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ABSTRACT

The concept of 2-rainbow domination of a graph G coincides with the ordinary domination

of the prism G□K2. Ghanbari and Mojdeh [6] initiated the concept of restrained 2-rainbow

domination in graphs. In this paper is given many algorithms for good approximations of

restrained 2-rainbow domination number of generalized Petersen GraphGP (n, 5).

1 Introduction and Preliminary
Throughout this paper, we consider G as a finite simple graph with vertex set V (G) and edge set E(G). We use
[14] as a reference for terminology and notation which are not explicitly defined here.
In graph theory, the Cartesian product G□H of graphs G andH is a graph such that the vertex set of G□H is the
Cartesian product V (G)×V (H); and two vertices (u, u′) and (v, v′) are adjacent inG□H if and only if either u = v

and u′ is adjacent to v′ in H , or u′ = v′ and u is adjacent to v in G. The Cartesian product of graphs is sometimes
called the box product of graphs.
Domination and its variations in graphs have been extensively studied, cf. [8], [9] and [10]. For a graph G =

(V (G), E(G)), a set S ⊆ V (G) is called a dominating set if every vertex not in S has a neighbor in S. The domina-
tion number γ(G) of G is the minimum cardinality among all dominating sets of G. A restrained dominating set
(RD set) in a graph G is a dominating set S in G for which every vertex in V (G) \ S is adjacent to another vertex
in V (G) \ S. The restrained domination number (RD number) ofG, denoted by γr(G), is the smallest cardinality
of an RD set ofG. This concept was formally introduced in [5] (Albeit, it was indirectly introduced in [13]). Dom-
ination presents a model for situations in which vertices from S guard neighboring vertices that are not in S. A
generalization was proposed in cf. [1] where different types of guards are used, and vertices not in S must have
all types of guards in their neighborhoods. Let G be a graph and v ∈ V (G). The open neighborhood of v is the set
N(v) = {u ∈ V (G)|uv ∈ E(G)}, and its closed neighborhood is the set N [v] = N(v) ∪ {v}.
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Let f be a function that assigns to each vertex a set of colors chosen from the set {1, ..., k}; that is, f : V (G) →
P ({1, ..., k}). If for each vertex v ∈ V (G) such that f(v) = ∅ we have ∪u∈N(v)f(u) = {1, ..., k}, then f is called a k-
rainbow dominating function (kRDF) of G. The weight, ω(f), of a function f is defined as ω(f) = Σv∈V (G)|f(v)|.
Given a graph G, the minimum weight of a kRDF is called the k-rainbow domination number of G, which we
denote by γrk(G). Clearly when k = 1 this concept coincides with the ordinary domination. The 2-rainbow domi-
nation in graphs have been studied by B. Bresar and T. K. Umenjak, cf. [2]. The concept of 2-rainbow domination
of a graph G coincides with the ordinary domination of the prism G□K2.
Ghanbari and Mojdeh initiated the concept of restrained 2- rainbow domination in graphs cf. [6]. Let f be a
function that assigns to each vertex a set of colors chosen from the set {1, 2}; that is, f : V (G) → P ({1, 2}). If for
each vertex v ∈ V (G), such that f(v) = ∅ we have ∪u∈N(v)f(u) = {1, 2}, and v is adjacent to a vertex w ∈ V (G)

such that f(w) = ∅ then f is called a restrained 2-rainbow dominating function (R2RDF) ofG. The weight, ω(f),
of a function f is defined as ω(f) = Σv∈V (G)|f(v)|. Given a graphG, the minimumweight of a R2RDF is called the
restrained 2-rainbow domination number of G, which we denote by γrr2(G). In this paper we give an algorithm
for determinate values of 2-rainbow domination in the generalized Petersen graph GP (n, 5).

Theorem 1.1. [6] Restrained 2-rainbow dominating function is NP-complete.

Theorem 1.2. [6]
(a) γrr2(P2) = 2 and γrr2(P3) = 3.
(b) For n ≥ 4, γrr2(Pn) = 2([n3 ] + 1) if n ≡ 0 or 1(mod3).
(c) For n ≥ 4, γrr2(Pn) = 2[n3 ] + 3 if n ≡ 2(mod3).
(d) For everym,n ≥ 2; γrr2(Kn) = 2, γrr2(Km,n) = 4 and γrr2(K1,n) = n+ 1.

Theorem 1.3. [6] For n ≥ 3

(a) γrr2(Cn) =
2n
3 if n ≡ 0(mod3).

(b) γrr2(Cn) = 2([n3 ] + 1) if n ≡ 1(mod3).
(c) γrr2(Cn) = 2[n3 ] + 3 if n ≡ 2(mod3).

2 Main Result
The domination invariants of generalized Petersen graphs were studied. Let us recall what a generalized Petersen
graph is, cf. also [3].
Let n ≥ 3 and k be relatively prime natural numbers and k < n. The generalized Petersen graph GP (n, k) is
defined as follows. Let Cn, C ′

n be two disjoint cycles of length n. Let the vertices of Cn be u1, ..., un and edges
uiui+1 for i = 1, ..., n− 1 and unu1. Let the vertices of C ′

n be v1, ..., vn and edges vivi+k for i = 1, ..., n, the sum i+ k

being taken modulo n (throughout this section). The graph GP (n, k) is obtained from the union of Cn and C ′
n by

adding the edges uivi for i = 1, ..., n. Its obvious thatGP (n, k) = GP (n, n− k). The graphGP (5, 2) orGP (5, 3) is
the well-known Petersen graph.

Theorem 2.1. [6]
(a) For n ≥ 5 and n ≡ 0(mod4), the inequality γrr2(GP (n, 1)) = γrr2(GP (n, n− 1)) ≤ n is satisfied.
(b) For n ≥ 5 and n ≡ i(mod4), i = 1, 2, 3, the inequality γrr2(GP (n, 1)) = γrr2(GP (n, n− 1)) ≤ n+1 is satisfied.

Theorem 2.2. [6] For n ≥ 5

(a) If n ≡ 0(mod5), the inequality γrr2(GP (n, 2)) = γrr2(GP (n, n− 2)) ≤ 4n
5 + 2 is satisfied.
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(b) If n ≡ 1(mod5), the inequality γrr2(GP (n, 2)) = γrr2(GP (n, n− 2)) ≤ 4⌊n5 ⌋+ 2 is satisfied.
(c) If n ≡ 2(mod5), the inequality γrr2(GP (n, 2)) = γrr2(GP (n, n− 2)) ≤ 4(⌊n5 ⌋+ 1) is satisfied.
(d) If n ≡ 3(mod5), the inequality γrr2(GP (n, 2)) = γrr2(GP (n, n− 2)) ≤ 4(⌊n5 ⌋+

3
2) is satisfied.

(e) If n ≡ 4(mod5), the inequality γrr2(GP (n, 2)) = γrr2(GP (n, n− 2)) ≤ 4(⌊n5 ⌋+
3
2) is satisfied.

Theorem 2.3. [6] For n ≥ 5

(a) If n = 5, 7, 8 then γrr2(GP (n, 3)) = γrr2(GP (n, n− 3)) ≤ n+ 1 is satisfied.
(b) If n ≥ 10, (n, 3) = 1 and n is even, then the inequality γrr2(GP (n, 3)) = γrr2(GP (n, n− 3)) ≤ n+2 is satisfied.
(c) If n ≥ 10, (n, 3) = 1 and n is odd, then the inequality γrr2(GP (n, 3)) = γrr2(GP (n, n− 3)) ≤ n+ 3 is satisfied.

Theorem 2.4. For n ≥ 5

(a) If n is an odd number and (n, 5) = 1, then γrr2(GP (n, 5)) = γrr2(GP (n, n− 5)) ≤ n+ 5.
(b) If n is an even number, (n, 5) = 1, 5 ≤ [n4 ] and t = [ n10 ] is even number, then γrr2(GP (n, 5)) = γrr2(GP (n, n−
5)) ≤ 3n

2 − 5t if n ≡ 0(mod4) and γrr2(GP (n, 5)) = γrr2(GP (n, n− 5)) ≤ 3n
2 − 5t+ 1 if n ≡ 2(mod4).

(c)If n is an even number, (n, 5) = 1, 5 ≤ [n4 ] and t = [ n10 ] is odd number, then γrr2(GP (n, 5)) = γrr2(GP (n, n −
5)) ≤ n

2 + 5(t+ 1) if n ≡ 0(mod4) and γrr2(GP (n, 5)) = γrr2(GP (n, n− 5)) ≤ n
2 + 5(t+ 1) + 1 if n ≡ 2(mod4).

(d)If n is an even number, (n, 5) = 1, [n4 ] < 5 ≤ [n2 ]) and t = [ n
n−10 ] is even number, then γrr2(GP (n, 5)) =

γrr2(GP (n, n − 5)) ≤ 3n
2 − t(n−10)

2 − 1 if n ≡ 0(mod4) and γrr2(GP (n, 5)) = γrr2(GP (n, n − 5)) ≤ 3n
2 − t(n−10)

2 if
n ≡ 2(mod4).
(e)If n is an even number, (n, 5) = 1, [n4 ] < 5 ≤ [n2 ]) and t = [ n

n−10 ] is odd number, then γrr2(GP (n, 5)) =

γrr2(GP (n, n− 5)) ≤ n+(t+1)(n−10)
2 if n ≡ 0(mod4) and γrr2(GP (n, 5)) = γrr2(GP (n, n− 5)) ≤ n+(t+1)(n−10)

2 + 1 if
n ≡ 2(mod4).

Proof. (a) We use the following algorithm and define the function f on GP (n, 5):
Step 1) f(ui) = f(vi) = ∅ for every even integer 1 < i < n.
Step 2) f(ui) = {1}, for every 1 ≤ i ≤ n such that i ≡ 1(mod4).
Step 3) f(ui) = {2}, for every 1 ≤ i ≤ n such that i ≡ 3(mod4).
Step 4) For even integer 1 < i < 5, f(vi+5) = f(vn−10+i) = {1, 2}.
Step 5) If 5 ≤ [n4 ], for every even integer 1 < i < n, f(vi−5) = {1} and f(vi+5) = {2} such that 1 < i ≤ 10 or
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20m < i ≤ (4m+ 2)5,m = 1, 2, · · · . (The labels defined in previous steps do not change)
Step 6) If 5 ≤ [n4 ]), for every even integer 1 < i < n, f(vi−5) = {2} and f(vi+5) = {1} such that 2(2m− 1)5 < i ≤
20m,m = 1, 2, · · · . (The labels defined in previous steps do not change)
Step 7) If [n4 ] < 5 ≤ [n2 ], for every even integer 1 < i ≤ n, f(vi−5) = {1} and f(vi+5) = {2} such that 1 < i ≤ n− 10

or 2m(n− 10) < i ≤ (2m+ 1)(n− 10),m = 1, 2, · · · . (The labels defined in previous steps do not change)
Step 8) If [n4 ] < 5 ≤ [n2 ]), for every even integer 1 < i ≤ n, f(vi−5) = {2} and f(vi+5) = {1} such that
(2m− 1)(n− 10) < i ≤ 2m(n− 10),m = 1, 2, · · · . (The labels defined in previous steps do not change)
We now claim that the function f defines a R2RDF on GP (n, 5) and calculate ω(f).
Firstly according definition of f (step 1), each vertex with a label ∅ is adjacent to the other vertex with a label ∅.
Now if w is a vertex of GP (n, 5) and f(w) = ∅, then the following cases has happened.
case 1) There exist an even integer 1 < i < n such that w = ui and according step 2, step 3 and step 4, we have
f(ui−1)

∪
f(ui+1) = {1, 2}.

case 2) There exist an even integer 1 < i ≤ n such that w = vi. and according steps 4, 5, 6 and 7, we have
f(vi−5)

∪
f(vi+5) = {1, 2}.

Finally according to step 1, the number of vertices with empty label is equal to n − 1. By step 4, for every even
integer 1 < i < 5, there exist two vertices, such that their labels are {1, 2} and by steps 2, 3, 5, 6, 7 and 8, the label
of other vertices is {1} or {2}. Then will have γrr2(GP (n, 5)) = γrr2(GP (n, n− 5)) ≤ n+ 5.
(b) We use the following algorithm and define the function f on GP (n, 5):
step 1) f(ui) = f(vi) = ∅ for every even integer 1 < i ≤ n.
step 2) If n ≡ 2(mod4), then f(un−1) = {1, 2}.
step 3) f(ui) = {1}, for every 1 ≤ i ≤ n such that i ≡ 1(mod4) (The label defined in step 2 does not change).
step 4) f(ui) = {2}, for every 1 ≤ i ≤ n such that i ≡ 3(mod4) (The label defined in step 2 does not change).
step 5) For even integer 10t < j ≤ n, f(vj+5) = {1, 2}.
step 6) For every even integer 1 < i ≤ n, f(vi−5) = {1} and f(vi+5) = {2} such that 1 < i ≤ 10 or 20m < i ≤
(4m+ 2)5,m = 1, 2, · · · . (The labels defined in previous steps do not change)
step 7) For every even integer 1 < i ≤ n, f(vi−5) = {2} and f(vi+5) = {1} such that 2(2m − 1)5 < i ≤ 20m,
m = 1, 2, · · · . (The labels defined in previous steps do not change)
We now claim that the function f defines a R2RDF on GP (n, 5) and calculate ω(f).
Firstly according definition of f (step 1), each vertex with a label ∅ is adjacent to the other vertex with a label ∅.
Now if w is a vertex of GP (n, 5) and f(w) = ∅, then the following cases has happened.
case 1) There exist an even integer 1 < i ≤ n such that w = ui and since t is an even number, according step 2,
step 3 and step 4, we have f(ui−1)

∪
f(ui+1) = {1, 2}.

case 2) There exist an even integer 1 < i ≤ n such that w = vi. and according steps 5, 6, and 7, we have
f(vi−5)

∪
f(vi+5) = {1, 2}.

Finally according to step 1, the number of vertices with empty label is equal to n. By step 2, if n ≡ 2(mod4), then
f(un−1) = {1, 2}, by step 5, for every even integer 10t < j ≤ n, the label of vj+5, is {1, 2} and by steps 3, 4, 6, and
7, the label of other vertices is {1} or {2}. Then if n ≡ 0(mod4)we will have γrr2(GP (n, 5)) = γrr2(GP (n, n−5)) ≤
n
2+

n
2+(n−10t

2 ) = 3n
2 −5t and ifn ≡ 2(mod4)wewill have γrr2(GP (n, 5)) = γrr2(GP (n, n−5)) ≤ n

2+1+n
2+(n−10t

2 ) =
3n
2 − 5t+ 1.
(c) We use the following algorithm and define the function f on GP (n, 5):
step 1) f(ui) = f(vi) = ∅ for every even integer 1 < i ≤ n.
step 2) If n ≡ 2(mod4), then f(un−1) = {1, 2}.
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step 3) f(ui) = {1}, for every 1 ≤ i ≤ n such that i ≡ 1(mod4) (The label defined in step 2 does not change).
step 4) f(ui) = {2}, for every 1 ≤ i ≤ n such that i ≡ 3(mod4) (The label defined in step 2 does not change).
step 5) For even integer 10t− l < j ≤ 10t, f(vj+5) = {1, 2}, such that l = 10(t+ 1)− n

step 6) For every even integer 1 < i ≤ n, f(vi−5) = {1} and f(vi+5) = {2} such that 1 < i ≤ 10 or 20m < i ≤
(4m+ 2)5,m = 1, 2, · · · . (The labels defined in previous steps do not change)
step 7) For every even integer 1 < i ≤ n, f(vi−5) = {2} and f(vi+5) = {1} such that 2(2m − 1)5 < i ≤ 20m,
m = 1, 2, · · · . (The labels defined in previous steps do not change)
We now claim that the function f defines a R2RDF on GP (n, 5) and calculate ω(f).
Firstly according definition of f (step 1), each vertex with a label ∅ is adjacent to the other vertex with a label ∅.
Now if w is a vertex of GP (n, 5) and f(w) = ∅, then the following cases has happened.
case 1) There exist an even integer 1 < i ≤ n such that w = ui and since t is an even number, according step 2,
step 3 and step 4, we have f(ui−1)

∪
f(ui+1) = {1, 2}.

case 2) There exist an even integer 1 < i ≤ n such that w = vi. and according steps 5, 6, and 7, we have
f(vi−5)

∪
f(vi+5) = {1, 2}.

Finally according to step 1, the number of vertices with empty label is equal to n. By step 2, if n ≡ 2(mod4),
then f(un−1) = {1, 2}, and by step 5, for every even integer 10t − l < j ≤ 10t, the label of vj+5, is {1, 2} and by
steps 3, 4, 6, and 7, the label of other vertices is {1} or {2}. Then if n ≡ 0(mod4) we will have γrr2(GP (n, 5)) =

γrr2(GP (n, n − 5)) ≤ n
2 + n

2 + (10(t+1)−n
2 ) = n

2 + 5(t + 1) and if n ≡ 2(mod4) we will have γrr2(GP (n, 5)) =

γrr2(GP (n, n− 5)) ≤ n
2 + 5(t+ 1) + 1.

(d) We use the following algorithm and define the function f on GP (n, 5):
step 1) f(ui) = f(vi) = ∅ for every even integer 1 < i ≤ n.
step 2) If n ≡ 2(mod4), then f(un−1) = {1, 2}.
step 3) f(ui) = {1}, for every 1 ≤ i ≤ n such that i ≡ 1(mod4) (The label defined in step 2 does not change).
step 4) f(ui) = {2}, for every 1 ≤ i ≤ n such that i ≡ 3(mod4) (The label defined in step 2 does not change).
step 5) For even integer t(n− 10) < j ≤ n, f(vj+5) = {1, 2}.
step 6) For every even integer 1 < i ≤ n, f(vi−5) = {1} and f(vi+5) = {2} such that 1 < i ≤ n − 10 or
2m(n− 10) < i ≤ (2m+ 1)(n− 10),m = 1, 2, · · · . (The labels defined in previous steps do not change)
step 7) For every even integer 1 < i ≤ n, f(vi−5) = {2} and f(vi+5) = {1} such that (2m − 1)(n − 10) < i ≤
2m(n− 10),m = 1, 2, · · · . (The labels defined in previous steps do not change)
We now claim that the function f defines a R2RDF on GP (n, 5) and calculate ω(f).
Firstly according definition of f (step 1), each vertex with a label ∅ is adjacent to the other vertex with a label ∅.
Now if w is a vertex of GP (n, 5) and f(w) = ∅, then the following cases has happened.
case 1) There exist an even integer 1 < i ≤ n such that w = ui and since t is an even number, according step 2,
step 3 and step 4, we have f(ui−1)

∪
f(ui+1) = {1, 2}.

case 2) There exist an even integer 1 < i ≤ n such that w = vi. and according steps 5, 6, and 7, we have
f(vi−5)

∪
f(vi+k) = {1, 2}.

Finally according to step 1, the number of vertices with empty label is equal to n. By step 2, if n ≡ 2(mod4),
then f(un−1) = {1, 2}, and by step 5, for every even integer t(n − 10) < j ≤ n, the label of vj+5, is {1, 2} and by
steps 3, 4, 6, and 7, the label of other vertices is {1} or {2}. Then if n ≡ 0(mod4) we will have γrr2(GP (n, 5)) =

γrr2(GP (n, n − 5)) ≤ n
2 + n

2 + (n−t(n−10)
2 ) = 3n

2 − t(n−10)
2 and if n ≡ 2(mod4) we will have γrr2(GP (n, 5)) =

γrr2(GP (n, n− 5)) ≤ 3n
2 − t(n−10)

2 + 1.
(e) We use the following algorithm and define the function f on GP (n, 5):

2022, Volume 16, No.1 97 Theory of Approximation and Applications



Many algorithms for approximation of restrained 2-rainbow domination in GP(n,5) M. Ghanbari

step 1) f(ui) = f(vi) = ∅ for every even integer 1 < i ≤ n.
step 2) If n ≡ 2(mod4), then f(un−1) = {1, 2}.
step 3) f(ui) = {1}, for every 1 ≤ i ≤ n such that i ≡ 1(mod4) (The label defined in step 2 does not change).
step 4) f(ui) = {2}, for every 1 ≤ i ≤ n such that i ≡ 3(mod4) (The label defined in step 2 does not change).
step 5) For even integer t(n− 10)− l < j ≤ t(n− 10), f(vj+5) = {1, 2}, such that l = (t+ 1)(n− 10)− n.
step 6) For every even integer 1 < i ≤ n, f(vi−5) = {1} and f(vi+5) = {2} such that 1 < i ≤ n − 10 or
2m(n− 10) < i ≤ (2m+ 1)(n− 10),m = 1, 2, · · · . (The labels defined in previous steps do not change)
step 7) For every even integer 1 < i ≤ n, f(vi−5) = {2} and f(vi+5) = {1} such that (2m − 1)(n − 10) < i ≤
2m(n− 10),m = 1, 2, · · · . (The labels defined in previous steps do not change)
We now claim that the function f defines a R2RDF on GP (n, 5) and calculate ω(f).
Firstly according definition of f (step 1), each vertex with a label ∅ is adjacent to the other vertex with a label ∅.
Now if w is a vertex of GP (n, 5) and f(w) = ∅, then the following cases has happened.
case 1) There exist an even integer 1 < i ≤ n such that w = ui and since t is an even number, according step 2,
step 3 and step 4, we have f(ui−1)

∪
f(ui+1) = {1, 2}.

case 2) There exist an even integer 1 < i ≤ n such that w = vi. and according steps 5, 6, and 7, we have
f(vi−5)

∪
f(vi+5) = {1, 2}.

Finally according to step 1, the number of vertices with empty label is equal to n. By step 2, if n ≡ 2(mod4),
then f(un−1) = {1, 2}, and by step 5, for every even integer t(n − 10) − l < j ≤ t(n − 10), the label of vj+5,
is {1, 2} and by steps 3, 4, 6, and 7, the label of other vertices is {1} or {2}. Then if n ≡ 0(mod4) we will have
γrr2(GP (n, 5)) = γrr2(GP (n, n − 5)) ≤ n

2 + n
2 + ( (t+1)(n−10)−n

2 ) = (t+1)(n−10)−n
2 and if n ≡ 2(mod4) we will have

γrr2(GP (n, 5)) = γrr2(GP (n, n− 5)) ≤ (t+1)(n−10)−n
2 + 1.
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