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Abstract

In this paper, numerical solution of Burgers’equation is considered by applying
Sinc method. For this purpose, we apply Sinc method in cooperative with a
classic finite difference formula to Burgers’equation. Numerical examples are
provided to verify the validity of proposed method.
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1 Introduction

For a given velocity u and viscosity coefficient v the general form of
Burgers’ equation (also known as viscous Burgers’ equation) is [4]:

ut + uux = vuxx, a < x < b, t > 0 (1.1)

subject to the initial boundary conditions:

u(x, 0) = f(x), a ≤ x ≤ b,

u(a, t) = ga(t), t ≥ 0,

u(b, t) = gb(t), t ≥ 0,

(1.2)

When v = 0 the Burgers’ equation becomes the inviscid Burgers’ equa-
tion. Eq.(1.1) arises in various areas of applied mathematics, such as
modeling of dynamics, heat conduction, and acoustic waves. Also, this
equation has a large variety of applications in the modeling of water in
unsaturated soil, dynamics of soil water, models of traffic, turbulence and
fluid flow, mixing and turbulent diffusion [4,11].

Many researchers tried to find analytic and numerical solutions of Eq.(1.1)
by using appropriate transformation to other known problems such as the
Bäcklund transformation [9], Darboux transformation [10], sine - cosine
methods [16], modified extended tanh-function method [12], the Hopf-
Cole transformation [5].

Various numerical techniques specially based on variational iteration
method, Adomian decomposition method, a finite-difference approach,
mixed finite-difference and boundary element methods have been applied
to solve Eq.(1.1). For further information see [1,3,10,15].

In [7], Kutluay et al. have obtained an approximate solution of the equa-
tion by the least-squares quadratic B-spline finite element method.

Sinc method is a powerful numerical tool for finding fast and accurate
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solution in various areas of problems. References [8,14], contain full dis-
cussion about sinc approximation.

The purpose of this paper is to extend the application of the sinc method
for solving Burgers’equation by considering stability analysis of the method.

In this paper, we propose Sinc method for solving the Burgers’ equation.
The rest of this paper is organized as follows. In section 2, we present some
required preliminaries for Sinc method. The proposed method is drawn
in section 3. In section 4, stability analysis of the method is considered.
Numerical examples are given in section 5.

2 Sinc definitions and preliminaries

Let f be a function defined on R and h > 0 is step size then the Whittaker
cardinal defined by the series

C(f, h)(x) =
∞∑

j=−∞
f(jh)S(j, h)(x), (2.1)

whenever this series convergence, and

S(j, h)(x) =
sin[π(x− jh)/h]

π(x− jh)/h
, j = 0,±1,±2, .. (2.2)

where S(j, h)(x) is known as j − th Sinc function evaluated at x.

Throughout of this paper, let d > 0, and Dd denote the region {z =
x + iy |y| < d} in the complex plan C and φ the conformal map of
a simply connected domain D in the complex domain onto Dd, such
that φ(a) = −∞, φ(b) = ∞, where a, b are boundary points of D with
a, b ∈ ∂D. Let ψ denote the inverse map of φ, and let the arc Γ, with end
points a, b (a, b ∈ Γ), given by Γ = ψ(−∞,∞). For h > 0, let the points
xk on Γ given by xk = ψ(kh), k ∈ Z.

To construct Sinc approximation on the interval (a, b), which apply in
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this paper, the eye-shaped :

DE = {z = x+ iy : |arg(
z − a
b− z

)| < d ≤ π

2
},

is mapped onto infinite strip Dd by φ(z) = ln( z−a
b−z ). So, the basis Sinc

function on (a, b) is given by :

S(j, h)oφ(x) = Sinc(
φ(x)− jh

h
).

where

Sinc(x) =

 1 if x = 0

sin(πx)
πx

if x 6= 0,

and,

xk = φ−1(kh) =
a+ b exp(kh)

1 + exp(kh)
, k = −N..N.

Definition 1. [8] Let B(DE) be the class of functions F which are
analytical in DE, satisfy

∫
ψ(s+L)

|F (z)dz| → 0, s→ ±∞,

where L = iv : |v| < d ≤ π
2
, and

N(F ) =
∫
∂DE

|F (z)dz| <∞.

.

Theorem 1. [8] If |F (x)| ≤ Ce−α|φ(x)|, x ∈ Γ, for positive constants

C, α be selecting h =
√

πd
αN

, we have the following interpolation relation:

|F (x)−
N∑

j=−N
F (xj)S(j, h)oφ(x)| ≤ C

√
Ne−

√
πdαN , x ∈ Γ.
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3 The Method

By discretizing time derivative of Eq.(1.1) with a classic finite difference
formula and space derivative by the θ-weighted (0 ≤ θ ≤ 1) scheme,
between successive two time levels n and n+ 1 we have:

un+1 − un

δt
+ θ((uux)

n+1 − v(uxx)
n+1)

+ (1− θ)((uux)n+1 − v(uxx)
n+1) = 0,

(3.1)

where un+1 = u(x, tn+1), tn+1 = tn + δt and δt is a time step size with
nδt < T and t ∈ (0, T ). Also we have :

un+1 = u(x, tn+1) =
N∑

j=−N
un+1
j S(j, h)oφ(x). (3.2)

To have a better formula, we simplify terms (uux)
n+1 in (3.1), so

(uux)
n+1 = (uux)

n + δt(
un+1 − un

δt
unx + un

(ux)
n+1 − (ux)

n

δt
) +O(δt2)

= un+1unx + un(ux)
n+1 − ununx +O(δt2).

(3.3)

By substituting (3.3) in (3.1) we obtain

un+1 − un+θδt{un+1unx + un(ux)
n+1 − un(ux)

n − v(uxx)
n+1}

+ (1− θ)δt{(uux)n − v(uxx)
n} = 0.

(3.4)

or

un+1 + θδt{un+1unx + un(ux)
n+1 − v(uxx)

n+1}
=un + (uux)

n(2θδt− δt) + (1− θ)δtvuxx)n.
(3.5)

To apply collocation method in order to get unknowns unj in (3.5) we use
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2N + 1 Sinc grid points as

x−N = a,

xk = φ−1(kh) =
a+ b exp(kh)

1 + exp(kh)
, k = −N + 1..N − 1,

xN = b.

(3.6)

Furthermore, we have [8,14]

un+1(xk) =
N∑

j=−N
un+1
j S(j, h)oφ(x)|x=xk = un+1

k . (3.7)

and

un+1
x (xk) =

N∑
j=−N

un+1
j

d

dx
S(j, h)oφ(x)|x=xk =

1

h
δ
(1)
jk φ

′(xk). (3.8)

also,

un+1
xx (xk) =

∑N
j=−N u

n+1
j

d2

dx2
S(j, h)oφ(x)|x=xk

= 1
h2
δ
(2)
jk (φ′(xk))

2 + 1
h
δ
(1)
jk φ

′′(xk).
(3.9)
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so by replacing (3.9) in (3.5) we get:

(
N∑

j=−N
un+1
j S(j, h)oφ(x)) + θδt{(

N∑
j=−N

un+1
j S(j, h)oφ(x))

(
N∑

j=−N
un+1
j

d

dx
S(j, h)oφ(x))

+ (
N∑

j=−N
unj S(j, h)oφ(x))(

N∑
j=−N

un+1
j

d

dx
S(j, h)oφ(x))

− v(
N∑

j=−N
un+1
j

d2

dx2
S(j, h)oφ(x))}

= (
N∑

j=−N
unj S(j, h)oφ(x)) + (

N∑
j=−N

unj S(j, h)oφ(x))

(
N∑

j=−N
unj

d

dx
S(j, h)oφ(x))(2θδt− δt)

+ (1− θ)δtv
N∑

j=−N
unj

d2

dx2
S(j, h)oφ(x), k = −N + 1..N − 1.

(3.10)

so we have the following system of equations at sinc pints

(
N∑

j=−N
un+1
j δ

(0)
jk ) + θδt{(

N∑
j=−N

un+1
j δ

(0)
jk )(

N∑
j=−N

un+1
j

1

h
δ
(1)
jk φ

′(xk))

+ (
N∑

j=−N
unj δ

(0)
jk )(

N∑
j=−N

un+1
j

1

h
δ
(1)
jk φ

′(xk))

− v(
N∑

j=−N
un+1
j

1

h2
δ
(2)
ik (φ′(xk))

2 +
1

h
δ
(1)
ik φ

′′(xk))}

= (
N∑

j=−N
unj δ

(0)
jk ) + (

N∑
j=−N

unj δ
(0)
jk )(

N∑
j=−N

unj
1

h
δ
(1)
jk φ

′(xk))(2θδt− δt)

+ (1− θ)δtv(
N∑

j=−N
unj

1

h2
δ
(2)
ik (φ′(xk))

2 +
1

h
δ
(1)
ik φ

′′(xk)), k = −N + 1..N − 1.

(3.11)
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Also for initial conditions we get:

N∑
j=−N

un+1
j S(j, h)oφ(x)|x=x−N

= un+1
1 (x−N) = ga(t

n+1),

N∑
j=−N

un+1
j S(j, h)oφ(x)|x=xN = un+1

1 (xN) = gb(t
n+1).

(3.12)

Numerical solution of Eq.(1.1), in the sinc points, can be approximated
by

un(xi) =
N∑

j=−N
unj S(j, h)oφ(xi), i = −N, ..N. (3.13)

Eq.(3.13) can be written in a matrix form as:

un = Apn, (3.14)

where

A = [Ai,j = S(j, h)oφ(xi)], pn = [un−N , ..., u
n
N ]t. (3.15)

The matrix A can be written in the following form [13]:

A = Ad + Ab, (3.16)

where

Ad =


Ai,j = S(j, h)oφ(xi) :

−N + 1 ≤ i ≤ N − 1,

−N ≤ j ≤ N

and 0 elsewhere


Ab = {Ai,j = S(j, h)oφ(xi) : i = −N,N, −N ≤ j ≤ N and 0 elsewhere}

(3.17)

For interior points xi ∈ (a, b) and boundary points x−N = a, xN = b
equations (3.11) and (3.12) can be written as:

[Ad + Ab+θδt(D + E)− θδtvC]pn+1

=[Ad + Ab + δt(2θ − 1)E + (1− θ)δtvC]pn + Fn+1,
(3.18)
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where B and C are (2N + 1)(2N + 1) matrices such that:

B =


S ′(j, h)oφ(xi) :

−N + 1 ≤ i ≤ N − 1,

−N ≤ j ≤ N

and 0 elsewhere


C = {S ′′(j, h)oφ(xi) : i = −N,N, −N ≤ j ≤ N and 0 elsewhere}

(3.19)

and

unx = Bpn,

D = unx ∗Ad,

E = un ∗B,

Fn+1 = [ga(x−N), ..., gb(xN)]t.

(3.20)

The symbol ∗ means that i− th component of the vector un is multiplied
to every element of i− th row of matrix B. Finally system (3.18) cab be
shown in the following form

Lpn+1 = Rpn + Fn+1, (3.21)

where

L = [Ad + Ab + θδt(D + E)− θδtvC],

R = [Ad + Ab + δt(2θ − 1)E + (1− θ)δtvC].
(3.22)

4 Stability analysis

In this section, stability analysis of the method is considered. Follow-
ing [13], Eq.(3.18) can be linearized by assuming u in the nonlinear term
uux as locally constant. Suppose the error at n − th time level between
exact and approximate solution is given by:

en = unExact − unApproximate (4.1)
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The error equation for the linearized Eq.(3.18) can be written as:

[H + δtθK]en+1 = [H − δt(1− θt)K]en, (4.2)

where

H = [Ad + Ab]A−1 = I, K = [D + E− vC]A−1. (4.3)

So we have

en+1 = Wen, W = [I + δtθK]−1[I − δt(1− θ)K]. (4.4)

To numerical method be stable we must have ‖W‖2 ≤ 1, consequently,
ρ(W ), spectral radius of the matrix W , must be ρ(W ) ≤ 1. It results
that :

|1− δt(1− θ)λK
1 + δθλK

| ≤ 1, (4.5)

where λK is are eigenvalue of the matrix K.
For θ = 0.5, the inequality (4.5) becomes

|1− 0.5δtλK
1 + 0.5δtλK

| ≤ 1, (4.6)

In the case of complex eigenvalue λK = ak + ibk, where ak, bk are real
numbers, inequality (4.6) results

|(1− 0.5δtak)− i(0.5δtbk)
(1 + 0.5δtak) + i(0.5δtbk)

| ≤ 1, ⇒ ak ≥ 0. (4.7)

In the case of real eigenvalue of λK , inequality (4.6) holds.
For θ = 0, the inequality (4.5) becomes

|1− δtλK | ≤ 1, ⇒ δt ≤ 2

λK
, λK ≥ 0. (4.8)

Thus for θ = 0 the scheme is conditionally stable. The stability of scheme
for the other values can be investigate in a similar manner. The stability
of the scheme and conditioning of the component matrices H,K of the
matrix W depend on the weight parameter and the minimum distance
between any two collocation points h in the domain set [a, b].
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5 Numerical Examples

At first, we give the following algorithm to compute numerical solution
of Eq.(1.1):
Algorithm1:
Step1: Input a, b, δt, N, θ, α, f(x), ga(t), gb(t), φ(t)
Step2: Set n := 0 calculate p0 and n := 1.
Step3: While nδt < T do the following statements
Calculate Matrices L,R,F
Solve system (3.21) and obtain pn, which is approximated solution at
time level n.
n := n+ 1.
end while
In this section, based on algorithm 1, two examples are presented to illus-
trate the effectiveness and importance of proposed method. All programs
have been provided by Maple 13.

Example .1 We consider the following Burgers’ equation [6,7]

ut + uux = vuxx, 0 < x < 1, t > 0

u(x, 0) = sin(πx), 0 ≤ x ≤ 1,

u(0, t) = 0, t ≥ 0,

u(1, t) = 0, t ≥ 0,

(5.1)

The exact Fourier series solution of this problem given by Cole [7] is:

u(x, t) = 2πv

∑∞
n=1 an exp(−n2π2vt)n sin(nπx)

a0 +
∑∞
n=1 an exp(−n2π2vt) cos(nπx)

(5.2)

where the Fourier coefficients are :

a0 =
∫ 1

0
exp{−(2πv)−1(1− cos(πx)}dx,

an = 2
∫ 1

0
exp{−(2πv)−1(1− cos(πx)} cos(nπx)dx, n = 1, 2, 3, ....

(5.3)

To obtain results, we use Maple 13 package and take x = 0.2, 0.4, 0.6, 0.8
with δ = 0.01, v = 10 by N = 7. The results are shown in Table 1.
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x Approximate Exact

0.2 0.21742 0.21816

0.4 0.35387 0.35390

0.6 0.35503 0.35502

0.8 0.219867 0.21997

Table 1: Results of example 1 by Sinc method with N = 7 and
δ = 0.01, v = 10.

From these results, we conclude that the proposed method, to calculate
the approximate numerical solution of the Burgers’equation, gives re-
markable accuracy in comparison with the exact solution for some values
of x.
In order to show relation between x and δt, we take different value
δt = 0.4, 0.6, 0.8 and obtain approximate solution at x = 0.25, 0.50, 0.75.
Based on result in table 2, the approximate solution is in good agreement
with the exact solution. Also, the solutions are more accurate than the
results in [6].

x δt Approximate(Present Method) Ref.[6] Exact

e 0.4 0.01358 0.01303 0.01357

0.25 0.6 0.00188 0.00178 0.00189

0.8 0.00026 0.00026

0.4 0.01927 0.01853 0.01924

0.50 0.6 0.00266 0.00252 0.00267

0.8 0.00033 0.00037

0.4 0.01356 0.01308 0.01363

0.75 0.6 0.00187 0.00178 0.00189

0.8 0.00027 0.00026

Table 2: Results of example 1 by Sinc collocation method with
v = 1, δt = 0.4, 0.6, 0.8.
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Table 3, shows numerical results of example 1 by Sinc collocation method
for different values v = 1, 0.1, 0.01, δ = 0.6.

x v = 1 v = 0.1 v = 0.01

0.25 0.00188 0.24357 0.27537

0.50 0.00267 0.45087 0.53532

0.75 0.00187 0.49267 0.77147

Table 3: Numerical results of example 1 by Sinc collocation method
with v = 1, 0.1, 0.01, δ = 0.6.

Example 2 We consider the following Burgers’ equation [6,7]

ut + uux = vuxx, 0 < x < 1, t > 0

u(x, 0) = 4x(1− x), 0 ≤ x ≤ 1,

u(0, t) = 0, t ≥ 0,

u(1, t) = 0, t ≥ 0,

(5.4)

The exact solution of this problem is given by [7] where

a0 =
∫ 1

0
exp{−x2(3v)−1(3− 2x)}dx,

an = 2
∫ 1

0
exp{−x2(3v)−1(3− 2x)} cos(nπx)dx, n = 1, 2, 3, ...

(5.5)

Table 4, shows numerical solution for x = 0.2, 0.4, 0.6, 0.8 between exact
and approximate solution.

x Approximate Exact

0.2 0.22514 0.22514

0.4 0.36524 0.36522

0.6 0.36648 0.36641

0.8 0.22741 0.22706

Table 4: Results of example 1 by Sinc method with N = 7 and
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δ = 0.01, v = 10.

Table 5 displays numerical solutions of example 2 for different values of
δt. It is observed that the numerical solutions are seen to be satisfactorily
in agreement with the exact ones.
Figure 1, shows approximate solutions with δt = 0.1, 0.2, 0.4, v = 0.01
for example 2.
Figure 2, shows approximate solutions with v = 0.1, 0.01, 0.001.

x δt Approximate Exact

0.4 0.01402 0.01400

0.25 0.6 0.00183 0.00195

0.8 0.00023 0.00027

0.4 0.01978 0.01985

0.50 0.6 0.00267 0.00276

0.8 0.00034 0.00038

0.4 0.01421 0.01407

0.75 0.6 0.00197 0.00195

0.8 0.00023 0.00027

Table 5: Results of example 2 by Sinc collocation method with N = 7
and δ = 0.01, v = 10.

6 Conclusion

In this paper, we applied the Sinc collocation method on the Burgers’
equations. The results show that the Sinc method is a powerful mathe-
matical tool to solve Burgers’ equation. It is also a promising method to
solve other nonlinear equations. The solutions obtained are shown graph-
ically. In addition this method is portable to other area of problems and
easy to programming.
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Fig. 1. Approximate solutions with v = 0.1, 0.01, 0.001 for example 2.

Fig. 2. Approximate solutions with t = 0.1, 0.2, 0.4, v = 0.01 for example 2.
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