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1 Introduction and Preliminaries

R=Z,[v]/ <v LY, > is a commutative, with v® =v (q is a prime number) . For a prime p and an

integer k take n =2p" then the set G =2Z " is a cyclic group of orde p* —p*“™ and identity

element p* +1. Then, the group ring RG is the set of all linear combinations in the form

u= Z @, suchthat o, €R and only finitly many ¢, is non zero. This set is commutative and
geG

operation of addition and multiplication is

U+ =>a, g+ B,9= (a,+5)9

w =| > a9 (U:Zﬁhgj

geG heG
A non-zero element u € RG is a zero-divisor if and only if there exists a non-zero v € RG such

that uv = o. For a fixed listing {g,,9,,....9,} of the elements of G the RG matrix of the element
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w =leozgigi €RG is defined

ag1_lgl agl_lgz .. ag1_lgn
W = .0592-191 .agz_lgz .agz-lgn
@9,'9, @9,"9, ... 9,9,

A group ring RG is isomorphic to a subring of the ring of nxn matrices over R.

The teranspose of an element u = > @,g inRGisu' = @,9 " orequivalentlyu’ =» @ .g

geG geG geG

The definition of the weight immediately leads to a Gray map from R to Z,* which can be
extended to (Zq +VZ, ..+ VZ, )n :
$:R>Z
a=a, tav+..ta V" —>¢@) = ga, +ayv+..+a v = (a0)a(l),...a(g-1))
Where  a(i)=a, +aji+..+a.,i" (modq) for all ie{0,1,...,g-1} . this map is basically the

natural one that gives the Chinese Remainder Theorem and hence this map relates the rings R

and Z . Since ¢ is a isomorphism we have:

R=z Vv]/{v)ez,v]/{v-Do..@Z [v]/{v-(q-1)=Z1

Let x = Z a,9 and y = Z B,9 be two elements in the group ring RG. Then, inner product of

9 e
xandyis givenby (x,y)=> a8, .
P
The map
0 RG —>R”,0(iaigij:(al,az,...,an)
=

is an isomorphism from RG to R". Thus every element in RG can be considered as an n-tuple
in R".

A linear code C of length n over R, is a submodule of R". A linear code of length n, dimension
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k, and minimum (Hamming) distance d over R is termed as an [n k.d ]q code. Let n be a pos-

itive integer and a be a unit element of R. A linear code C of length n over R is said to be
a—constacyclic if for any codeword (c,,c,,....C,;) €C we have that (ac,,,c,.C,,....C,,) €C If we
take a as —1, then the code is called negacyclic.

It is not easy to find the structure of lattices of ideals of non-chain rings in general. Here by
using the Gray map introduced above, we are able to give the structure of ideals of R and
further count the number of ideals as follows:

Lemma 1.1 R has exactly 29 ideals.

Proof. Since Z is a field (q is a prime number) then its ideals are exactly the zero ideal and

Z,, itself, then the number of ideals of Z " is the product of the number of trivial ideals. There-

for the number of ideal of R is 29 .

The cyclic codes of length m are ideals in the quotient ring R [x ]/ <x " —1> . Further, for a cyclic

group C, of order m we have R[x ]/<x " —1>; RC

Definition 1 Let u be a zero-divisor in RG, i.e. uv = 0 for some non-zero v € RG. Let W be a
submodule of RG with basis of group elements S —G. Then, a zero-divisor code is
C={ux|x e W} =uW or C={xulx e W} =Wu.
Definition 2 A zero-divisor u with rank(U) = r is called a principal zero-divisor if and only if
there exists a v € RG such that uv = 0 and rank(V ) = n-r.
Corollary 3 C ={xu|x e W} = Wu has a unique check element if and only if u is a principal
zero divisor.
The dual of a code with respect to the standard inner product forms a group ring encoding as
well where the dual is defined by

C* ={y e RG|(ux,y) =0,vx e W}.
Proof. In [7].
Theorem 4 Let u,v € RG such that uv = 0. Let U and V be the RG matrices of u and v respec-
tively, such that rank(U) = r and rank(V ) = n—r Let W be a submodule over a basis S c G of

dimension r such that Su is linearly independent and W - denote the submodule over basis
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G\S. Then, the dual code of C = {xulx e W} =Wu is C* ={va\x € Wl} = {y eRGlyu" = 0} .

Proof. Note that v is a zero-divisor and that rank v’ = n - r (because rankV = n - r), and

that W * does not contain a zero-divisor of v' . Thus, there is a 1-1 map between W *and

T : x eW *}. It remains to show it is the dual.

{xv
Letz # 0 be an element in RG. We need to prove that(xu,z )= 0, vx € Wifandonlyifz =y

v’ for somey €W .
Suppose z =y, and let x,y € RG
Recall that x'=¢7"(x),y'=¢"(y) . are the vectors in R" corresponding to x,y. Then

(xu,z )= <xu,va> =x'UV y) =x'(UV)yT =0 .
Conversely, suppose (xu,z)= 0Vx eW . Without loss of generality, assume 1 € W. Then
(xu,z )= Oimplies zu" =0 andsince u’ is the check element for the code generated by v' , z

=yv' forsomey €W *. o

2 Constacyclic Codes over Group Ring (Z o[V ]/(v 9y >)G
In this section, we extend the notion of cyclic group ring codes to constacyclic group ring codes.
Throughout this section, we assume p is an odd prime, R =Z [v ]/<v 9y > and n =2p* under

the restrictions ged (q : go(2 p* )) =1(¢ is the Euler totient function) and p“ +1#0,1(modq) .

Let Z, be the set of integers modulo n=2p"“. Let G =2Z " c Z, be the set of all double ele-
mentsin Z .

Theorem 5 The set G =2Z " all doubled elements in Z,"is a cyclic multiplicative group with
identity element e = p* +1.

Corollary 6 Let p be an odd prime and n = 2p. Then, G =2Z~ the set of all doubled elements
in Z " is a cyclic multiplicative group with identity element e = p +1.

n

Theorem 7 Let G be the cyclic group given in Theorem 5 and R =Z _|v ]/<v 4y > such that
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gcd (go( p* ),q ) =1. Also, let u,v € RG be principle zero divisors. Then, (RG)u is an e—constacy-

clic code of length (/)( pk ) and dimension rank(u).

Corollary 8 The dual code of the code given in the Theorem 7 is a e —constacyclic code of

length ¢(p*) and dimension rank(v ).

3 Self Dual and Self Orthogonal Constacyclic Codes over (Z o [V ]/<v 9y >)G

This section is devoted to determining self dual and self orthogonal codes arising from consta-

cyclic codes over group algebras

Lemma 9 Let C =(6(RG )u) be an e—constacyclic code of length ¢(p* ) given in Theorem 7
with dual code C* = 0((RG A ) . Then, the code C* = 9((RG W' )is also an e™ —constacyclic
code of length ¢(p* ).

Theorem 10 Let C = (H(RG )u ) be an e—constacyclic code of length (p( p ) given in Theorem
7 with dual code C* = ((RG A ) . Then, C is self dual if and only if e* =1(modq) and u =v" .
Corollary 11 Let C =(0(RG )u ) be an e-constacyclic code of length ¢(p* ) given in Theorem
7 with dual code C* = 9((RG A ) . Then, p“ =2(modq).

Theorem 12 11 Let C = (H(RG )u ) be an e-constacyclic code of length (p( p“ ) given in The-
orem 7 with dual code C* = 9((RG W' ) . Then, C is self orthogonal if and only if e* =1(modq )

and for somew € RGw =uv'.

4 Quantum Codes Obtained from Negacyclic Codes over (Z a [V ]/(v 9y >)G

The construction of quantum codes via classical codes over F, was first introduced by Calder-

bank and Shor [4] and Steane [13] in 1996. Later, construction quantum codes over different
alphabets obtained from classical linear codes over Fq has been shown by Ketkar et al. in [10].

A quantum error correcting code Q is defined as follows:

£
2021, Volume 15, No. 1 (5] Ly Theory of Approximation and Applications



Constacyclic Codes over Group Ring (Z v/ <V a_y >)G Soleimani, A.,
q

Definition 14 A q—ary quantum code Q, denoted by [[n k,d ]]q isaq* dimensional subspace

of the Hilbert space C %" and can correct all errors up to [dT_l} .

The following lemma is a method to get quantum error correcting codes via classical linear
codes over finite fields.

Lemma 15 (CSS Code Construction) [10] Let C, and C, denote two classical linear

codes with parameters [n,kl,dl]q and [n,kz,dz]q such that C," <C,. Then there exists a
[[n k,+k,-n,d Hq quantum code with minimum distance
d=minfwt (c)e €(C,\C,") = (C,\C,)}

Corollary 16 [10] If C is a classical linear [n,k ,d ]q code containing its dual, C* <C then

there exists an |:[n .2k —n,>d ]]q quantum code.

5 Conclusion

In this work, we determine self dual and self orthogonal codes arising from constacyclic codes

of length go( p* ) over group ring (Z V] <V 1 v >)G . Further, we take look at a quantum codes.
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