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ABSTRACT

In this research work, we have shown that it is possible to use fuzzy transformmethod (FTM)

for the estimate solution of fractional system differential equations (FSDEs). In numerical

methods, in order to estimate a function on a particular interval, only a restricted number

of points are employed. However, what makes the F -transform preferable to other methods

is that it makes use of all points in this interval. A number of clear and specific examples

have been enumerated for the purpose of illustrating the simplicity and the efficiency of the

suggested method.

1 Introduction
Fractional arithmetic and fractional differential equations appear in many disciplines, including medicine [1],
economics [2], dynamical problems [3, 4], chemistry [5], mathematical physics [6], traffic models [7] and fluid
flow [8] and so on. Scholars and researchers are invited to study books that have been written in order to better
understand the concept of fractional arithmetic [9, 10]. This study has been conducted for the purpose of finding
the estimate solution for the following system differential equations with fractional derivative:

Dαuq(t) +Nq (u1(t), u2(t), . . . , up(t)) = hq(t), q = 1, 2, . . . , p, (1.1)

with the initial conditions:
u(i)q (t0) = ηq, q = 1, 2, . . . , p, i = 0, 1, · · · ,m− 1, (1.2)

where p is the number of unknown variables, Nq is nonlinear part, hq are inhomogeneous terms and Dα denotes
the Caputo derivative of order α in [10]

Dαu(t) =
1

Γ(m− α)

∫ t

0
(t− s)m−α−1u(m)(s)ds, m− 1 < α ≤ m, m ∈ Z+. (1.3)

A number of articles can be found to express modeling, deploying and extent of system differential equation
(SDEs), systempartial differential equation (SPDEs) and fractional systempartial differential equations (FSPDEs),
which are cited in [10, 11, 12, 13]. There are no accurate analytical solutions for most SDEs, SPDEs and FSPDEs;
thus, a relatively large number of estimate solution expressed by scholars are not possible if they find the accu-
rate analytical solutions with the existing procedures for the SDEs, SPDPs and FSPDEs. Accordingly, for such
differential equations, we have to employ some direct and iterative methods. Some of these techniques which
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have beenusedby scholars includenewhomotopic perturbationmethod [13], Adomian’s decompositionmethod
(ADM) [14, 15], variational iteration method (VIM) [15], homotopy perturbation method (HPM) [16], homotopy
analysis method (HAM) [17] and so on [18, 19]. The FTM has recently been utilized by authors in [20, 21, 22] to
find the estimate solution of the first order fuzzy differential equations and two-point boundary value problems.
Along the same line of research, Chen and his associates in [23] have established an algorithm to gain the numeri-
cal solutions of the second order primary amount problems. This research work is organized as follows: in Section
2, fuzzy partition and fuzzy transform are presented. In Section 3, we have expressed the new approachwith Fuzzy
transform. In Section 4, the applications of Fuzzy transform method to the system differential equations of real
order are illustrated, and some numerical examples are presented. And conclusions are drawn in Section 5.

2 Discretization of the fractional derivative
Assume that u(t) is the solution to equations (1.1). To calculate the approximation of u(t), we use the discretization
of the Caputo derivative with the assumption τ = tj+1 − tj and tj = a+ j τ , j = 0, 1, 2, · · · .

Utilizing the approximation for the Caputo derivative [25] of Eq. (1.3) we have:

Dαu(tk+1) ≈
1

ταΓ(2− α)

k∑
j=0

(u(tj+1)− u(tj))
(
(k − j + 1)1−α − (k − j)1−α

)
, (2.1)

in which 0 < α ≤ 1, u(t0) is known and

Dαu(tk+1) ≈
1

ταΓ(3− α)

k∑
j=0

(u(tj+1)− 2u(tj) + u(tj−1))
(
(k − j + 1)2−α − (k − j)2−α

)
, (2.2)

in which 1 < α ≤ 2, u(t0) and u′(t0) are known and u(t−1) = u(t0)− τ u′(t0).

3 Fuzzy partition and Fuzzy transform
In this section, only the main definitions of F -transform to be utilized in the subsequent sections of numerical
implementations will be presented.

Definition 3.1. [24] Presuming that for n ≥ 2, a = t1 < t2 < · · · < tn−1 < tn = b to be specified nodes,
we express that fuzzy sets B1, · · · , Bn defined on [a, b]with their membership functions B1(t), · · · , Bn(t), form a
fuzzy partition of [a, b] if they meet the following properties:

(1) Bk of [a, b] to [0, 1] is continuous,
n∑

k=1

Bk(t) = 1 for all t ∈ [a, b] and Bk(tk) = 1, k = 1, 2, · · · , n.

(2) Bk(t) = 0 if t /∈ (tk−1, tk+1), with t0 = a and tn+1 = b,

(3) On subinterval of [tk−1, tk+1], for k = 2, · · · , n − 1, Bk(t), is certainly an increasing function on [tk−1, tk]

and decreasing function on [tk, tk+1].
The membership functions B1, B2, · · · , Bn are named basic functions (BFs).
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The next formulas give the standard display of such triangular membership functions:

B1(t) =

{
1− t−t1

h1
, t1 ≤ t ≤ t2

0, otherwise,

Bk(t) =


t−tk−1

hk−1
, tk−1 ≤ t ≤ tk

1− t−tk
hk

, tk ≤ t ≤ tk+1, k = 2, 3, · · · , n− 1,

0, otherwise,
(3.1)

Bn(t) =

{
t−tn−1

hn−1
, tn−1 ≤ t ≤ tn,

0, otherwise.

The formulas that follow for k = 2, · · · , n − 1, give the standard display of such sinusoidal membership
functions:

B1(t) =

{
o.5

(
1 + cosπh (t− t1)

)
, t1 ≤ t ≤ t2

0, otherwise,

Bk(t) =

{
o.5

(
1 + cosπh (t− tk)

)
, tk−1 ≤ t ≤ tk+1, k = 2, 3, · · · , n− 1,

0, otherwise,
(3.2)

Bn(t) =

{
o.5

(
1 + cosπh (t− tn)

)
, tn−1 ≤ t ≤ tn

0, otherwise,

in which hk = tk+1 − tk for k = 1, · · · , n − 1. It can be stated that fuzzy partition of [a, b] is uniform if
tk+1 − tk = h = b−a

n−1 and if two additional properties coincide:

(4) Bk(tk − t) = Bk(tk + t), for all t ∈ [0, h], for k = 2, · · · , n− 1,

(5) Bk(t) = Bk−1(t− h) and Bk+1(t) = Bk(t− h), for k = 2, · · · , n− 1, and t ∈ [tk, tk+1].

Definition 3.2. [24] Let f be any function belonging toC ([a, b]) andB1, B2, · · · , Bn, be the BFs which compose
a fuzzy partition of [a, b]. We define the n-tuple [F1, F2, · · · , Fn] of real numbers given by

Fk =

∫ b
a f(t)Bk(t)dt∫ b

a Bk(t)dt
, k = 1, 2, · · · , n, (3.3)

as the F -transform of f in relation to B1, B2, · · · , Bn.

Definition 3.3. [24] Let [F1, F2, · · · , Fn] be the F -transform of function f relative to BFs,B1, B2, · · · , Bn. Then,

fn(t) =

n∑
k=1

FkBk(t),

which is named the inverse F -transform (IFT ) of function f on [a, b].

Theorem 3.1. [24] Let f be a continuous function on [a, b] and B1, B2, · · · , Bn be the BFs which form a fuzzy
partition of [a, b]. Then, the kth component of the integral F -transform signified over [f(a), f(b)], gives the min-
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imum to the function

ϕ(y) =

∫ b

a
(f(t)− y)2Bk(t)dt,

for k = 1, 2, ..., n.

Lemma 3.1. [24] (Convergence) Let f be a continuous function on [a, b]. Thus, for any ϵ > 0, there exist nϵ and
a fuzzy partition B1, · · · , Bnϵ of [a, b] such that for all t ∈ [a, b]

|f(t)− fnϵ(t)| ≤ ϵ. (3.4)

4 Description of the new approach
Let u(t) be the continuous solution of (1.1) on [0, T ] satisfying. Also, U1, · · · , Un of F-transform u(t), calculated by
using BFsB0, B1, · · · , Bn in [0, T ] regarding (3.2) with tj+1− tj = τ which are uniform fuzzy partitions. Now with
applying IFT on the function u(t), the approximation un(x) is obtained based on the following formula:

un(t) =

n∑
k=0

UkBk(t), t ∈ [0, T ] . (4.1)

Hence for approximate solution, we can calculate Uk for k = 0, 1, 2, · · · , n. In the next proposition the discretiza-
tion of the Caputo derivative for un(t) for Eq.(2.1) is presented. With substituting un(t) in Eqs.(2.1), (2.2), we will
have the next equations, respectively:

Dαun,q(tk+1) ≈
1

ταΓ(2− α)

k∑
j=0

(Uj+1,q − Uj,q)
(
(k − j + 1)1−α − (k − j)1−α

)
, 0 < α ≤ 1, (4.2)

Dαun,q(tk+1)) ≈
1

ταΓ(3− α)

k∑
j=0

(Uj+1,q − 2Uj,q + Uj−1,q)×(
(k − j + 1)2−α − (k − j)2−α

)
, 1 < α ≤ 2, (4.3)

where u(t0) and u′(t0) are known of initial conditions, U0 = u(t0) and U−1 = u(t0)− τ u′(t0).
In order to gain the approximate solution of the problem (1.1), we use un(t), hence

Dαun,q(t) +Nq (un,1(t), un,2(t), . . . , un,p(t)) = hn,q(t), q = 1, 2, . . . , p, (4.4)

in which n < α ≤ n+ 1, q = 1, 2, . . . , p and 0 < t ≤ T , and by putting t = tk+1 in the formula 4.4, we have

Dαun,q(tk+1) +Nq (un,1(tk+1), un,2(tk+1), . . . , un,p(tk+1)) = hn,q(tk+1), (4.5)

in which k = 0, 1, . . . , n− 1 and q = 1, 2, . . . , p.
Considering Caputo’s derivative and using Eqs. (4), (4.3), Eqs. (4.5) converts to the following form for q =

1, 2, . . . , p.
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Case 1. Considering Caputo’s derivative for 0 < α ≤ 1

1

ταΓ(2− α)

k∑
j=0

(Uj+1,q − Uj,q)
(
(k − j + 1)1−α − (k − j)1−α

)
+

Nq (Uk+1,1, Uk+1,2, . . . , Uk+1,p) = hq(tk+1), k = 0, 1, . . . , n− 1. (4.6)

Case 2. Considering Caputo’s derivative for 1 < α ≤ 2

1

ταΓ(3− α)

k∑
j=0

(Uj+1,q − 2Uj,q + Uj−1,q)
(
(k − j + 1)2−α − (k − j)2−α

)
+

Nq (Uk+1,1, Uk+1,2, . . . , Uk+1,p) = hq(tk+1), k = 0, 1, . . . , n− 1. (4.7)

Now, consider boundary conditions U0,q = uq(t0) and U−1,q = uq(t0) − τ u′q(t0). we can calculate Uk,q, for
k = 0, 1, 2, · · ·n, by the obtained recursive equation (4.6) and (4.7); then by IFT , we can gain the approximate
solution u(t) ≈ un,q(t) for Eq.(1.1).

An algorithm for approximation of FSDEs by this method is stated in the next Algorithm.

Algorithm 1. An algorithm for approximation of FSDEs

Step 1. Input p, n, U0 = u(0) and T .

Step 2. Set τ ← T
m .

Step 3. Locate tk ← k τ, k = 0, 1, 2, · · · , n.

Step 4. Choose sinusoidal BFs related to Bk for k = 0, 1, 2, · · · , n.

Step 5. Set recursive equation for q = 1, 2, . . . , p.
Case 1. For 0 < α ≤ 1:

1

ταΓ(2− α)

k∑
j=0

(Uj+1,q − Uj,q)
(
(k − j + 1)1−α − (k − j)1−α

)
+

Nq (Uk+1,1, Uk+1,2, . . . , Uk+1,p) = hq(tk+1), k = 0, 1, . . . , n− 1. (4.8)

Case 2. For 1 < α ≤ 2:

1

ταΓ(3− α)

k∑
j=0

(Uj+1,q − 2Uj,q + Uj−1,q)
(
(k − j + 1)2−α − (k − j)2−α

)
+

Nq (Uk+1,1, Uk+1,2, . . . , Uk+1,p) = hq(tk+1), k = 0, 1, . . . , n− 1. (4.9)

Regarding the boundary conditions U0,q = uq(t0) and U−1,q = U0,q − τ u′q(t0).

Step 6. Calculate every Uk,q, p = 0, 1, 2, · · · , n, k = 0, 1, 2, · · · , n− 1.
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Step 7. The approximate solution with IFT is

un,q(t) =
n∑

k=0

Uk,q(x)Bk(t),

for q = 1, 2, . . . , p.

5 Test examples
Now in this section, we present various examples to illustrate FTM for FSDEs. In all these examples, we have used
mathematical softwareMathematica.

t Approx Exact Absolute error
0.3 -0.682918 -0.683348 429.823× 10−6

0.5 -0.498169 -0.498529 359.979× 10−6

0.7 -0.320889 -0.321169 280.104× 10−6

0.9 -0.148699 -0.148879 179.367× 10−6

(a) The exact and estimate results of u1.

t Approx Exact Absolute error
0.3 0.682785 0.683348 562.678× 10−6

0.5 0.497942 0.498529 586.246× 10−6

0.7 0.320551 0.321169 618.602× 10−6

0.9 0.1482195 0.148879 659.671× 10−6

(b) The exact and estimate results of u2.

Table 1: Absolute error in different values of t for the test example 5.1 with α = β = 0.9.

Example 5.1. For the first example, we propose the coupled system of fractional differential equations:{
Dαu1 − u1 − u2 = α+ tβ

Γ(β) −
tα

Γ(α) , 0 < α ≤ 1

Dβu2 − u1 + u2 = 2− β − tβ

Γ(β) −
tα

Γ(α) , 0 < β ≤ 1
(5.1)

with the solutions u1(t) = tα

Γ(α) − 1 and u2(t) =
tβ

Γ(β) + 1 and the primary conditions:

u1(0) = −1, u2(0) = 1. (5.2)

In Table 1, we can see the estimated solutions toward α = β = 0.9, which is derived for various values of t,

(a) The exact and estimate figure of u1. (b) The exact and estimate figure of u2.

Figure 1: The exact and estimate solution for α = β = 0.9 for test example 5.1.

applying FTM. In figure 1, we can view the precise and estimate answers featuring α = β = 0.9 and τ = 0.002.
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Example 5.2. For the second example, we propound the system of nonlinear fractional differential equations:
Dαu1 − u1 − 2u1 u2 =

tα

Γ(α+2)

(
tα − 4αΓ(α+ 1

2)√
π

+ 2tα+3β

Γ(β+3)

)
, 1 < α ≤ 2

Dβu2 − u21 + u2 − 2u3 =
2t4γ

Γ(γ+1) −
t4α

Γ(α+2)2
+ 1

Γ(β+3)

(
t3β + 3Γ(3β)t2β

2Γ(2β)

)
, 1 < β ≤ 2

Dγu3 − u1 u2 =
t2α+3β

Γ(α+2)Γ(β+3) −
4Γ(4γ)t3γ

Γ(γ)Γ(3γ+1) , 1 < γ ≤ 2

(5.3)

given that the primary conditions:

u1(0) = −1,
d u1
dt

(0) = 0, u2(0) = 0,
d u2
dt

(0) = 0, u3(0) = 0,
d u3
dt

(0) = 0. (5.4)

In Table 2 and in figure 2, we can view the precise and estimate answers featuring τ = 0.002 and α = β =

γ = 1.9 through applying FTM for various values of t.

t Approx Exact Absolute error
0.3 -0.00197391 -0.00194464 29.2632× 10−6

0.5 -0.0136694 -0.0135477 121.728× 10−6

0.7 -0.0489704 -0.0486577 312.664× 10−6

0.9 -0.12708 -0.126445 635.314× 10−6

(a) The exact and estimate results of u1.

t Approx Exact Absolute error
0.3 0.0000517646 0.0000506181 1.14657× 10−6

0.5 0.000943059 0.000930772 12.2866× 10−6

0.7 0.00639178 0.00633539 56.3927× 10−6

0.9 0.0267023 0.0265397 162.549× 10−6

(b) The exact and estimate results of u2.
t Approx Exact Absolute error
0.3 -0.0000598939 -0.0000581164 1.77756× 10−6

0.5 -0.00287175 -0.00282065 51.0977× 10−6

0.7 -0.0368524 -0.036385 467.44× 10−6

0.9 -0.248152 -0.245708 2.44329× 10−6

(c) The exact and estimate results of u3.

Table 2: Absolute error in different values of t for the test example 5.2 with α = β = γ = 1.9.

(a) The exact and estimate figure of u1. (b) The exact and estimate figure of u2. (c) The exact and estimate figure of u3.

Figure 2: The exact and estimate solution for α = β = γ = 1.9 for test example 5.2.

With the knowledge that α = β = γ = 1.9, the estimate solution obtained by the proposed method corre-
sponds to the precise solutions u1(t) = − t2α

Γ(α+2) , u2(t) =
t3β

Γ(β+3) and u3(t) = − t4γ

Γ(γ+1) .
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Example 5.3. For the fourth example, we propose the system of linear fractional differential equations:
Dαu1 − u1 + 2u2 =

tα

Γ(α+2)

(
tα − 4αΓ(α+ 1

2)√
π

+ 2tα+3β

Γ(β+3)

)
, 0 < α ≤ 1

Dβu2 − u1 + u2 − 2u3 =
2t4γ

Γ(γ+1) −
t4α

Γ(α+2)2
+ 1

Γ(β+3)

(
t3β + 3Γ(3β)t2β

2Γ(2β)

)
, 1 < β ≤ 2

Dγu3 − u2 =
t2α+3β

Γ(α+2)Γ(β+3) −
4Γ(4γ)t3γ

Γ(γ)Γ(3γ+1) , 0 < γ ≤ 1

(5.5)

with the solutions u1(t) = t2α

Γ(α+1) , u2(t) = −
tβ

Γ(β+2) and u3(t) = − t3γ

Γ(γ+3) and the primary conditions:

u1(0) = −1, u2(0) = 0,
d u2
dt

(0) = 0, u3(0) = 0. (5.6)

t Approx Exact Absolute error
0.3 0.119669 0.119055 613.253× 10−6

0.5 0.299527 0.298591 935.64× 10−6

0.7 0.548404 0.547151 1.25308× 10−6

0.9 0.861718 0.860136 1.582× 10−6

(a) The exact and estimate results of u1.

t Approx Exact Absolute error
0.3 -0.0192539 -0.0191562 97.663× 10−6

0.5 -0.0507081 -0.0505617 146.325× 10−6

0.7 -0.0960069 -0.095822 184.893× 10−6

0.9 -0.154681 -0.154468 212.42× 10−6

(b) The exact and estimate results of u2.
t Approx Exact Absolute error
0.3 -0.00737048 -0.0073115 58.9837× 10−6

0.5 -0.029178 -0.0290401 137.893× 10−6

0.7 -0.0722749 -0.072035 239.833× 10−6

0.9 -0.142343 -0.141982 360.384× 10−6

(c) The exact and estimate results of u3.

Table 3: Absolute error in different values of t for the test example 5.3 with α = γ = 0.9 and β = 1.9.

In Table 3, we can see the estimated solutions toward α = γ = 0.9 and β = 1.9, which is derived for various
values of t applying FTM.

In all examples, the length of the step is τ = 0.002 on t ∈ [0, 1]. It is obvious that if the step length is smaller
the results will be better.

6 Conclusion
We have successfully applied FTM to obtain estimate solution of the linear and non linear system differential
equations featuring fractional derivative. The result indicate that a few iteration of FTM will results in some use-
ful solutions. Finally, it should be added that the suggested technique has the potentials to be applied in solving
other similar nonlinear and linear problems in partial differential equations featuring fractional derivative.
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