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1 Introduction and Preliminary

Throughout this paper, we consider G as a finite simple graph with vertex set V(G) and edge set E(G). We use
[14] as a reference for terminology and notation which are not explicitly defined here.

In graph theory, the Cartesian product GOH of graphs G and H is a graph such that the vertex set of GO H is the
Cartesian product V(G) x V(H); and two vertices (u, ') and (v,v’) are adjacent in GUH if and only if either u = v
and v’ is adjacent to v’ in H, or v’ = v’ and u is adjacent to v in G. The Cartesian product of graphs is sometimes
called the box product of graphs.

Domination and its variations in graphs have been extensively studied, cf. [8], [9] and [10]. For a graph G =
(V(G),E(G)),aset S C V(G) is called a dominating set if every vertex not in S has a neighbor in S. The domina-
tion number ~(G) of G is the minimum cardinality among all dominating sets of G. A restrained dominating set
(RD set) in a graph G is a dominating set S in G for which every vertex in V(G) \ S is adjacent to another vertex
in V(G)\ S. The restrained domination number (RD number) of G, denoted by 7, (G), is the smallest cardinality
of an RD set of G. This concept was formally introduced in [5] (Albeit, it was indirectly introduced in [13]). Dom-
ination presents a model for situations in which vertices from S guard neighboring vertices that are not in S. A
generalization was proposed in cf. [1] where different types of guards are used, and vertices not in S must have
all types of guards in their neighborhoods. Let G be a graph and v € V(G). The open neighborhood of v is the set
N(w) ={u € V(G)|uv € E(G)}, and its closed neighborhood is the set N[v] = N(v) U {v}.
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Let f be a function that assigns to each vertex a set of colors chosen from the set {1, ..., k}; thatis, f : V(G) —

P({1,...,k}). If for each vertex v € V(G) such that f(v) = () we have U,,c y() f(u) = {1, .. k:},thenfis called a k-
rainbow dominating function (kRDF) of G. The weight, w(f), of a functlon fis defined as w(f) = E,cv ()| f(v)].
Given a graph G, the minimum weight of a kRDF is called the k-rainbow domination number of G, Wthh we
denote by v, (G). Clearly when k& = 1 this concept coincides with the ordinary domination. The 2-rainbow domi-
nation in graphs have been studied by B. Bresar and T. K. Umenjak, cf. [2]. The concept of 2-rainbow domination
of a graph G coincides with the ordinary domination of the prism GOK5.
Ghanbari and Mojdeh initiated the concept of restrained 2- rainbow domination in graphs cf. [6]. Let f be a
function that assigns to each vertex a set of colors chosen from the set {1, 2}; thatis, f : V(G) — P({1,2}). If for
each vertex v € V(G), such that f(v) = () we have U,cn(,)f(u) = {1,2}, and v is adjacent to a vertex w € V(G)
such that f(w) = (0 then f is called a restrained 2-rainbow dominating function (R2RDF) of G. The weight, w(f),
of a function f is defined as w(f) = ¥,cv ()| f(v)|. Given a graph G, the minimum weight of a R2RDF is called the
restrained 2-rainbow domination number of G, which we denote by ~,,2(G). In this paper we give an algorithm
for determinate values of 2-rainbow domination in the generalized Petersen graph GP(n,5).

Theorem 1.1. [6] Restrained 2-rainbow dominating function is NP-complete.

Theorem 1.2. [6]

(a) 7rr2(P2) = 2and '77"7“2(P3) =3.

(b) For n. > 4, vypr2(Pn) = 2([5] + 1) if n = 0 or 1(mod3).

(c) For n > 4, vypp2(Pr) = 2[5] 4 3 if n = 2(mod3).

(d) For every m,n > 2; vrr2(Ky) = 2, Yrr2(Kmn) = 4 and 2 (K1) = n+ 1.

Theorem 1.3. [6] Forn > 3

(@) vrr2(Cy) = 2" if n = 0(mod3).

(b) Y2 (Cr) = ([g] + 1) if n = 1(mod3).
(©) ¥rr2(Cr) = 2[%] + 3 if n = 2(mod3).

2 Main Result

The domination invariants of generalized Petersen graphs were studied. Let us recall what a generalized Petersen
graph is, cf. also [3].

Let n > 3 and k be relatively prime natural numbers and k¥ < n. The generalized Petersen graph GP(n, k) is
defined as follows. Let C,,, C/, be two disjoint cycles of length n. Let the vertices of C,, be ug, ..., u,, and edges
ujui+1 fori =1,...,n—1and u,u;. Let the vertices of C/, be vy, ..., v, and edges v;v;; fori = 1,...,n, the sum i + k
being taken modulo n (throughout this section). The graph GP(n, k) is obtained from the union of C,, and C/, by
adding the edges w;v; fori = 1, ..., n. Its obvious that GP(n, k) = GP(n,n — k). The graph GP(5,2) or GP(5,3) is
the well-known Petersen graph.

Theorem 2.1. [6]
(a) For n > 5 and n = 0(mod4), the inequality v,,2(GP(n,1)) = vrr2(GP(n,n — 1)) < n is satisfied.
(b) Forn > 5 and n = i(mod4), i = 1,2, 3, the inequality v,r2(GP(n,1)) = ypr2(GP(n,n — 1)) < n+ 11s satisfied.

Theorem 2.2. [6] Forn > 5
(@) If n = 0(mod5), the inequality v,y2(GP(n,2)) = v2(GP(n,n — 2)) < 4 4 2 s satisfied.
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GP(16.5) GP(10.3) GP(5.2)

(b) If n = 1(modb), the inequality ~v,y2(GP(n,2)) = Y2 (GP(n,n — 2)) < 4| 2| + 2 is satisfied.

(¢) If n = 2(mod5), the inequality v,,2(GP(n,2)) = yrr2(GP(n,n — 2)) < 4(| 2] + 1) is satisfied.
(d) If n = 3(mod5), the inequality v,y2(GP(n,2)) = yr2(GP(n,n — 2)) < 4(| 2] + 3) is satisfied.
(e) If n = 4(mod5), the inequality v,r2(GP(n,2)) = vr2(GP(n,n — 2)) < 4(| 2] + 2) is satisfied.

Theorem 2.3. [6] Forn > 5

(@) If n = 5,7,8 then v,,2(GP(n,3)) = Yrr2(GP(n,n — 3)) < n + 11is satisfied.

(b) If n > 10, (n,3) = 1 and n is even, then the inequality ~,,2(GP(n,3)) = vrr2(GP(n,n—3)) < n+ 2 is satisfied.
(c) If n > 10, (n,3) = 1 and n is odd, then the inequality ~,,2(GP(n,3)) = vrr2(GP(n,n — 3)) < n + 3 is satisfied.

Theorem 2.4. Forn > 5

(a) If n is an odd number and (n,5) = 1, then v,,2(GP(n,5)) = Ypr2(GP(n,n — 5)) < n + 5.

(b) If nis an even number, (n,5) = 1,5 < [}] and t = [{;] is even number, then ~,,2(GP(n,5)) = vr2(GP(n,n —
5)) < 32 — 5t if n = 0(mod4) and v,r2(GP(n,5)) = Yr2(GP(n,n —5)) < 22 — 5t + 1 if n = 2(mod4).

(c)Ifn is an even number, (n,5) = 1,5 < [§] and t = [{5] is odd number then v,r2(GP(n,5)) = Yrr2(GP(n,n —
5) < § 501+ 1) s = Omodd) and o GP(15) = 32 GP(r, = 5) < § 4500+ 1) + Lifn = 2o
(dDIf n is an even number, (n,5) = 1, [§] < 5 < [§Dandt = [P4g] s even number, then ~,,2(GP(n,5)) =
7TT2(GP(n7n - 5)) < 3771 - (HTIO lfn = 0(m0d4> and VTTQ(GP(H 5)) = ’Yer(GP(n7n - 5)) < 3771 - w lf
n = 2(mod4).

(e)If n is an even number, (n,5) = 1, [}] < 5 < [§])) and t = [-P] is odd number, then v,..2(GP(n,5)) =
Yrra(GP(n,n — 5)) < "HEDCZ10) ir = 0(modd) and 4,,2(GP(n, 5)) = Yo (GP(n,n — 5)) < "HED0Z10) | g 4f
n = 2(mod4).

Proof. (a) We use the following algorithm and define the function f on GP(n,5):

Step 1) f(u;) = f(v;) = 0 for every even integer 1 < i < n.

Step 2) f(u;) = {1}, for every 1 < i < n such that i = 1(mod4).

Step 3) f(u;) = {2}, for every 1 < i < n such that i = 3(mod4).

Step 4) For even integer 1 < i < 5, f(viy5) = f(vn—10+i) = {1,2}.

Step 5) If 5 < [%], for every even integer 1 < i < n, f(v;—5) = {1} and f(v;y5) = {2} such that1 <4 < 10 or
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20m < i < (dm+2)5,m = 1,2,---. (The labels defined in previous steps do not change)

Step 6) If 5 < [%]), for every even integer 1 < i < n, f(v;—5) = {2} and f(vi45) = {1} such that 2(2m — 1)5 <i <
20m, m = 1,2, --. (The labels defined in previous steps do not change)

Step 7) If [}] < 5 < [§], for every even integer 1 < i < n, f(v;—5) = {1} and f(vi;5) = {2} suchthat1 <i <n—10
or2m(n —10) < i < (2m + 1)(n — 10), m = 1,2, - - -. (The labels defined in previous steps do not change)

Step 8) If [§] < 5 < [5]), for every even integer 1 < i < n, f(v;i_s) = {2} and f(viy5) = {1} such that
(2m —1)(n — 10) < i < 2m(n — 10), m = 1,2,---. (The labels defined in previous steps do not change)

We now claim that the function f defines a R2RDF on GP(n,5) and calculate w( f).

Firstly according definition of f (step 1), each vertex with a label () is adjacent to the other vertex with a label (.
Now if w is a vertex of GP(n,5) and f(w) = (), then the following cases has happened.

case 1) There exist an even integer 1 < 7 < n such that w = u; and according step 2, step 3 and step 4, we have
fluim) U fuign) = {1,2}.

case 2) There exist an even integer 1 < ¢ < n such that w = v;. and according steps 4, 5, 6 and 77, we have
fims) U f(vigs) = {1,2}.

Finally according to step 1, the number of vertices with empty label is equal to n — 1. By step 4, for every even
integer 1 < i < 5, there exist two vertices, such that their labels are {1, 2} and by steps 2, 3, 5, 6, 7 and 8, the label
of other vertices is {1} or {2}. Then will have 7,,2(GP(n,5)) = Ypr2(GP(n,n — 5)) < n + 5.

(b) We use the following algorithm and define the function f on GP(n,5):

step 1) f(u;) = f(v;) = 0 for every even integer 1 < i < n.

step 2) If n = 2(mod4), then f(u,—1) = {1,2}.

step 3) f(u;) = {1}, for every 1 < i < n such that i = 1(mod4) (The label defined in step 2 does not change).

step 4) f(u;) = {2}, for every 1 < i < n such that i = 3(mod4) (The label defined in step 2 does not change).

step 5) For even integer 10t < j < n, f(vj;5) = {1,2}.

step 6) For every even integer 1 < i < n, f(vi_s) = {1} and f(v;15) = {2} suchthat1 < i < 10 0or 20m < i <
(4m + 2)5,m = 1,2, ---. (The labels defined in previous steps do not change)

step 7) For every even integer 1 < i < n, f(vi_s) = {2} and f(vi+5) = {1} such that 2(2m — 1)5 < i < 20m,
m =1,2,---. (The labels defined in previous steps do not change)

We now claim that the function f defines a R2RDF on GP(n,5) and calculate w(f).

Firstly according definition of f (step 1), each vertex with a label ) is adjacent to the other vertex with a label (.
Now if w is a vertex of GP(n,5) and f(w) = (), then the following cases has happened.

case 1) There exist an even integer 1 < ¢ < n such that w = u; and since ¢ is an even number, according step 2,
step 3 and step 4, we have f(u;—1) U f(ui+1) = {1,2}.

case 2) There exist an even integer 1 < i < n such that w = v;. and according steps 5, 6, and 77, we have
fims) U f(vigs) = {1,2}.

Finally according to step 1, the number of vertices with empty label is equal to n. By step 2, if n = 2(mod4), then
f(un—1) = {1,2}, by step 5, for every even integer 10t < j < n, the label of v, 5, is {1, 2} and by steps 3, 4, 6, and
7, the label of other vertices is {1} or {2}. Then if n = 0(mod4) we will have ~,,.2o(GP(n,5)) = vr2(GP(n,n—5)) <
2oy (25%) = 3 _5tandif n = 2(mod4) we willhave v, (GP(n,5)) = vr2(GP(n,n—5)) < 241424 (210 =
3 5t + 1.

(c) We use the following algorithm and define the function f on GP(n,5):

step 1) f(u;) = f(v;) = 0 for every even integer 1 < i < n.

step 2) If n = 2(mod4), then f(u,—1) = {1,2}.
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step 3) f(u;) = {1}, for every 1 < i < n such that i = 1(mod4) (The label defined in step 2 does not change).

step 4) f(u;) = {2}, for every 1 < i < n such that i = 3(mod4) (The label defined in step 2 does not change).

step 5) For even integer 10t — [ < j < 10¢, f(vj45) = {1,2},suchthat! =10(t+ 1) — n

step 6) For every even integer 1 < i < n, f(vi_s) = {1} and f(v;15) = {2} suchthat1 < i < 10 0or20m < i <
(4m + 2)5,m = 1,2, ---. (The labels defined in previous steps do not change)

step 7) For every even integer 1 < i < n, f(vi_s) = {2} and f(vi+5) = {1} such that 2(2m — 1)5 < i < 20m,
m =1,2,---. (The labels defined in previous steps do not change)

We now claim that the function f defines a R2RDF on GP(n,5) and calculate w( f).

Firstly according definition of f (step 1), each vertex with a label ) is adjacent to the other vertex with a label (.
Now if w is a vertex of GP(n,5) and f(w) = (), then the following cases has happened.

case 1) There exist an even integer 1 < i < n such that w = u; and since ¢ is an even number, according step 2,
step 3 and step 4, we have f(u;—1) U f(ui+1) = {1,2}.

case 2) There exist an even integer 1 < ¢ < n such that w = v;. and according steps 5, 6, and 7, we have
fims) U f(vigs) = {1,2}.

Finally according to step 1, the number of vertices with empty label is equal to n. By step 2, if n = 2(mod4),
then f(u,—1) = {1,2}, and by step 5, for every even integer 10t — [ < j < 10t, the label of v, 5, is {1,2} and by
steps 3, 4, 6, and 7, the label of other vertices is {1} or {2}. Then if n = 0(mod4) we will have 7,,.2(GP(n,5)) =
Yer2(GP(nyn — 5)) < 4 2 4 (D= n 4 54 4 1) and if n = 2(mod4) we will have y,,0(GP(n,5)) =
Yrr2(GP(n,n —5)) <5 4+5(t+1)+ 1.

(d) We use the following algorithm and define the function f on GP(n,5):

step 1) f(u;) = f(v;) = 0 for every even integer 1 < i < n.

step 2) If n = 2(mod4), then f(u,—1) = {1,2}.

step 3) f(u;) = {1}, for every 1 < i < n such that i = 1(mod4) (The label defined in step 2 does not change).

step 4) f(u;) = {2}, for every 1 < i < n such that i = 3(mod4) (The label defined in step 2 does not change).

step 5) For even integer t(n — 10) < j < n, f(vj4s5) = {1, 2}.

step 6) For every even integer 1 < ¢ < n, f(vi_s) = {1} and f(vi45) = {2} suchthat 1 < i < n — 10 or
2m(n —10) <i < (2m + 1)(n — 10), m = 1,2, - - -. (The labels defined in previous steps do not change)

step 7) For every even integer 1 < i < n, f(v,—5) = {2} and f(v;y+5) = {1} such that (2m — 1)(n — 10) < i <
2m(n — 10), m = 1,2, - - -. (The labels defined in previous steps do not change)

We now claim that the function f defines a R2RDF on GP(n,5) and calculate w( f).

Firstly according definition of f (step 1), each vertex with a label () is adjacent to the other vertex with a label (.
Now if w is a vertex of GP(n,5) and f(w) = (), then the following cases has happened.

case 1) There exist an even integer 1 < ¢ < n such that w = u; and since ¢ is an even number, according step 2,
step 3 and step 4, we have f(u;—1) U f(ui+1) = {1,2}.

case 2) There exist an even integer 1 < i < n such that w = v;. and according steps 5, 6, and 77, we have
fvims) U f (vigr) = {1, 2}

Finally according to step 1, the number of vertices with empty label is equal to n. By step 2, if n = 2(mod4),
then f(u,—1) = {1, 2}, and by step 5, for every even integer ¢(n — 10) < j < n, the label of v;,5, is {1,2} and by
steps 3, 4, 6, and 7, the label of other vertices is {1} or {2}. Then if n = 0(mod4) we will have 7,,.2(GP(n,5)) =
Yrr2(GP(nyn — 5)) < 2 4 2 4 (2=t0=10y — 30 1210 ang if g = 2(modd) we will have ~,2(GP(n,5)) =
Yrr2(GP(n,n —5)) < 3 — Ho10) g

(e) We use the following algorithm and define the function f on GP(n,5):
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step 1) f(u;) = f(v;) = 0 for every even integer 1 < i < n.

step 2) If n = 2(mod4), then f(u,—1) = {1,2}.

step 3) f(u;) = {1}, for every 1 < i < n such that i = 1(mod4) (The label defined in step 2 does not change).

step 4) f(u;) = {2}, for every 1 < i < n such that i = 3(mod4) (The label defined in step 2 does not change).

step 5) For even integer t(n — 10) — [ < j < t(n — 10), f(vj4+5) = {1,2}, such that ! = (¢t + 1)(n — 10) — n.

step 6) For every even integer 1 < ¢ < n, f(vi_s) = {1} and f(vi45) = {2} suchthat1 < ¢ < n — 10 or
2m(n —10) <i < (2m + 1)(n — 10), m = 1,2, - - -. (The labels defined in previous steps do not change)

step 7) For every even integer 1 < i < n, f(v,—5) = {2} and f(v;y+5) = {1} such that (2m — 1)(n — 10) < i <
2m(n — 10), m = 1,2, - - -. (The labels defined in previous steps do not change)

We now claim that the function f defines a R2RDF on GP(n,5) and calculate w( f).

Firstly according definition of f (step 1), each vertex with a label () is adjacent to the other vertex with a label (.
Now if w is a vertex of GP(n,5) and f(w) = (), then the following cases has happened.

case 1) There exist an even integer 1 < 7 < n such that w = u; and since ¢ is an even number, according step 2,
step 3 and step 4, we have f(u;—1) U f(ui+1) = {1, 2}.

case 2) There exist an even integer 1 < 7 < n such that w = v;. and according steps 5, 6, and 77, we have
foims) U f(vigs) = {1,2}.

Finally according to step 1, the number of vertices with empty label is equal to n. By step 2, if n = 2(mod4),
then f(u,—1) = {1,2}, and by step 5, for every even integer t(n — 10) — [ < j < t(n — 10), the label of v, s,
is {1,2} and by steps 3, 4, 6, and 7, the label of other vertices is {1} or {2}. Then if n = 0(mod4) we will have
Y2 (GP(1,5)) = Yrra(GP(n,n — 5)) < & 4 2 4 (L0 (D00 554 if = 2(mod4) we will have
Y2 (GP(1,5)) = Yrra(GP(n,n — 5)) < W10 | g
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