

Characterization of Regularity of Posemigroups by High-Quasi-Ideals

M. M. Shamivand *

Department of Mathematics, Borujerd Branch, Islamic Azad University, Borujerd, Iran.

Article Info	Abstract
Keywords	A semigroup S is called a posemigroup if S is equipped with an ordering relation " \leq " such
Posemigroup	that $a \leq b$ in S implies $xa \leq xb$ and $ax \leq bx$, for all $x \in S$. In what follows we study necessary
Regular	and sufficient conditions that a posemigroup S to be regular, in terms of certain conditions of
High-quasi-ideal	Q_S^* , the semigroup of high-quasi-ideals of S. This study gives us a characterization method
High-bi-ideal.	of the regular posemigroups.
ARTICLE HISTORY	
Received: 2022 March 19	
Accepted:2022 December 24	

1 Introduction

In abstract theory of semigroups, the notion of regular elements was firstly introduced by Thierrin [11] and has been effectively used in the ideals theory of semigroups. The bi-ideals of posemigroups were introduced by Good [1] and Steinfeld [10], respectively. Recall from [2] that in a posemigroup S, the element $a \in S$ is called regular, if $a \leq axa$, for some $x \in S$. Also S is called regular if every element of S is regular. For further information we refer to [2, 3, 5, 7, 9]. Here we generalize the notions of bi-ideal and quasi-ideal to high-bi-ideal and high-quasi-ideal, respectively. Throughout the paper S stands for a posemigroup. Following [4] and [12] we recall the definitions of (A] and AB as:

$$(A] := \{s \in S \mid s \le a, \text{ for some } a \in A\}, AB := \{ab \mid a \in A, b \in B\},\$$

for subposets A and B of a posemigroup S. By a left ideal of a posemigroup S we mean a non-empty subset L of S satisfying $SL \subseteq L$ and $(L] \subseteq L$. A right ideal may be defined in a similar way. A tow sided ideal of S is a left as well as a right ideal of S. For every non-empty subset A of S, let

$$(A]^* := \{ s \in S | s \le a^n, \text{ for some } a \in A, n \in \mathbb{N} \}.$$

Let S be a posemigroup. A non-empty subset Q of S is called a *high-quasi-ideal* of S if $(QS]^* \cap (SQ]^* \subseteq Q$ and $(Q]^* \subseteq Q$. The set of all high-quasi-ideals of S will be denoted by Q_S^* . Also a non-empty subset B of S is said to be a *high-bi-ideal* of S if $BSB \subseteq B$ and $(B]^* \subseteq B$.

* Corresponding Author's E-mail: m.shamivand@yahoo.com(M.M. Shamivand)

Clearly, every one-sided ideal of S is a high-quasi-ideal of S. We denote the high-quasi-ideal and high-bi-ideal generated by an element $a \in S$ by $Q^*(a)$ and $B^*(a)$, respectively. One can easily show that $Q^*(a) = (a \cup ((aS]^* \cap (Sa]^*)]^*$ and $B^*(a) = (a \cup a^2 \cup aSa]^*$. Note that every high-quasi-ideal of a posemigroup S is a high-bi-ideal of S, for, if B is a high-quasi-ideal of S, then we get $BSB \subseteq SSB$ and $BSB \subseteq BSS$, so, $BSB \subseteq SSB \cap BSS \subseteq (SSB]^* \cap (BSS]^* \subseteq B$. The second condition is trivial. Hence, B is a high-bi-ideal of S. In general the converse is not true. For an example we may consider the posemigroup $S = \{a, b, c, d\}$ by the multiplication table:

•	a	b	c	d
a	a	a	a	a
b	a	a	a	a
c	a	a	b	b
d	a	a	b	a

and the ordering relation:

$$\leq := \{(a, a), (a, b), (b, b), (c, c), (d, d)\}.$$

Clearly, $B = \{a, d\}$ is a high-bi-ideal of *S* however, it is not a high-quasi-ideal of *S*. Our notation are merely standard and follow [6, 10]. We prefer to introduce the notations:

 $P_{S}^{*} = \{X \mid \varnothing \neq X \subseteq S \text{ and } (X]^{*} \subseteq X\},\$ $L_{S} = \{L \mid L \text{ is a left ideal of } S\},\$ $R_{S} = \{R \mid R \text{ is a right ideal of } S\},\$ $I_{S} = \{I \mid I \text{ is a two-sided ideal of } S\}.$

A multiplication on P_S^* may be defined by $XoY = (XY]^*$, for every $X, Y \in P_S^*$. Our main results concerning the high-quasi-ideals which are the generalizations of the quasi-ideals of semigroups, are:

Proposition 1.1. Let S be a posemigroup. Then the following are equivalent:

(i) *S* is regular. (ii) *F*or every right ideal *R* and left ideal *L* of *S*, $(RL]^* = R \cap L$. (iii) *F*or every right ideal *R* and left ideal *L* of *S*, $(R^2]^* = R$, $(L^2]^* = L$ and $(RL]^*$ is a high-quasi-ideal of *S*.

Proposition 1.2. Let *S* be a posemigroup. Then the following are equivalent:

(i) S is regular.
(ii) (Q_S^{*}, o) is the subsemigroup of the semigroup (P_S^{*}, o) generated by the bands (L_S, o) and (R_S, o).
(iii) (Q_S^{*}, o) is regular.
(iv) Every high-quasi-ideal Q of S is in the form Q = (QSQ]^{*}.

2 The Proofs

To prove our assertions first we have to give certain preliminary results concerning the notions of Section 1. First we give a generalized results of [8] for high-quasi-ideals:

Lemma 2.1. For a posemigroup S and two non-empty subset A and B of S,

(i) A ⊆ (A]*.
(ii) If A is a high-quasi-ideal of S, then A = (A]* and (A]* = ((A]*]*.
(iii) If A ⊆ B, then (A]* ⊆ (B]*.
(iv) (A]*(B]* ⊆ (AB]* for any two subposemigroups A and B of S.
(v) (A ∩ B]* ≠ (A]* ∩ (B]*. In particular, if A and B are two high-quasiideals of S, then (A ∩ B]* = (A]* ∩ (B]*.

Proof. (i), (v) and second part of (ii) are evident.

(ii) It suffices to show that $(A]^* \subseteq A$. If $t \in (A]^*$, there exists $a \in A$ and $n \in \mathbb{N}$ such that $t \leq a^n$. Since A is a high-quasi-ideal of S, then $t \in A$ and $A = (A]^*$.

(iii) Let $t \in (A]^*$. Then there exists $a \in A$ and $n \in \mathbb{N}$ such that $t \leq a^n$. Since $A \subseteq B$, there exists $a \in B$ and $n \in \mathbb{N}$ such that $t \leq a^n$. Thus $t \in (B]^*$.

(iv) Take any $x \in (A]^*(B]^*$. This implies that x = ab for some $a \in (A]^*$ and $b \in (B]^*$. Then $a \le h^m$ and $b \le k^n$ for some $h \in A$, $k \in B$ and $m, n \in \mathbb{N}$. It follows that $ab \le h^m k^n$. Since $h^m \in A$ and $k^n \in B$, we obtain $h^m k^n \in AB$. Therefore, $ab \le h^m k^n \in AB$ showing that $x \in (AB]^*$.

Lemma 2.2. Let *S* be a posemigroup. Then

(i) (P_S^*, o, \subseteq) is a posemigroup.

(ii) (L_S, o, \subseteq) , (R_S, o, \subseteq) and (I_S, o, \subseteq) are subpose migroups of (P_S^*, o, \subseteq) .

Proof. (i) The binary operation "o" is well-defined. Let $A, B, C \in P_S^*$. Then

 $(AoB)oC = (AB]^*oC = ((AB]^*C]^* = ((AB)C]^* = (ABC]^*,$

and

 $Ao(BoC) = Ao(BC]^* = (A(BC)^*]^* = (A(BC))^* = (ABC)^*.$

So, (AoB)oC = Ao(BoC) holds. Thus (P_S^*, o) is a semigroup. Let $A, B, C \in P_S^*$ and $A \subseteq B$, then $AoC = (AC]^* \subseteq (BC]^* = BoC$ and $CoA = (CA]^* \subseteq (CB]^* = CoB$. Hence, (P_S^*, o, \subseteq) is a posemigroup.

(ii) Evidently, L_S , R_S and I_S are non-empty subset of P_S^* . Let $J, K \in L_S$. It is obvious that $(JoK]^* = ((JK]^*]^* = (JK]^*$. Further, by $S(JoK) = S(JK]^* \subseteq (S(JK)]^* \subseteq (S(JK)]^* = ((SJ)K]^* \subseteq (JK]^* = JoK$, we conclude that JoK is a left ideal of S, i.e.; $JoK \in L_S$. Thus (L_S, o, \subseteq) is a subposemigroup of (P_S^*, o, \subseteq) . Similarly, we can show that (R_S, o, \subseteq) is a subposemigroup of (P_S^*, o, \subseteq) . By $I_S = L_S \cap R_S$ it follows that (I_S, o, \subseteq) is a subposemigroup of (P_S^*, o, \subseteq) .

Note that each high-quasi-ideal Q of posemigroup S is a subsemigroup of S, for, $Q^2 \subseteq QS \cap SQ \subseteq (QS]^* \cap (SQ]^* \subseteq Q$.

Lemma 2.3. For every left ideal *L* and right ideal *R* of a posemigroup $S, L \cap R$ is a high-quasi-ideal of *S*.

Proof. Proof is easy by considering the relations $RL \subseteq SL \subseteq L$ and $RL \subseteq RS \subseteq R$.

Lemma 2.4. For every high-quasi-ideal Q of a posemigroup S,

 $Q = L(Q) \cap R(Q) = (SQ \cup Q]^* \cap (Q \cup QS]^*.$

Proof. Clearly that $Q \subseteq (SQ \cup Q]^* \cap (Q \cup QS]^*$. Conversely, let $t \in (SQ \cup Q]^* \cap (Q \cup QS]^*$. Then $t \leq q^m$, or $t \leq (xu)^n$ and $t \leq (vy)^p$, for some $q, u, v \in Q$ and $x, y \in S$ and $m, n, p \in \mathbb{N}$. Since Q is a high-quasi-ideal of S, so $t \in (Q]^* \subseteq Q$ or $t \in (SQ]^* \cap (QS]^* \subseteq Q$. Hence, $(SQ \cup Q]^* \cap (Q \cup QS]^* = Q$.

Lemma 2.5. Let I be a two-sided ideal of a posemigroup S and Q be a high-quasi-ideal of I. Then Q is a high-bi-ideal of S.

Proof. Since *Q* is a high-quasi-ideal of *I* then,

 $\begin{array}{l} QSQ \subseteq QSI = Q(SI) \subseteq QI \subseteq (QI]^* \subseteq (SI]^* \subseteq (I]^* \subseteq I, \\ QSQ \subseteq ISQ = (IS)Q \subseteq IQ \subseteq (IQ]^* \subseteq (IS]^* \subseteq (I]^* \subseteq I, \\ \text{and for } x \in (Q]^* \text{ we get:} \\ \exists q \in Q \subseteq I, n \in \mathbb{N}; x \leq q^n, \text{ so,} \\ x \in (I]^* = I, \text{ hence,} \\ x \in I \cap (Q]^* = (Q]^* \subseteq Q. \\ \text{So, } QSQ \subseteq (I \cap (IQ]^*) \cap (I \cap (QI]^*) = (IQ]^* \cap (QI]^* \subseteq Q, \text{ and } (Q]^* \subseteq Q. \end{array}$

Lemma 2.6. For every posemigroup S,

$$\langle L_S \cup R_S \rangle = L_S \cup R_S \cup (R_S o L_S).$$

Proof. Since,

 $\langle L_S \cup R_S \rangle = \{X_1 o X_2 o \dots o X_n \mid X_i \in L_S \text{ or } X_i \in R_S, 1 \le i \le n, n \in \mathbb{N}\}.$ Then by letting $X_i, X_{i+1} \in L_S \cap R_S$ we consider four cases: (i) $X_i, X_{i+1} \in L_S$. In this case, $X_i o X_{i+1} \in L_S$ (by Lemma 2.2.). (ii) $X_i, X_{i+1} \in R_S$. In this case, $X_i o X_{i+1} \in R_S$ (by Lemma 2.2.). (iii) $X_i \in L_S$ and $X_{i+1} \in R_S$. In this case, $X_i o X_{i+1} = (X_i X_{i+1}]^*$ is an ideal of S, so $X_i o X_{i+1} \in I_S = L_S \cap R_S$. (iv) $X_i \in R_S$ and $X_{i+1} \in L_S$. In this case, $X_i o X_{i+1} \in R_S o L_S$. Thus, for every $n \in \mathbb{N}$ and $X_1, X_2, \dots, X_n \in L_S \cup R_S$ there are three casas to recognize: (a) If $X_1 \in L_S$, then $X_1 o X_2 o \dots o X_n \in L_S$. (b) If $X_n \in R_S$, then $X_1 o X_2 o \dots o X_n \in R_S$. (c) If $X_1 \in R_S$ and $X_n \in L_S (n \ge 2)$, then $X_1 o X_2 o \dots o X_n \in R_S o L_S$. Therefore, this gives the result.

We are now ready to prove the propositions.

Proof of Proposition 1.1. (i) \Rightarrow (ii) Let *R* and *L* be right and left ideals of *S* respectively, then $(RL]^* \subseteq R \cap L$. Let *S* be regular and $a \in R \cap L$, so $a \leq axa$ for some $x \in S$, whence $a \in R$ and $xa \in L$. So $axa \in RL$ which implies that $a \in (RL]^*$. Therefore, $R \cap L = (RL]^*$.

(ii) \Rightarrow (iii) Using Lemma 2.3 and the assumption, $(RL]^*$ is a high-quasi-ideal of S. Since $(R \cup SR]^*$ is a two-sided ideal of S generated by R, it follows that,

 $R = R \cap (R \cup SR]^* = (R(R \cup SR]^*]^*$, so, $(R^2]^* \subseteq (R(R \cup SR]^*]^* = R$.

Conversely, let $x \in R = (R(R \cup SR]^*]^*$. Then, $x \leq (r_1t)^n$ for some $r_1 \in R, t \in (R \cup SR]^*$ and $n \in \mathbb{N}$. From $t \in (R \cup SR]^*$, we obtain $t \leq (u)^m$ where $u = r_2 \in R$ or $u = sr_3$ for some $s \in S, r_3 \in R$ and $m \in \mathbb{N}$. Hence,

 $\begin{aligned} x &\leq (r_1 u^m)^n = (r_1 r_2^m)^n, \text{ or } \\ x &\leq (r_1 u^m)^n = (r_1 (sr_3)^m)^n. \end{aligned}$ But, $r_1 r_2^m \in R^2$ and $r_1 (sr_3)^m \in R^2$, so $x \in (R^2]^*$ which gives that $R \subseteq (R^2]^*$. Therefore, $(R^2]^* = R$. (iii) \Rightarrow (i) Let $a \in S$, then $a \in (R(a)L(a)]^* = (R(a)((L(a))^2]^*]^* \subseteq (R(a)(SL(a)]^*]^*$, hence, $a \in ((a \cup aS]^*(S(Sa \cup a]^*]^*]^* \subseteq (aSa]^*$, so $a \in (aSa]^*$. Then there exists $x \in S$ and $n \in \mathbb{N}$ such that, $a \leq (axa)^n = (axa)(axa)...(axa) = (a(xa^2xa^2...xa^2x)a).$ Letting $y := xa^2xa^2...xa^2x$ which is an element of S yields $a \leq aya$. Hence S is a regular posemigroup. \Box

Proof of Proposition 1.2. First we observe that for a posemigroup *S* and non-empty subset *X* of *S*,

$$Q^*(X) = L(X) \cap R(X) = (SX \cup X]^* \cap (X \cup XS]^*.$$
(*)

(i) \Rightarrow (ii) Let *S* be regular, then by Proposition 1.1 (iii) we get (L_S, o) and (R_S, o) are bands and, $R_SoL_S \subseteq Q_S^*$, so $\langle L_S \cup R_S \rangle \subseteq Q_S^*$ by Lemma 2.6.

Conversely, let $Q \in Q_S^*$. Then $(Q \cup SQ]^*$ is a left ideal of S generated by Q. Now by the condition (iii) in Proposition 1.1,

 $Q \subseteq (Q \cup SQ]^* = (((Q \cup SQ]^*)^2]^* \subseteq (Q^2 \cup SQ^2 \cup QSQ \cup (SQ)^2]^* \subseteq (SQ]^*.$

Similarly, one can show that $Q \subseteq (QS]^*$. These relations and Lemma 2.4 give the following: $Q \subseteq (SQ]^* \cap (QS]^* \subseteq (SQ \cup Q]^* \cap (Q \cup QS]^* = Q$, that is,

$$(\forall Q \in Q_S^*) \ Q = (SQ]^* \cap (QS]^*.$$
(2.1)

Again by Proposition 1.1 (iii) and (1), we have

$$(\forall R \in R_S) \ (\forall L \in L_S) \ (RL]^* = (S(RL]^*]^* \cap ((RL]^*S]^*.$$
 (2.2)

Furthermore, $S = (S^2]^*$ and, $(SQ]^* = (((SQ]^*)^2)^* = ((SQ]^*(SQ)^*]^* = ((SQ]^*((S^2)^*Q)^*]^*$, hence, $(SQ]^* \subseteq (SQSSQ)^* \subseteq (S(QS)^*(SQ)^*]^* \subseteq (S((QS)^*(SQ)^*)^*]^*$, so, $(SQ]^* \subseteq (S(QS^2Q))^* \subseteq (SQ)^*$. Therefore, $(SQ]^* = (S((QS)^*(SQ)^*)^*]^*$. Similarly, $(QS)^* = (((QS)^*(SQ)^*)^*S)^*$. Consequently, in view of (1), (2) and Lemma 2.6 we obtain

$$Q = (QS]^* \cap (SQ]^* = (((QS]^*(SQ]^*]^*S]^* \cap (S((QS]^*(SQ]^*]^*)^*$$

= $((QS]^*(SQ]^*)^* = (QS]^*o(SQ]^* \in R_SoL_S \subseteq \langle L_S \cup R_S \rangle.$ (2.3)

Hence, $Q_S^* \subseteq \langle L_S \cup R_S \rangle$. So, $Q_S^* = \langle L_S \cup R_S \rangle$. Therefore (Q_S^*, o) is a subsemigroup of (P_S^*, o) generated by the bands (L_S, o) and (R_S, o) .

Shamivand

(ii) \Rightarrow (iii) By assumption, the condition (iii) in Proposition 1.1 is followed immediately from Lemma 2.6. For every $Q \in Q_S^*$, by (3)

 $Q = ((QS]^*(SQ]^*]^* \subseteq (QS^2Q]^* \subseteq (QSQ]^* \subseteq Q,$

whence, $Q = (QSQ]^* = QoSoQ$, with $S \in Q_S^*$. Thus, (Q_S^*, o) is regular.

(iii) \Rightarrow (iv) Let $Q \in Q_S^*$. Then, using Lemma 2.4, there exists a high-quasi-ideal X of S such that,

 $Q = QoXoQ = (QXQ]^* \subseteq (QSQ]^* \subseteq (SQ]^* \cap (QS]^* \subseteq (SQ \cup Q]^* \cap (Q \cup QS]^* = Q. \text{ So, } Q = (QSQ]^*.$

Finally, let (iv) holds. We show that S is regular. It is obvious from the assumption that (Q_S^*, o, \subseteq) is a regular subsemigroup of the posemigroup (P_S^*, o, \subseteq) . For every $a \in S$, by (*)(with $X = \{a\}$), $R(a) \cap L(a)$ is a high-quasiideal of S containing a. Hence, there exists $Q \in Q_S^*$ such that,

 $a \in R(a) \cap L(a) \subseteq (R(a) \cap L(a))oQo(R(a) \cap L(a))$, hence,

 $a \in ((R(a) \cap L(a))Q(R(a) \cap L(a))]^* \subseteq (R(a)SL(a))]^*$, so, $a \in ((a \cup aS]^*S(aSa \cup a]^*]^*$.

Then we get $a \in (aSa]^*$. It follows that $a \leq (axa)^n = (axa)(axa)...(axa) = a(xa^2xa^2...xa^2x)a$ for some $x \in S$ and $n \in \mathbb{N}$.

Letting $y := xa^2xa^2...xa^2x$ which is an element of S yields $a \le aya$. Hence S is a regular posemigroup.

3 Examples

Justifying the conditions of Proposition 1.2 in connection with the regularity of posemigroups involves the from of high-quasi-ideals, will be studied in the examples of this section. Indeed, we present two non-commutative posemigroups where, one satisfies the condition of the Proposition 1.2 and the other dosen,t.

Example 3.1. (i) The posemigroup $S = \{a, b, c, d, e\}$ defined by the multiplication table and the order as below is regular.

•	a	b	c	d	e
a	d	b	b	d	e
b	b	b	b	b	e
c	b	b	c	b	e
d	d	b	b	d	e
e	b	b	e	b	e

 $\leq := \{(a,a), (a,b), (a,c), (a,e), (b,b), (b,c), (b,e), (c,c), (d,b), (d,c), (d,d), (d,e), (e,e)\}.$

To see this, the high-quasi-ideals of S are the sets: $\{a, b, d\}$, $\{a, b, d, e\}$ and S. So, $Q_S^* = \{\{a, b, d\}, \{a, b, d, e\}, S\}$. Hence, for every Q in Q_S^* , we have $(QSQ]^* = Q$. So, S is regular.

(ii) The posemigroup $S = \{a, b, c, d, e\}$ defined by the multiplication table and the order as below is regular.

•	a	b	c	d	e
a	a	d	a	d	d
b	a	b	a	d	d
c	a	d	c	d	e
d	a	d	a	d	d
e	a	d	c	d	e

Indeed, the high-quasi-ideals of *S* are the sets: $\{a\}, \{a, c\}, \{a, b, d\}, \{a, b, c, d\}$ and *S*. So, $Q_S^* = \{\{a\}, \{a, c\}, \{a, b, d\}, \{a, b, c\}, \{a, b$

Example 3.2. (i) The posemigroup $S = \{a, b, c, d, e\}$ defined by the multiplication table and the order as below is not regular.

•	a	b	c	d	e
a	a	a	a	d	e
b	a	b	a	d	a
c	a	a	a	d	e
d	d	d	d	d	e
e	d	d	d	d	e

 $\leq := \{(a,a), (a,d), (a,e), (b,b), (b,d), (b,e), (c,c), (c,e), (d,d), (d,e), (e,e)\}.$

Indeed, the high-quasi-ideals of S are the sets: $\{a, b, d\}$, $\{a, b, c, d\}$ and S. So $Q_S^* = \{\{a, b, d\}, \{a, b, c, d\}, S\}$. But for $Q = \{a, b, c, d\}$ which is an element of Q_S^* , we have $(QSQ]^* = \{a, b, d\} \neq Q$. So, S is not regular.

(ii) The posemigroup $S = \{a, b, c, d, e\}$ defined by the multiplication table and the order as below is not regular.

•	a	b	c	d	e
a	a	b	c	b	b
b	b	b	b	b	b
c	a	b	c	b	b
d	d	b	d	b	b
e	e	e	e	e	e

$$\leq := \{(a, a), (a, c), (b, b), (b, d), (c, c), (d, d), (e, b), (e, d), (e, e)\}.$$

For this, the high-quasi-ideals of *S* are the sets: $\{e\}$, $\{b, e\}$, $\{a, b, e\}$, $\{a, b, c, e\}$, $\{a, b, d, e\}$ and *S*. Thus, $Q_S^* = \{\{e\}, \{b, e\}, \{a, b, e\}, \{b, d, e\}, \{a, b, c, e\}, \{a, b, d, e\}, S\}.$ But for $Q = \{b, d, e\}$ which is an element of Q_S^* , we have $(QSQ]^* = \{b, e\} \neq Q$. So, *S* is not regular.

References

- [1] R.A. Good and D.R. Hghes, Associated groups for a semigroup, Bull. Amer. Math. Soc. 58 (1952), 624-625.
- [2] N. Kehayopulu and M. Tsingelis, On left regular ordered semigroups, Southeast Asian Bull. Math. 25 (2002), 609-615.
- [3] N. Kehayopulu and M. Tsingelis, On ordered semigroups which are semilattices of left simple semigroups, Math. Slovaca **63** (2013), 411-416.
- [4] N. Kehayopulu, On intra-regular ordered semigroups, Semigroup Forum **46** (**3**)(1993), 271-278.

- [5] N. Kehayopulu, On regular duo ordered semigroups, Mathematica Japonica 37 (3) (1992), 535-540.
- [6] N. Kehayopulu, On regular, intra-regular ordered semigroups, Pure Math. Appl. 4 (4) (1993), 447-461.
- [7] N. Kehayopulu, S. Lajos and M. Tsingelis, On intra-regular ordered semigroups, Pure Math. Appl. **4** (1993), 317-327.
- [8] S. K. Lee and D. M. Lee, On intra-regular ordered semigroups, Kangweon-Kyungki Math. Jour. **14** (**1**) (2006), 95-100.
- [9] P. Luangchaisri and T. Changphas, On (m, n)-regular and intra-regular ordered semigroups, Quasigroups Related Systems **27** (2019), 267-272.
- [10] O. Steinfeld, On quotients and prime ideals, Acta Math Acad. Sci. Hung. 4 (1953), 289-298.
- [11] M. G. Thierrin, Sur une condition necessaire et suffisante pour qu'un semigroup soit un group, C. R. Acad. Paris **232** (1951), 376-378.
- [12] Yonglin Cao and Xu Xinzhai, Nil-extensions of simple po-semigroups, Comm. Algebra 28 (2000), 2477-2496.

