

Many algorithms for approximation of restrained 2-rainbow domination in GP(n,5)

Mojtaba Ghanbari*[∗]*

Department of Mathematics, Farahan Branch, Islamic Azad University, Farahan, Iran

1 Introduction and Preliminary

Throughout this paper, we consider G as a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. We use [14] as a reference for terminology and notation which are not explicitly defined here.

In graph theory, the Cartesian product $G \Box H$ of graphs *G* and *H* is a graph such that the vertex set of $G \Box H$ is the Cartesian product $V(G)\times V(H)$; and two vertices (u,u') and (v,v') are adjacent in $G\Box H$ if and only if either $u=v$ and u' is adjacent to v' in H , or $u'=v'$ and u is adjacent to v in $G.$ The Cartesian product of graphs is sometimes called the box product of graphs.

Domination and its variations in graphs have been extensively studied, cf. [8], [9] and [10]. For a graph *G* = $(V(G), E(G))$, a set $S \subseteq V(G)$ is called a *dominating set* if every vertex not in *S* has a neighbor in *S*. The *domination number γ*(*G*) of *G* is the minimum cardinality among all dominating sets of *G*. A *restrained dominating set* (RD set) in a graph *G* is a dominating set *S* in *G* for which every vertex in $V(G) \setminus S$ is adjacent to another vertex $\inf V(G) \setminus S$. The *restrained domination number* (RD number) of *G*, denoted by $\gamma_r(G)$, is the smallest cardinality of an RD set of *G*. This concept was formally introduced in [5] (Albeit, it was indirectly introduced in [13]). Domination presents a model for situations in which vertices from *S* guard neighboring vertices that are not in *S*. A generalization was proposed in cf. [1] where different types of guards are used, and vertices not in *S* must have all types of guards in their neighborhoods. Let *G* be a graph and $v \in V(G)$. The open neighborhood of *v* is the set $N(v) = \{u \in V(G)|uv \in E(G)\}\$, and its closed neighborhood is the set $N[v] = N(v) \cup \{v\}\$.

Let *f* be a function that assigns to each vertex a set of colors chosen from the set $\{1, ..., k\}$; that is, $f: V(G) \rightarrow$ $P({1,...,k})$. If for each vertex $v \in V(G)$ such that $f(v) = \emptyset$ we have $\bigcup_{u \in N(v)} f(u) = {1,...,k}$, then f is called a k*rainbow dominating function* (kRDF) of *G*. The weight, $\omega(f)$, of a function f is defined as $\omega(f) = \Sigma_{v \in V(G)} |f(v)|$. Given a graph *G*, the minimum weight of a kRDF is called the *k-rainbow domination number of G*, which we denote by $\gamma_{rk}(G)$. Clearly when $k = 1$ this concept coincides with the ordinary domination. The 2-rainbow domination in graphs have been studied by B. Bresar and T. K. Umenjak, cf. [2]. The concept of 2-rainbow domination of a graph *G* coincides with the ordinary domination of the prism $G\Box K_2$.

Ghanbari and Mojdeh initiated the concept of *restrained 2- rainbow domination in graphs* cf. [6]. Let *f* be a function that assigns to each vertex a set of colors chosen from the set $\{1,2\}$; that is, $f: V(G) \to P(\{1,2\})$. If for each vertex $v \in V(G)$, such that $f(v) = \emptyset$ we have $\cup_{u \in N(v)} f(u) = \{1, 2\}$, and v is adjacent to a vertex $w \in V(G)$ such that $f(w) = \emptyset$ then f is called a *restrained 2-rainbow dominating function* (R2RDF) of *G*. The weight, $\omega(f)$, of a function f is defined as $\omega(f) = \Sigma_{v \in V(G)} |f(v)|.$ Given a graph G , the minimum weight of a R2RDF is called the *restrained 2-rainbow domination number of G*, which we denote by $\gamma_{rr2}(G)$. In this paper we give an algorithm for determinate values of 2-rainbow domination in the generalized Petersen graph *GP*(*n,* 5).

Theorem 1.1. *[6] Restrained 2-rainbow dominating function is NP-complete.*

Theorem 1.2. *[6]*

 (a) $\gamma_{rr2}(P_2) = 2$ *and* $\gamma_{rr2}(P_3) = 3$. (b) *For* $n \geq 4$ *,* $\gamma_{rr2}(P_n) = 2([\frac{n}{3}] + 1)$ *if* $n \equiv 0$ *or* 1(*mod*3)*.* $f(c)$ *For* $n \geq 4$, $\gamma_{rr2}(P_n) = 2[\frac{n}{3}] + 3$ *if* $n \equiv 2(mod3)$. *(d) For every* $m, n \geq 2$ *;* $\gamma_{rr2}(K_n) = 2$ *,* $\gamma_{rr2}(K_{m,n}) = 4$ and $\gamma_{rr2}(K_{1,n}) = n + 1$.

Theorem 1.3. *[6] For* $n \ge 3$ (a) $\gamma_{rr2}(C_n) = \frac{2n}{3}$ *if* $n \equiv 0 \pmod{3}$ *.* (b) $\gamma_{rr2}(C_n) = 2([\frac{n}{3}] + 1)$ *if* $n \equiv 1 \pmod{3}$ *.* (C) $\gamma_{rr2}(C_n) = 2\left[\frac{n}{3}\right] + 3$ *if* $n \equiv 2(mod3)$ *.*

2 Main Result

The domination invariants of generalized Petersen graphs were studied. Let us recall what a generalized Petersen graph is, cf. also [3].

Let $n \geq 3$ and k be relatively prime natural numbers and $k < n$. The generalized Petersen graph $GP(n, k)$ is defined as follows. Let C_n , C'_n be two disjoint cycles of length n . Let the vertices of C_n be $u_1, ..., u_n$ and edges u_iu_{i+1} for $i=1,...,n-1$ and u_nu_1 . Let the vertices of C'_n be $v_1,...,v_n$ and edges v_iv_{i+k} for $i=1,...,n$, the sum $i+k$ being taken modulo n (throughout this section). The graph $GP(n, k)$ is obtained from the union of C_n and C_n^\prime by adding the edges $u_i v_i$ for $i = 1, ..., n$. Its obvious that $GP(n, k) = GP(n, n - k)$. The graph $GP(5, 2)$ or $GP(5, 3)$ is the well-known Petersen graph.

Theorem 2.1. *[6]*

(a) For $n \geq 5$ and $n \equiv 0 (mod 4)$, the inequality $\gamma_{rr2}(GP(n,1)) = \gamma_{rr2}(GP(n,n-1)) \leq n$ is satisfied. (b) For $n \geq 5$ and $n \equiv i(mod4)$, $i = 1, 2, 3$, the inequality $\gamma_{rr2}(GP(n,1)) = \gamma_{rr2}(GP(n, n-1)) \leq n+1$ is satisfied.

Theorem 2.2. *[6] For* $n \ge 5$ *(a) If* $n \equiv 0 (mod 5)$ *, the inequality* $\gamma_{rr2}(GP(n,2)) = \gamma_{rr2}(GP(n,n-2)) \leq \frac{4n}{5} + 2$ *is satisfied.*

(b) If $n \equiv 1(mod5$ *, the inequality* $\gamma_{rr2}(GP(n, 2)) = \gamma_{rr2}(GP(n, n-2)) \leq 4\left\lfloor \frac{n}{5} \right\rfloor$ $\frac{n}{5}\rfloor+2$ is satisfied. *(c) If* $n \equiv 2(mod5)$ *, the inequality* $\gamma_{rr2}(GP(n,2)) = \gamma_{rr2}(GP(n, n-2)) \leq 4(\frac{n}{5})$ $\frac{n}{5}\rfloor+1)$ is satisfied. (d) *If* $n \equiv 3(mod5)$ *, the inequality* $\gamma_{rr2}(GP(n,2)) = \gamma_{rr2}(GP(n, n-2)) \leq 4(\frac{n}{5})$ $\frac{n}{5}$ | + $\frac{3}{2}$ $\frac{3}{2}$) is satisfied. $P(F)$ *If* $n \equiv 4(mod5)$ *, the inequality* $\gamma_{rr2}(GP(n, 2)) = \gamma_{rr2}(GP(n, n-2)) \leq 4(\frac{n}{5})$ $\frac{n}{5}$ | + $\frac{3}{2}$ $\frac{3}{2}$) is satisfied.

Theorem 2.3. *[6] For* $n \ge 5$

 (a) *If* $n = 5, 7, 8$ *then* $\gamma_{rr2}(GP(n, 3)) = \gamma_{rr2}(GP(n, n-3)) \leq n + 1$ *is satisfied.* (b) If $n \ge 10$, $(n, 3) = 1$ and n is even, then the inequality $\gamma_{rr2}(GP(n, 3)) = \gamma_{rr2}(GP(n, n-3)) \le n+2$ is satisfied. (c) If $n \ge 10$, $(n,3) = 1$ and n is odd, then the inequality $\gamma_{rr2}(GP(n,3)) = \gamma_{rr2}(GP(n,n-3)) \le n+3$ is satisfied.

Theorem 2.4. *For n ≥* 5

(a) If n is an odd number and $(n, 5) = 1$, then $\gamma_{rr2}(GP(n, 5)) = \gamma_{rr2}(GP(n, n-5)) \leq n+5$. *(b)* If *n* is an even number, $(n,5) = 1, 5 \leq \lfloor \frac{n}{4} \rfloor$ $\frac{n}{4}$] and $t = [\frac{n}{10}]$ is even number, then $\gamma_{rr2}(GP(n,5)) = \gamma_{rr2}(GP(n, n - 1))$ 5)) $\leq \frac{3n}{2} - 5t$ if $n \equiv 0 (mod 4)$ and $\gamma_{rr2}(GP(n, 5)) = \gamma_{rr2}(GP(n, n-5)) \leq \frac{3n}{2} - 5t + 1$ if $n \equiv 2 (mod 4)$. *(c)If n is an even number,* $(n,5) = 1, 5 \leq \lceil \frac{n}{4} \rceil$ $\frac{n}{4}$] and $t = [\frac{n}{10}]$ is odd number, then $\gamma_{rr2}(GP(n,5)) = \gamma_{rr2}(GP(n, n - 1))$ 5)) $\leq \frac{n}{2} + 5(t+1)$ if $n \equiv 0 \pmod{4}$ and $\gamma_{rr2}(GP(n, 5)) = \gamma_{rr2}(GP(n, n-5)) \leq \frac{n}{2} + 5(t+1) + 1$ if $n \equiv 2 \pmod{4}$. *(d)*If *n* is an even number, $(n,5) = 1$, $\left[\frac{n}{4}\right]$ $\frac{n}{4}$] < 5 $\leq \frac{n}{2}$ $\binom{n}{2}$) and $t = \left[\frac{n}{n-10}\right]$ is even number, then $\gamma_{rr2}(GP(n,5)) =$ $\gamma_{rr2}(GP(n,n-5))\leq \frac{3n}{2}-\frac{t(n-10)}{2}-1$ if $n\equiv 0 (mod 4)$ and $\gamma_{rr2}(GP(n,5))=\gamma_{rr2}(GP(n,n-5))\leq \frac{3n}{2}-\frac{t(n-10)}{2}$ if $n \equiv 2 \pmod{4}$. *(e)If n is an even number,* $(n, 5) = 1$, $\left[\frac{n}{4}\right]$ $\frac{n}{4}$] < 5 $\leq \frac{n}{2}$

 $\binom{n}{2}$) and $t = \left[\frac{n}{n-10}\right]$ is odd number, then $\gamma_{rr2}(GP(n, 5)) =$ $\gamma_{rr2}(GP(n,n-5))\leq \frac{n+(t+1)(n-10)}{2}$ if $n\equiv 0 (mod 4)$ and $\gamma_{rr2}(GP(n,5))=\gamma_{rr2}(GP(n,n-5))\leq \frac{n+(t+1)(n-10)}{2}+1$ if $n \equiv 2 \pmod{4}$.

Proof. (a) We use the following algorithm and define the function *f* on $GP(n, 5)$: Step 1) $f(u_i) = f(v_i) = \emptyset$ for every even integer $1 < i < n$. Step 2) $f(u_i) = \{1\}$, for every $1 \leq i \leq n$ such that $i \equiv 1 \pmod{4}$. Step 3) $f(u_i) = \{2\}$, for every $1 \leq i \leq n$ such that $i \equiv 3 \pmod{4}$. Step 4) For even integer $1 < i < 5$, $f(v_{i+5}) = f(v_{n-10+i}) = \{1, 2\}$. Step 5) If $5 \leq \lceil \frac{n}{4} \rceil$ $\frac{n}{4}$, for every even integer $1 < i < n$, $f(v_{i-5}) = \{1\}$ and $f(v_{i+5}) = \{2\}$ such that $1 < i \leq 10$ or $20m < i \leq (4m + 2)5$, $m = 1, 2, \cdots$. (The labels defined in previous steps do not change)

Step 6) If $5 \leq \left[\frac{n}{4}\right]$ $\frac{n}{4}$), for every even integer 1 < *i* < *n*, *f*(*v*_{*i*−5}) = {2} and *f*(*v*_{*i*+5}) = {1} such that 2(2*m* − 1)5 < *i* ≤ $20m, m = 1, 2, \cdots$ (The labels defined in previous steps do not change)

Step 7) If [*n* $\left[\frac{n}{4}\right] < 5 \leq \left[\frac{n}{2}\right]$ $\frac{n}{2}$, for every even integer $1 < i \leq n$, $f(v_{i-5}) = \{1\}$ and $f(v_{i+5}) = \{2\}$ such that $1 < i \leq n-10$ or $2m(n-10) < i \leq (2m+1)(n-10)$, $m = 1, 2, \cdots$. (The labels defined in previous steps do not change)

Step 8) If $\left[\frac{n}{4}\right]$ $\frac{n}{4}$] < 5 $\leq \frac{n}{2}$ *n*ⁿ₂</sub> [1}, for every even integer 1 < *i* ≤ *n*, $f(v_{i-5}) = {2}$ and $f(v_{i+5}) = {1}$ such that $(2m-1)(n-10) < i \leq 2m(n-10)$, $m = 1, 2, \cdots$. (The labels defined in previous steps do not change)

We now claim that the function *f* defines a R2RDF on $GP(n, 5)$ and calculate $\omega(f)$.

Firstly according definition of *f* (step 1), each vertex with a label *∅* is adjacent to the other vertex with a label *∅*. Now if *w* is a vertex of $GP(n, 5)$ and $f(w) = \emptyset$, then the following cases has happened.

case 1) There exist an even integer $1 < i < n$ such that $w = u_i$ and according step 2, step 3 and step 4, we have *f*(u_{i-1}) \bigcup *f*(u_{i+1}) = {1, 2}.

case 2) There exist an even integer $1 < i \leq n$ such that $w = v_i$. and according steps 4, 5, 6 and 7, we have *f*(*vi−*5) ∪ *f*(*vi*+5) = *{*1*,* 2*}*.

Finally according to step 1, the number of vertices with empty label is equal to *n −* 1. By step 4, for every even integer $1 < i < 5$, there exist two vertices, such that their labels are $\{1, 2\}$ and by steps 2, 3, 5, 6, 7 and 8, the label of other vertices is {1} or {2}. Then will have $\gamma_{rr2}(GP(n,5)) = \gamma_{rr2}(GP(n, n-5)) \leq n+5$.

(b) We use the following algorithm and define the function f on $GP(n, 5)$:

step 1) $f(u_i) = f(v_i) = \emptyset$ for every even integer $1 < i \leq n$.

step 2) If $n \equiv 2 \pmod{4}$, then $f(u_{n-1}) = \{1, 2\}$.

step 3) $f(u_i) = \{1\}$, for every $1 \le i \le n$ such that $i \equiv 1 \pmod{4}$ (The label defined in step 2 does not change).

step 4) $f(u_i) = \{2\}$, for every $1 \le i \le n$ such that $i \equiv 3(mod4)$ (The label defined in step 2 does not change).

step 5) For even integer $10t < j \le n$, $f(v_{j+5}) = \{1, 2\}$.

step 6) For every even integer $1 < i \leq n$, $f(v_{i-5}) = \{1\}$ and $f(v_{i+5}) = \{2\}$ such that $1 < i \leq 10$ or $20m < i \leq 1$ $(4m + 2)5, m = 1, 2, \cdots$ (The labels defined in previous steps do not change)

step 7) For every even integer $1 < i \le n$, $f(v_{i-5}) = \{2\}$ and $f(v_{i+5}) = \{1\}$ such that $2(2m - 1)5 < i \le 20m$, $m = 1, 2, \cdots$ (The labels defined in previous steps do not change)

We now claim that the function *f* defines a R2RDF on $GP(n, 5)$ and calculate $\omega(f)$.

Firstly according definition of *f* (step 1), each vertex with a label *∅* is adjacent to the other vertex with a label *∅*. Now if *w* is a vertex of $GP(n, 5)$ and $f(w) = \emptyset$, then the following cases has happened.

case 1) There exist an even integer $1 < i \leq n$ such that $w = u_i$ and since *t* is an even number, according step 2, step 3 and step 4, we have $f(u_{i-1}) \bigcup f(u_{i+1}) = \{1, 2\}$.

case 2) There exist an even integer $1 < i \leq n$ such that $w = v_i$. and according steps 5, 6, and 7, we have *f*(*vi−*5) ∪ *f*(*vi*+5) = *{*1*,* 2*}*.

Finally according to step 1, the number of vertices with empty label is equal to *n*. By step 2, if $n \equiv 2 (mod 4)$, then $f(u_{n-1}) = \{1, 2\}$, by step 5, for every even integer $10t < j \le n$, the label of v_{j+5} , is $\{1, 2\}$ and by steps 3, 4, 6, and 7, the label of other vertices is {1} or {2}. Then if $n \equiv 0(mod4)$ we will have $\gamma_{rr2}(GP(n,5)) = \gamma_{rr2}(GP(n, n-5)) \le$ $\frac{n}{2}+\frac{n}{2}+(\frac{n-10t}{2})=\frac{3n}{2}-5t$ and if $n\equiv 2(mod 4)$ we will have $\gamma_{rr2}(GP(n,5))=\gamma_{rr2}(GP(n,n-5))\leq \frac{n}{2}+1+\frac{n}{2}+(\frac{n-10t}{2})=$ $\frac{3n}{2} - 5t + 1$.

(c) We use the following algorithm and define the function *f* on *GP*(*n,* 5):

step 1) $f(u_i) = f(v_i) = \emptyset$ for every even integer $1 < i \leq n$. step 2) If $n \equiv 2(mod4$, then $f(u_{n-1}) = \{1, 2\}$.

step 3) $f(u_i) = \{1\}$, for every $1 \le i \le n$ such that $i \equiv 1 \pmod{4}$ (The label defined in step 2 does not change).

step 4) $f(u_i) = \{2\}$, for every $1 \leq i \leq n$ such that $i \equiv 3 \pmod{4}$ (The label defined in step 2 does not change).

step 5) For even integer $10t - l < j \le 10t$, $f(v_{j+5}) = \{1, 2\}$, such that $l = 10(t + 1) - n$

step 6) For every even integer $1 < i \leq n$, $f(v_{i-5}) = \{1\}$ and $f(v_{i+5}) = \{2\}$ such that $1 < i \leq 10$ or $20m < i \leq$ $(4m + 2)5, m = 1, 2, \cdots$. (The labels defined in previous steps do not change)

step 7) For every even integer $1 < i \le n$, $f(v_{i-5}) = \{2\}$ and $f(v_{i+5}) = \{1\}$ such that $2(2m - 1)5 < i \le 20m$, $m = 1, 2, \cdots$. (The labels defined in previous steps do not change)

We now claim that the function *f* defines a R2RDF on $GP(n, 5)$ and calculate $\omega(f)$.

Firstly according definition of *f* (step 1), each vertex with a label *∅* is adjacent to the other vertex with a label *∅*. Now if *w* is a vertex of $GP(n, 5)$ and $f(w) = \emptyset$, then the following cases has happened.

case 1) There exist an even integer $1 < i \leq n$ such that $w = u_i$ and since t is an even number, according step 2, step 3 and step 4, we have $f(u_{i-1}) \bigcup f(u_{i+1}) = \{1, 2\}$.

case 2) There exist an even integer $1 < i \leq n$ such that $w = v_i$. and according steps 5, 6, and 7, we have *f*(*vi−*5) ∪ *f*(*vi*+5) = *{*1*,* 2*}*.

Finally according to step 1, the number of vertices with empty label is equal to *n*. By step 2, if $n \equiv 2(mod4)$, then $f(u_{n-1}) = \{1,2\}$, and by step 5, for every even integer $10t - l < j \le 10t$, the label of v_{j+5} , is $\{1,2\}$ and by steps 3, 4, 6, and 7, the label of other vertices is $\{1\}$ or $\{2\}$. Then if $n \equiv 0 (mod 4)$ we will have $\gamma_{rr2}(GP(n,5))$ = $\gamma_{rr2}(GP(n, n-5)) \leq \frac{n}{2} + \frac{n}{2} + (\frac{10(t+1)-n}{2}) = \frac{n}{2} + 5(t+1)$ and if $n \equiv 2(mod4)$ we will have $\gamma_{rr2}(GP(n, 5)) =$ $\gamma_{rr2}(GP(n, n-5)) \leq \frac{n}{2} + 5(t+1) + 1.$

(d) We use the following algorithm and define the function f on $GP(n, 5)$:

step 1) $f(u_i) = f(v_i) = \emptyset$ for every even integer $1 < i \leq n$.

step 2) If $n \equiv 2 \pmod{4}$, then $f(u_{n-1}) = \{1, 2\}$.

step 3) $f(u_i) = \{1\}$, for every $1 \le i \le n$ such that $i \equiv 1 \pmod{4}$ (The label defined in step 2 does not change).

step 4) $f(u_i) = \{2\}$, for every $1 \le i \le n$ such that $i \equiv 3 \pmod{4}$ (The label defined in step 2 does not change).

step 5) For even integer $t(n-10) < j \le n$, $f(v_{j+5}) = \{1, 2\}$.

step 6) For every even integer $1 \lt i \leq n$, $f(v_{i-5}) = \{1\}$ and $f(v_{i+5}) = \{2\}$ such that $1 \lt i \leq n-10$ or $2m(n-10) < i \leq (2m+1)(n-10)$, $m = 1, 2, \cdots$. (The labels defined in previous steps do not change)

step 7) For every even integer $1 < i \leq n$, $f(v_{i-5}) = \{2\}$ and $f(v_{i+5}) = \{1\}$ such that $(2m-1)(n-10) < i \leq$ $2m(n-10)$, $m=1,2,\cdots$ (The labels defined in previous steps do not change)

We now claim that the function *f* defines a R2RDF on $GP(n, 5)$ and calculate $\omega(f)$.

Firstly according definition of *f* (step 1), each vertex with a label *∅* is adjacent to the other vertex with a label *∅*. Now if *w* is a vertex of $GP(n, 5)$ and $f(w) = \emptyset$, then the following cases has happened.

case 1) There exist an even integer $1 < i \leq n$ such that $w = u_i$ and since t is an even number, according step 2, step 3 and step 4, we have $f(u_{i-1}) \bigcup f(u_{i+1}) = \{1, 2\}.$

case 2) There exist an even integer $1 < i \leq n$ such that $w = v_i$. and according steps 5, 6, and 7, we have *f*(*v*_{*i*−5}) \bigcup *<i>f*(*v*_{*i*+*k*}) = {1, 2}.

Finally according to step 1, the number of vertices with empty label is equal to *n*. By step 2, if $n \equiv 2(mod4)$, then $f(u_{n-1}) = \{1,2\}$, and by step 5, for every even integer $t(n-10) < j \le n$, the label of v_{j+5} , is $\{1,2\}$ and by steps 3, 4, 6, and 7, the label of other vertices is $\{1\}$ or $\{2\}$. Then if $n \equiv 0 (mod 4)$ we will have $\gamma_{rr2}(GP(n,5)) =$ $\gamma_{rr2}(GP(n, n-5)) \leq \frac{n}{2} + \frac{n}{2} + (\frac{n-t(n-10)}{2}) = \frac{3n}{2} - \frac{t(n-10)}{2}$ and if $n \equiv 2(mod4)$ we will have $\gamma_{rr2}(GP(n, 5)) =$ $\gamma_{rr2}(GP(n, n-5)) \leq \frac{3n}{2} - \frac{t(n-10)}{2} + 1.$

(e) We use the following algorithm and define the function *f* on *GP*(*n,* 5):

step 1) $f(u_i) = f(v_i) = \emptyset$ for every even integer $1 < i \leq n$.

step 2) If $n \equiv 2 \pmod{4}$, then $f(u_{n-1}) = \{1, 2\}$.

step 3) $f(u_i) = \{1\}$, for every $1 \le i \le n$ such that $i \equiv 1 \pmod{4}$ (The label defined in step 2 does not change). step 4) $f(u_i) = \{2\}$, for every $1 \le i \le n$ such that $i \equiv 3(mod 4)$ (The label defined in step 2 does not change). step 5) For even integer $t(n-10) - l < j \le t(n-10)$, $f(v_{i+5}) = \{1,2\}$, such that $l = (t+1)(n-10) - n$. step 6) For every even integer $1 < i \leq n$, $f(v_{i-5}) = \{1\}$ and $f(v_{i+5}) = \{2\}$ such that $1 < i \leq n - 10$ or $2m(n-10) < i \leq (2m+1)(n-10)$, $m = 1, 2, \cdots$. (The labels defined in previous steps do not change) step 7) For every even integer $1 < i \leq n$, $f(v_{i-5}) = \{2\}$ and $f(v_{i+5}) = \{1\}$ such that $(2m-1)(n-10) < i \leq$ $2m(n-10)$, $m=1,2,\cdots$. (The labels defined in previous steps do not change) We now claim that the function *f* defines a R2RDF on $GP(n, 5)$ and calculate $\omega(f)$. Firstly according definition of *f* (step 1), each vertex with a label *∅* is adjacent to the other vertex with a label *∅*. Now if *w* is a vertex of $GP(n, 5)$ and $f(w) = \emptyset$, then the following cases has happened. case 1) There exist an even integer $1 < i \leq n$ such that $w = u_i$ and since t is an even number, according step 2, step 3 and step 4, we have $f(u_{i-1}) \bigcup f(u_{i+1}) = \{1, 2\}.$ case 2) There exist an even integer $1 < i \leq n$ such that $w = v_i$. and according steps 5, 6, and 7, we have *f*(*vi−*5) ∪ *f*(*vi*+5) = *{*1*,* 2*}*. Finally according to step 1, the number of vertices with empty label is equal to *n*. By step 2, if $n \equiv 2(mod4)$, then $f(u_{n-1}) = \{1,2\}$, and by step 5, for every even integer $t(n-10) - l < j \le t(n-10)$, the label of v_{i+5} ,

is $\{1, 2\}$ and by steps 3, 4, 6, and 7, the label of other vertices is $\{1\}$ or $\{2\}$. Then if $n \equiv 0 \pmod{4}$ we will have $\gamma_{rr2}(GP(n,5)) = \gamma_{rr2}(GP(n, n-5)) \leq \frac{n}{2} + \frac{n}{2} + (\frac{(t+1)(n-10)-n}{2}) = \frac{(t+1)(n-10)-n}{2}$ and if $n \equiv 2(mod4)$ we will have $\gamma_{rr2}(GP(n,5)) = \gamma_{rr2}(GP(n, n-5)) \leq \frac{(t+1)(n-10)-n}{2} + 1.$

 \Box

References

- [1] B. Bresar, M.A. Henning and D.F. Rall, *Rainbow domination in graphs*, Taiwanese J. Math., to appear (2008).
- [2] B. Bresar and T. K. Umenjak, *Note On the 2-rainbow domination in graphs*, Discrete Applied Mathematics 155 , Elsevier (2007), 2394–2400.
- [3] B. Zelinka, Domination in generalized Petersen graphs, Czechoslovak Math. J. 52 (2002) 11–16.
- [4] E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi and S.T. Hedetniemi, *Roman domination in graphs*, Discrete Math. **278** (2004), 11–22.
- [5] G.S. Domke, J.H. Hattingh and S.T. Hedetniemi, R.C. Laskar and L.R. Markus, *Restrained domination in graphs*, Discrete Math. **203** (1999), 61–69.
- [6] M.Ghanbari and D. A. Mojdeh, *2-rainbow domination of a graph*, Submitted (2022).
- [7] M.Ghanbari, D. A. Mojdeh and M. Ramezani, *Domination number in unit disk graph; via s-clique approach*, ikpress **628** (2016), 227–236.
- [8] T.W. Haynes, S.T. Hedetniemi and M. A. Henning, *Fundamentals of Domination in Graphs*, Speringer, (2021).

- [9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, *Fundamentals of Domination in Graphs*, Marcel Dekker, New York, (1998).
- [10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, *Domination in Graphs: Advanced Topics*, Marcel Dekker, New York, (1998).
- [11] D.A. Mojdeh, I. Masoumi and L. Volkmann, *Restrained double Roman domination of a graph*, Math. Combinatorics, arXiv:2106.08501[math.Co] (2021) .
- [12] P.R.L. Pushpam and S. Padmapriea, *Restrained Roman domination in graphs*, Trans. Comb. **4** (2015), 1–17.
- [13] J.A. Telle and A. Proskurowski, *Algorithms for vertex partitioning problems on partial k-trees*, SIAM J. Discrete Math. **10** (1997), 529–550.
- [14] D.B. West, Introduction to Graph Theory (Second Edition), Prentice Hall, USA, 2001.