

Midpoint Characterization of Symmetric Hadamard Spaces and its Applications

Farshid Khojasteh*

Department of Mathematics, Arak Branch, Islamic Azad University, Arak, Iran.

Article Info	Abstract
Keywords	In this paper, we distinguish symmetric Hadamard spaces by introducing the midpoint prop-
Midpoint	erties in these spaces. We prove that any symmetric Hadamard spaces are flat. As an appli-
Geodesic Space	cation of the new midpoint property, we characterize the affine mapping in these spaces.
Symmetric	
Hadamard Space	
Complete CAT(o) Space	
Article History	
Received: 2022 March 19	
Accepted:2021 December 24	

1 Introduction

Let (X, d) be a metric space. A geodesic from x to y is a map γ from the closed interval $[0, d(x, y)] \subset \mathbb{R}$ to X such that $\gamma(0) = x$, $\gamma(d(x, y)) = y$ and $d(\gamma(t), \gamma(t')) = |t - t'|$ for all $t, t' \in [0, d(x, y)]$. The space (X, d) is said to be a geodesic space if every two points of X are joined by a geodesic. The metric segment [x, y] contains the images of all geodesics, which connect x to y. X is called unique geodesic iff [x, y] contains only one geodesic.

Let X be a unique geodesic metric space. For each $x, y \in X$ and for each $t \in [0, 1]$, there exists a unique point $z \in [x, y]$ such that d(x, z) = td(x, y) and d(y, z) = (1 - t)d(x, y). We will use the notation $(1 - t)x \oplus ty$ for the unique point z satisfying in the above statement.

In a unique geodesic metric space X, a set $A \subset X$ is called convex iff for each $x, y \in A$, $[x, y] \subset A$. A unique geodesic space X is called CAT(o) space if for all $x, y, z \in X$ and for each $t \in [0, 1]$, we have the following inequality

$$d^{2}((1-t)x \oplus ty, z) \leq (1-t)d^{2}(x, z) + td^{2}(y, z) - t(1-t)d^{2}(x, y)$$

A complete CAT(0) space is called a Hadamard space.

Berg and Nikolaev in [8,9] have introduced the concept of quasi-linearization along these lines. Let us formally denote a pair $(a, b) \in X \times X$ by \vec{ab} and call it a vector. Then quasi-linearization is defined as a map $\langle \cdot, \cdot \rangle : (X \times X) \times (X \times X) \to \mathbb{R}$ defined by

$$\langle \vec{ab}, \vec{cd} \rangle = \frac{1}{2} \left(d^2(a, d) + d^2(b, c) - d^2(a, c) - d^2(b, d) \right) \quad (a, b, c, d \in X).$$

It is easily seen that

* Corresponding Author's E-mail: fr_khojasteh@yahoo.com(F.Khojasteh)

$$\langle \vec{ab}, \vec{ab} \rangle = d^2(a, b), \langle \vec{ab}, \vec{cd} \rangle = \langle \vec{cd}, \vec{ab} \rangle, \langle \vec{ab}, \vec{cd} \rangle = -\langle \vec{ba}, \vec{cd} \rangle$$
 and $\langle \vec{ax}, \vec{cd} \rangle + \langle \vec{xb}, \vec{cd} \rangle = \langle \vec{ab}, \vec{cd} \rangle$ for all $a, b, c, d, x \in X$.
We say that X satisfies the Cauchy-Schwartz inequality if $\langle \vec{ab}, \vec{cd} \rangle \leq d(a, b)d(c, d)$ for all $a, b, c, d \in X$. It is known (Corollary 3 of [9]) that a geodesically connected metric space is a CAT(0) space if and only if it satisfies the Cauchy-Schwartz inequality.

2 Main Result

Let (X, d) be a semi metric space. Define the relation \sim on $X \times X$ as follows:

$$\overrightarrow{xy} \sim \overrightarrow{zt} \quad \Leftrightarrow \quad \langle \overrightarrow{ab}, \overrightarrow{xy} \rangle = \langle \overrightarrow{ab}, \overrightarrow{zt} \rangle \quad (\forall a, b \in X).$$
(2.1)

The equivalent class of \overrightarrow{xy} will be denoted by $[\overrightarrow{xy}]$. If $[\overrightarrow{xy}] = [\overrightarrow{zt}]$, then

$$d^{2}(x,y) = \langle \overrightarrow{xy}, \overrightarrow{xy} \rangle = \langle \overrightarrow{xy}, \overrightarrow{zt} \rangle = \langle \overrightarrow{zt}, \overrightarrow{xy} \rangle = \langle \overrightarrow{zt}, \overrightarrow{zt} \rangle = d^{2}(z,t).$$
(2.2)

Definition 2.1. We say that the semi metric space (X, d) satisfies the (S) property if for any $(x, y) \in X \times X$ there exist $y_x \in X$ such that $[\overrightarrow{xy}] = [\overrightarrow{y_x x}]$ (cf. [1, Definition 2.7]); or equivalently if for any $(x, y) \in X \times X$ there exist $x_y \in X$ such that $[\overrightarrow{xy}] = [\overrightarrow{yxy}]$.

Any Hadamard space with property S is called symmetric Hadamard space. It is obvious that, any Hilbert space enjoys the S and property (let $y_x := 2x - y$, then $[\overrightarrow{xy}] = [\overrightarrow{y_xx}] = [y - x]$ and also $x_y := 2y - x$ and then $[\overrightarrow{xy}] = [\overrightarrow{yxy}] = [y - x]$).

Remark 2.1. In the above definition, y_x and x_y are unique. Note that if $[\overrightarrow{xy}] = [\overrightarrow{y_xx}] = [\overrightarrow{y_x}]$, then

$$d^{2}(y_{x}, u) = \langle \overline{y_{x} u}, \overline{y_{x} u} \rangle = \langle \overline{y_{x} x}, \overline{y_{x} u} \rangle + \langle \overline{x u}, \overline{y_{x} u} \rangle$$
$$= \langle \overline{x y}, \overline{y_{x} u} \rangle - \langle \overline{x y}, \overline{y_{x} u} \rangle = 0.$$

The uniqueness of x_y is similar.

Lemma 2.1. Let X be a uniquely geodesic metric space satisfying (S) property, and $x, y, z \in X$. Then $[\overrightarrow{xy}] = [\overrightarrow{zx}]$, if and only if, x is the midpoint of the geodesic [z, y].

Proof. Let $[\overrightarrow{xy}] = [\overrightarrow{zx}]$. Using (2.2) we have d(x, y) = d(z, x). Moreover,

$$\begin{aligned} d^{2}(z,y) &= \langle \overline{z}\overline{y}, \overline{z}\overline{y} \rangle = \langle \overline{z}\overline{x}, \overline{z}\overline{y} \rangle + \langle \overline{x}\overline{y}, \overline{z}\overline{y} \rangle \\ &= \langle \overline{x}\overline{y}, \overline{z}\overline{y} \rangle + \langle \overline{x}\overline{y}, \overline{z}\overline{y} \rangle = 2\langle \overline{x}\overline{y}, \overline{z}\overline{y} \rangle \\ &= 2(\langle \overline{x}\overline{y}, \overline{z}\overline{x} \rangle + \langle \overline{x}\overline{y}, \overline{x}\overline{y} \rangle) \\ &= 2(\langle \overline{x}\overline{y}, \overline{x}\overline{y} \rangle + \langle \overline{x}\overline{y}, \overline{x}\overline{y} \rangle) \\ &= 4\langle \overline{x}\overline{y}, \overline{x}\overline{y} \rangle = 4d^{2}(x, y). \end{aligned}$$

It means that d(x, y) = d(x, z) = 1/2d(z, y) and so x is the midpoint of [z, y].

Conversely, let m be the midpoint of [x, y]. Then we have d(x, m) = d(m, y) = 1/2d(x, y). By (S) there exists $x_m \in X$ such that $[\overrightarrow{xm}] = [\overrightarrow{mx_m}]$. It follows from (2.1) and (2.2) that

$$\langle \overrightarrow{ym}, \overrightarrow{xm} \rangle = \langle \overrightarrow{ym}, \overrightarrow{mx_m} \rangle$$

and $d(m, x_m) = d(m, x)$. It means that

$$d^{2}(y,m) + d^{2}(x,m) - d^{2}(x,y) = d^{2}(y,x_{m}) - d^{2}(y,m) - d^{2}(m,x_{m}).$$

Since $d(m, x_m) = d(m, x) = d(m, y) = 1/2d(x, y)$, we have $d^2(y, x_m) = 0$. It means that $x_m = y$ and thus $[\overrightarrow{xm}] = [\overrightarrow{mx_m}] = [\overrightarrow{my}]$.

Lemma 2.2. Let C be a nonempty convex subset in the symmetric Hadamard space $X, x \in X$ and $u \in C$. Then, $u = P_C(x)$ if and only if

$$\langle \overrightarrow{xu}, \overrightarrow{yu} \rangle = 0,$$

for all $y \in C$

Proof. By [36, Theorem 2.2] we have $u = P_C(x)$ if and only if

 $\langle \overrightarrow{xu}, \overrightarrow{yu} \rangle \le 0,$

for all $y \in C$. Also, there exists $y_u \in C$ such that $[\overrightarrow{uy}] = [\overrightarrow{y_u u}]$. Thus we have

$$\langle \overrightarrow{xu}, \overrightarrow{yu} \rangle = -\langle \overrightarrow{xu}, \overrightarrow{uy} \rangle = -\langle \overrightarrow{xu}, \overrightarrow{y_uu} \rangle \ge 0$$

It means that $\langle \vec{xu}, \vec{yu} \rangle = 0$.

Theorem 2.1. Let X be a symmetric Hadamard space and $p, q, r, m \in X$. Then m is the midpoint of [q, r] if and only if the following equality holds

$$2d^{2}(p,m) + \frac{1}{2}d^{2}(q,r) = d^{2}(p,r) + d^{2}(p,q).$$

Proof. (\Rightarrow) Let m be the midpoint of [q, r]. Then $[\overrightarrow{qm}] = [\overrightarrow{mr}]$. Thus,

$$\langle \overrightarrow{ab}, \overrightarrow{qm} \rangle = \langle \overrightarrow{ab}, \overrightarrow{mr} \rangle \quad \forall a, b \in X.$$

Now let a = p and b = m we have

$$\langle \overrightarrow{pm}, \overrightarrow{qm} \rangle = \langle \overrightarrow{pm}, \overrightarrow{mr} \rangle.$$

Therefore,

$$d^{2}(p,m) + d^{2}(q,m) - d^{2}(p,q) = d^{2}(p,r) - d^{2}(p,m) - d^{2}(m,r).$$

It means that

$$2d^{2}(p,m) + \frac{1}{4}d^{2}(q,r) = d^{2}(p,q) + d^{2}(p,r) - \frac{1}{4}d^{2}(q,r).$$

Hence,

$$2d^{2}(p,m) + \frac{1}{2}d^{2}(q,r) = d^{2}(p,q) + d^{2}(p,r)$$

and the proof is completed.

(\Leftarrow) Suppose that $p, q, r \in X$ and $m \in [q, r]$ and

$$2d^{2}(p,m) + \frac{1}{2}d^{2}(q,r) = d^{2}(p,r) + d^{2}(p,q).$$
(2.3)

2022, Volume 16, No.1

Since $m \in [q, r]$, we have

$$d(m,q) = td(q,r)$$
 and $d(m,r) = (1-t)d(q,r).$ (2.4)

If we take p = m in (2.3), we obtain

$$\frac{1}{2}d^2(q,r) = d^2(p,q) + d^2(p,r).$$
(2.5)

Combining (2.4) and (2.5), one can conclude that

$$\frac{1}{2}d^2(q,r) = (1-t)^2 d^2(q,r) + t^2 d^2(q,r)$$

and so $t^2 + (1-t)^2 = \frac{1}{2}$ and this holds if and only if $t = \frac{1}{2}$. It means that

$$d(m,q) = d(m,r) = \frac{1}{2}d(q,r)$$

Hence, m is the midpoint of [q, r].

Definition 2.2. Let X be an Hardamard space (with or without (S) property). We say that X is flat if for $p, q, r, m \in X$ in which m is the midpoint of [q, r] then the following equality holds

$$d^{2}(p,m) = \frac{d^{2}(p,r) + d^{2}(p,q)}{2} - \frac{1}{4}d^{2}(q,r).$$

Corollary 2.1. Let X be an Hardamard space. Then, if X be symmetric Hadamard space then it is flat.

Proof. Based on Theorem 2.1 since the CN inequality of Bruhat and Tits turns into equality in symmetric Hadamard space, therefore, it is flat. \Box

3 Some Applications of Midpoint Characterization

In the current section, as an application of the midpoint property in symmetric Hadamard spaces, we characterize the affine mapping in such spaces.

Theorem 3.1. Suppose that X is a symmetric Hadamard space. Then

- (a₁) for each $a, b, c \in X$ the function $f : X \to \mathbb{R}$ defined by $f(x) = \langle \overrightarrow{ab}, \overrightarrow{cx} \rangle + f(b)$ is affine and for each $x_0 \in dom(f), [\overrightarrow{ab}] \in \partial f(x_0), i.e., dom(\partial f) = int(dom(f)).$
- (*a*₂) for each affine mapping $f : X \to \mathbb{R}$ and for every $b \in cl(dom(f))$ and $t \in \mathbb{R}$ with t < f(b), there exists a point $a \in X$, such that

$$f(x) = \frac{1}{f(b) - t} \langle \overrightarrow{ab}, \overrightarrow{ax} \rangle + f(b)$$

for each $x \in X$. Moreover, $d(a, b) \leq \frac{1}{2}(f(b) - t)$.

Proof. (a_1) : Define $g(x) = d^2(x, a) - d^2(x, b)$, for each $x \in X$. Let $m = \frac{1}{2}x \oplus \frac{1}{2}y$. Since m is the midpoint of [x, y] by Theorem we have $[\overrightarrow{xm}] = [\overrightarrow{my}]$. It means that,

$$\overrightarrow{xm}, \overrightarrow{ab} \rangle = \langle \overrightarrow{my}, \overrightarrow{ab} \rangle.$$

<

2022, Volume 16, No.1

we have

$$d^{2}(x,b) + d^{2}(m,a) - d^{2}(x,a) - d^{2}(m,b) = d^{2}(m,b) + d^{2}(y,a) - d^{2}(m,a) - d^{2}(y,b).$$

It means that,

$$d^{2}(\frac{1}{2}x \oplus \frac{1}{2}y, a) - d^{2}(\frac{1}{2}x \oplus \frac{1}{2}y, a) = \frac{1}{2}(d^{2}(x, a) - d^{2}(x, b)) + \frac{1}{2}(d^{2}(y, a) - d^{2}(y, b)).$$

Thus,

$$g(\frac{1}{2}x \oplus \frac{1}{2}y) = \frac{1}{2}g(x) + \frac{1}{2}g(y).$$

Since *f* is continuous so for each $\lambda \in [0, 1]$, we have

$$g(\lambda x \oplus (1-\lambda)y) = \lambda g(x) + (1-\lambda)g(y)$$

Since

$$\langle \overrightarrow{ab}, \overrightarrow{cx} \rangle = \frac{1}{2} (d^2(a, x) + d^2(b, x) - d^2(a, c) - d^2(b, c))$$

It shows that *f* is affine and the proof is completed.

Also, suppose that $a, b, c \in X$. We have

$$\begin{aligned} f(x) - f(x_0) &= \langle \overrightarrow{ab}, \overrightarrow{cx} \rangle - \langle \overrightarrow{ab}, \overrightarrow{cx_0} \rangle \\ &= \frac{1}{2} [d^2(a, x) + d^2(b, c) - d^2(a, c) - d^2(b, x) \\ &- d^2(a, x_0) + d^2(b, c) - d^2(a, c) - d^2(b, x_0)] \\ &= \frac{1}{2} [d^2(a, x) - d^2(b, x) - d^2(a, x_0) + d^2(b, x_0)] \\ &= \langle \overrightarrow{ab}, \overrightarrow{x_0x} \rangle \end{aligned}$$

If we take $x^* = [\overrightarrow{ab}]$, we have $x^* \in \partial f(x_0)$.

 (a_2) : Note that f is affine, thus the set $epi(f) = \{(x,t) : t \ge f(x)\}$ is nonempty, closed and affine set. Applying the same argument in [37, Lemma 3.2] and the fact that X is symmetric Hadamard space, taking $(a, s) = P_{epi(f)}(b, t)$, one can apply Lemma 2.2 and conclude that

$$\langle (\overrightarrow{ax}, f(x) - s), (\overrightarrow{ab}, t - s) \rangle = 0$$

for each $x \in dom(f)$. It means that

$$\langle \overrightarrow{ax}, \overrightarrow{ab} \rangle + (f(x) - s)(t - s) = 0.$$
 (3.1)

Considering x = b, we have

$$d^{2}(a,b) + (f(b) - s)(t - s) = 0.$$
(3.2)

It means that, s = f(b) and from (3.1) we have

$$f(x) = \frac{1}{f(b) - t} \langle \overrightarrow{ab}, \overrightarrow{ax} \rangle + f(b)$$

Moreover, (3.2) yields that

$$d^{2}(a,b) + (f(x) - t)(t - s) + (t - s)^{2} = 0.$$

2022, Volume 16, No.1

Taking A = t - s, we have $A^2 + A(f(x) - t) + d^2(a, b) = 0$. It means that $\Delta = (f(x) - t)^2 - 4d^2(a, b) \ge 0$. Thus,

$$|f(x) - t| \ge 2d(a, b).$$

and so $d(a, b) \le \frac{1}{2} |f(x) - t|$.

Remark 3.1. In [1, Definition 2.7], the author introduced (S) property and said that : "it is not hard to check that any symmetric Hadamard manifold satisfies the (S) property". Based on this sentence and Corollary **??**, any symmetric Hadamard spaces is flat! But anyone is able to exemplify many Hadamard manifolds (see [1] for more details) which are not flat and so the sentence is not true as the author in [1] pointed out.

References

- [1] B. Ahmadi Kakavandi, Weak topologies in complete CAT(0) spaces, Proc. Amer. Math. Soc., 141 (2013), 1029-1039.
- [2] D. Ariza-Ruiz, L. Leustean, G. López-Acedo, Firmly nonexpansive mappings in classes of geodesic spaces. Trans. Amer. Math. Soc. 366 (2014), 4299-4322.
- [3] M. Bacak, I. Searston and B. Sims, Alternating projections in CAT(0) spaces, J. Math Anal. Appl. 385 (2012), 599-607.
- [4] M. Bacak, The proximal point algorithm in metric spaces, Israel J. Math. 194 (2013), 689-701.
- [5] M. Bacak, Convex Analysis and Optimization in Hadamard Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 22. De Gruyter, Berlin, 2014.
- [6] M. Bacak, Miroslav; S. Reich, The asymptotic behavior of a class of nonlinear semigroups in Hadamard spaces. J. Fixed Point Theory Appl. 16 (2014), 189-202.
- [7] G. C. Bento, O.P. Ferreira and P. R. Oliveira, Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds, Nonlinear Anal. 73 (2010), 564-572.
- [8] I.D. Berg, I.G. Nikolaev, On a distance between directions in an Alexandrov space of curvature \leq K, Michigan Math. J., 45 (1998), 275-289.
- [9] I. D. Berg, I.G. Nikolaev, Quasilinearization and curvature of Alexandrov spaces, Geom. Dedicata, 133 (2008), 195-218.
- [10] M. R. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Springer-Verlag, Berlin, 1999.
- [11] D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry. Graduate Studies in Mathematics, 33. American Mathematical Society, Providence, RI, 2001.
- [12] P. Cholamjiak, The modified proximal point algorithm in CAT(0) spaces, Optim. Lett. 9 (2015) 1401-1410.
- [13] O. P. Ferreira, P. R. Oliveira, Proximal point algorithm on Riemannian manifolds, Optim., Vol. 51(2), (2002) 257-270.

```
2022, Volume 16, No.1
```

- [14] M. A. Khamsi and A. R. Khan, Inequalities in metric spaces with applications, Nonlinear Analysis 74 (2011), 4036-4045.
- [15] A. N. Iusem, W. Sosa, On the proximal point method for equilibrium problems in Hilbert spaces. Optimization, 59 (2010), 1259-1274.
- [16] J. Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Helv. 70 (1995), 659-673.
- [17] J. Jost, Nonpositive Curvature: Geometric and Analytic Aspects, Lectures Math. ETH ZNurich, BirkhNauser, Basel (1997).
- [18] W. A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., 68 (2008), 3689-3696.
- [19] W. A. Kirk, Geodesic geometry and fixed point theory. II, in International Conference on Fixed Point Theory and Applications, pp. 113-142, Yokohama Publishers, Yokohama, Japan, 2004.
- [20] T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc., 60 (1976), 179-182.
- [21] C. Li, G. Lopez, V. Martin-Marquez and J.H. Wang, Resolvent of set valued monotone vector fields in Hadamard manifolds, Set-Valued Anal. 19 (2011), 361-383.
- [22] C. Li, G. Lopez, V. Martin-Marquez, Monotone vector fields and the proximal point algorithm on Hadamard manifolds, J. London Math. Soc. 79 (2009), 663-683.
- [23] B. Martinet, Régularisation d'inéquations variationnelles par approximations successives, Rev. Française Informat. Recherche Opérationnelle 3 (1970), 154-158.
- [24] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003) 372-379.
- [25] A. Nicolae, Asymptotic behavior of averaged and firmly nonexpansive mappings in geodesic spaces, Nonlinear Anal. 87 (2013), 102-115.
- [26] A. Papadopoulos, Metric Spaces, Convexity and Nonpositive Curvature, IRMA Lectures in Mathematics and Theoretical Physics, 6. European Mathematical Society (EMS), Zürich, 2005.
- [27] E.A. Papa Quiroz, P. R. Oliveira, Proximal point method for minimizing quasiconvex locally Lipschitz functions on Hadamard manifolds, Nonlinear Anal. 75 (2012), 5924-5932.
- [28] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), 877-898.
- [29] S. Saejung, P. Yotkaew, Approximation of zeros of inverse strongly mono- tone operators in Banach spaces. Nonlinear Anal. 75 (2012) 742-750.
- [30] M.V. Solodov, B.F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Programming Ser. A 87 (2000) 189-202.

- [31] G. Tang, L. Zhou, and N. Huang, The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds, Optim. Lett. 7 (2013), no. 4, 779-790.
- [32] G. Tang and Y. Xiao, A note on the proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds, Adv. Nonlinear Var. Inequal. 18 (2015), 58-69.
- [33] J.H. Wang, G. Lopez, V. Martin-Marquez and Li, Monotone and accretive vector fields on Riemannian manifolds, J. Optim. Theory Appl. 146 (2010), 691-708.
- [34] H.K. Xu, Iterative algorithms for nonlinear operators. J. London Math. Soc., 66 (2002), 240-256.
- [35] William Kirk, Brailey Sims, Handbook of Metric Fixed Point Theory, Springer Science and Business Media, 2013.
- [36] H. Dehghan, J. Rooin A Characterization of Metric Projection in *CAT*(0)–Spaces(arXiv:1311.4174v1[math.FA] 17 Nov 2013).
- [37] B. A. Kakavandi, M. Amini, Duality and subdifferential for convex functions on complete CAT(0) metric spaces, Nonlinear Anal. (TMA), 2010, 73, 3450-3455.