eλtPn(t)] = λeλtPn−1(t) (3.9)

d

dt
[eλtPn(t)] = λeλtPn−1(t) (3.10)

In case n = 1, the differential equation reduces with P 0(t) = e−λt to d
dt [e

λtP 1(t)] = λ. The general solution is
eλtP 1(t)] = λt + C1. and, from the initial condition P 1(0) = 0, we have C1 = 0 and P 1(t) = λte−λt. The general

solution to (15) is proved by induction. Assume that Pn(t) =
(λt)ne−λt

n! holds for n, then the case n+1 follows from
(15) as

d

dt
[eλtPn+1(t)] =

λ(λt)n

n!
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and integrating from 0 to t using Pn+1(0) = 0, yields

Pn+1(t) =
(λt)n+1e−λt

(n+ 1)!
(3.11)

Similarly from (16) yields

Pn+1(t) =
(λt)n+1e−λt

(n+ 1)!
(3.12)

which establishes the induction and finalizes the prof of the theorem.□
The next theorem has very important applications since it relates the number of events in non-overlapping

intervals to the interval time between these events.
Theorem 3. Let{N(t); t ≥ 0} be a fuzzy poisson process with interval rate λ(α) = [λ(α), λ(α)] = [λ, λ] > 0 and
denote by t0 < t1 < t2 < ... the successive occurrence times of events. Then the interrarrival times τn = tn − tn−1

are independent identically distributed exponential random fuzzy variable with interval mean

IE(τn) =
1

[λ, λ]
= [

1

λ
,
1

λ
]

Proof: For any h ≥ 0 and any n ≥ 1, the event {τn > h} is equivalent to the event {N(tn−1) − N(tn−1) = 0}.
Indeed, the n−th interval time τn can only be longer than h time units if and only if the n−th event has not yet
occurred h time units after the occurrence of the (n − 1)−th event at tn−1. Since the fuzzy poisson process has
independent increments (condition (ii) in the definition of the fuzzy poisson process), changes in the value of the
process in non-overlapping time intervals are independent. By the equivalence in events, this implies that the set
of interarrival times τn are independent random fuzzy variables. Further, by the stationarity of the fuzzy poisson
process

P̃ r[τn > h] = P̃ r[N(tn−1 + h)−N(tn−1) = 0]

= [min{e−λh, e−λh},max{e−λh, e−λh}] = [e−λh, e−λh] (3.13)

which implies that any interarrival time has an identical, fuzzy exponential distribution,

F̃τn(x) = P̃ r[τn ≤ x] = [Pr(τn ≤ x), P r(τn ≤ x)] = [F τn(x), F τn(x)] =

[min{1− e−λx, 1− e−λx},max{1− e−λx, 1− e−λx}] = [1− e−λx, 1− e−λx] (3.14)

This proves the theorem. □
Example. A conversation in a wireless ad-hoc network is severely disturbed by interference signals according
to a fuzzy poisson process with the interval rate λ(α) = [0.05 + 0.05α, 0.15 − 0.05α] per minute. We obtain the
probability that no interference signals occur within the first twominutes of the conversation. LetN(t) denote the
fuzzy poisson interference process, then P̃ r[N(2) = 0] needs to be computed. Hence, for any α ∈ [0, 1] we have

P̃ rα[N(2) = 0] = P̃ rα[N(2)−N(0) = 0] = [e−2(0.15−0.05α), e2(0.05+0.05α)]

Also, given that the first twominutes are free of disturbing effects, the probability that in the nextminute precisely
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1 interfering signal disturbs the conversation is

P̃ rα[N(3)−N(2) = 1] = [(0.05 + 0.05α)e−(0.15−0.05α), (0.15− 0.05α)e−(0.05+0.05α)]

Note that the events during two non-overlapping intervals of a fuzzy poisson process are independent. Thus the
event {N(2)−N(0) = 0} is independent from the event {N(3)−N(2) = 1}which means that the asked condition
probability

P̃ rα[N(3)−N(2) = 1|N(2)−N(0) = 0] = P̃ rα[N(3)−N(2) = 1].

α P̃ rα[N(2)−N(0) = 0] P̃ rα[N(3)−N(2) = 1]

α = 0 [0.0741 0.0905] [0.0430 0.1427]
α = 0.2 [0.7558 0.8869] [0.0523 0.1318]
α = 0.4 [0.7711 0.8693] [0.0615 0.1212]
α = 0.5 [0.7788 0.8607] [0.0662 0.1160]
α = 0.7 [0.7945 0.8437] [0.0758 0.1056]
α = 0.9 [0.8106 0.8269] [0.0855 0.0955]
α = 1 [0.8187 0.8187] [0.0905 0.0905]

Table 1: Interval probabilities for events

4 Conclusion
the paper introduced the poisson process with the fuzzy parameter that is called the fuzzy poisson process. This
fuzzy process plays an important role in a wealth of physics phenomena. We also have stated the two theorems for
the fuzzy poisson process and its relation with an exponential distribution with the interval parameter. One can
thismethod develop on the nonhomogeneous poisson process and its propertiesmention in the future researches.
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