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Abstract
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1 Introduction

All organizations, whether profit, governmental, non-profit and other
types of decision-making units (DMUs), are looking for producing more
outputs and services using less resources. This is an efficiency problem
with three stages, namely (i) efficiency measurement, (ii) target setting
and (iii) goal achievement. This type of problems has been extensively
studied by economists and management science scholars for many years.
Since the pioneering work of Charnes et al. in 1978, data envelopment
analysis (DEA) has become the most prominent nonparametric method
for measuring efficiency of DMUs to produce multiple outputs by using
multiple inputs [3]. In addition, to efficiency measurement, DEA is also
able to show to what extent the output can be increased by maintain-
ing the current input level. It is also capable of estimating the extent
of input saving only by increasing efficiency while maintaining the cur-
rent output level. In other words, DEA creates a target for non-efficient
DMUs to be converted into efficient DMUs. Thus, DEA technique is able
to respond questions arising in the first two stages of efficiency studies.
Consequently, thousands of articles and books have been published since
the advent of DEA in 1978.

A system usually consists of multiple subsystems that operate inter-
dependently. Conventional DEA used for measuring efficiency only con-
siders inputs to the system and outputs produced by the system and
ignores its internal structure. Therefore, the overall system may be ef-
ficient, but its constituents may be non-efficient. More importantly, all
components of a DMU show a lower performance than another DMU in
some cases, but the first DMU has a higher system performance than
the second DMU. Many ideas have been developed from conventional
DEA to overcome these problems. The models developed for measuring
the efficiency of production systems with different network structures are
known as network DEA models.

Numerous studies have been recently conducted on DMUs with a net-
work structure. Cook, et al. [4] pointed out several approaches for mod-
eling DMUs with a two-stage network structure. Typically, these mod-
els are developed by efficiency decomposition using geometric or arith-
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metic means. Although the network DEA model proposed by Färe and
Grosskopf [6] is able to operate with different network structures, it fails
to decompose or score efficiency of sub-DMUs that forms the entire DMU
network. Using slack-based models, Tone and Tsutsui [13] developed a
network DEA model which measures both partial and overall efficien-
cies of DMUs. They assumed that (i) the network is consisted of several
parts, (ii) partial efficiency is an index for a particular part relative to its
counterparts in other networks and (iii) the overall efficiency of a network
is weighted harmonic average of its partial scores that their weights are
determined externally. Kao and Hwang [10] proposed a two-stage DEA
model taking into account sequential relationship of two sub-processes
in the overall production process in which the overall efficiency is ob-
tained by multiplying the efficiencies of two sub-processes. For a unique
efficiency decomposition, they used a method for finding the highest ef-
ficiency of sub-processes while maintaining maximum overall efficiency.
Kao [8] introduced dummy processes to convert a general network struc-
ture to sequential stages consisting of several parallel processes. They
used the approaches proposed by Kao and Hwang [10] and Kao [9] for
decomposing sequential and parallel structures, respectively. On the other
hand, Cook, et al. [4] proposed models based on additive efficiency de-
composition of network DMUs using the centralized model of Liang, et
al. [12]. This model assumes that the overall efficiency is the product or
sum of partial efficiencies. For example, consider the approach used by
Kao and Hwang [10] which assumes a set of insurance companies with a
two-stage operation for earning premiums and generating profits. There-
fore, the overall efficiency is the product of premium earning and profit
generation efficiencies. Liang, et al. [12] called this modelling technique
or efficiency decomposition as centralized or cooperative game approach,
as all efficiency scores of all sub-DMUs or stages are optimized simulta-
neously.

In addition, Liang, et al. [12] examined modelling of two-stage network
DMUs from a non-cooperative game perspective. Non-cooperative ap-
proach is considered in the form of leader-follower or Stackelberg game.
For example, assuming that the first stage involving premium earning is
leader, the performance of the first stage would be more important and
the efficiency of the second stage (profit generation) will be calculated
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provided that the efficiency of the first stage would remain constant. Sim-
ilarly, one can assume that the second stage is leader and the first stage
is follower.

The centralized model of Liang, et al. [12] can be used for DMUs with any
type of network structure assuming that the overall efficiency is weighted
average efficiency of each of the stages (or parts). However, the leader-
follower model cannot be easily applied. The models proposed by Liang,
et al. [12] or Kao and Hwang [10] have been developed with this assump-
tion that all outputs of the first stage are the only inputs to the second
stage.

An intermediate product is one of the main features of network systems.
Unlike endogenous external inputs and final outputs which are produced
for exterior, intermediate products are produced and consumed within
the system and thus cannot be seen from outside. It is noteworthy that
the relative model is able to measure partial efficiencies, while the envel-
opment model in which the efficiency measure is expressed as a function
of distance, is able to display projections or targets of agents. This is
of particular importance for network systems in which an intermediate
product is produced by a sector and thus is expected to have a larger
value to be more efficient. At the same time, it is expected to have a
smaller value to have a more efficient production sector.

Therefore, intermediate product supply and demand sectors have con-
flicting targets regarding the amount of intermediate product. This study
aims at developing additive DEA models (optimistic and pessimistic) to
measure inefficiency slacks of network systems. The proposed models
measure the inefficiency slacks of intermediate product to obtain an effi-
cient system (showing product increase or decrease only for one stage).
Iranian resin producing companies are studied to explain how to calculate
inefficiency slacks of the system and processes with crisp data.

The paper is organized as follows. Additive DEA models for a two-stage
process are proposed in Section 2. To illustrate the practical utility of the
results, several Iranian resin producing companies are assessed in Section
3. Concluding remarks are presented in Section 5.
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2 Additive DEA models for a two-stage process

2.1 Optimistic additive DEA model for a two-stage process

The flexibility of intermediate products should be increased as output of
the first stage, and reduced as inputs to the second stage to maximize
the overall efficiency [1]. This has led to some difficulties in modelling.
To overcome existing problems, the following additive DEA model is
proposed for identifying efficient and non-efficient DMUs of a network
system:

max Soverall∗
o =

m∑
i=1

s−i +
D∑

d=1

|sintermediate
d |+

s∑
r=1

s+r

s.t.
n∑

j=1

λjxij + s−i = xio, i = 1, . . . ,m,

n∑
j=1

λjzdj + sintermediate
d = zdo, d = 1, . . . , D, (2.1)

n∑
j=1

λjyrj − s+r = yro, r = 1, . . . , s,

− zdo ≤ sintermediate
d ≤ zdo, d = 1, . . . , D,

s−i , s
+
r , λj ≥ 0, i = 1, . . . ,m; r = 1, . . . , s; j = 1, . . . , n,

sintermediate
d free in sign.

Note that bounds are defined for the slacks of intermediate products to
act freely and take negative values. Using these bounds, intermediate
products will select realistic values to increase outputs or reduce inputs.
Model 2.1 is a nonlinear model due to the presence of an absolute value
function in its objective function. However, the absolute value function
can be eliminated from the objective function by the following change of
variable:  s−d = 1

2
(|sintermediate

d |+ sintermediate
d ), d = 1, . . . , D,

s+d = 1
2
(|sintermediate

d | − sintermediate
d ), d = 1, . . . , D

(2.2)
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Therefore,

max Soverall
o =

m∑
i=1

s−i +
D∑

d=1

s−d + s+d +
s∑

r=1

s+r

s.t.
n∑

j=1

λjxij + s−i = xio, i = 1, . . . ,m,

n∑
j=1

λjzdj + s−d − s+d = zdo, d = 1, . . . , D, (2.3)

n∑
j=1

λjyrj − s+r = yro, r = 1, . . . , s,

− zdo ≤ s−d − s+d ≤ zdo, d = 1, . . . , D,

s−d × s+d = 0, d = 1, . . . , D,

s−d , s
+
d , s

−
i , s

+
r , λj ≥ 0, d = 1, . . . , D; i = 1, . . . ,m; r = 1, . . . , s;

j = 1, . . . , n.
Model 2.3 is nonlinear due to the constraint set s−d × s+d = 0 (d =
1, . . . , D). Unfortunately, this model cannot be linearized by change of
variable. Since only D constraints of (m + s + 3D) constraints include
insignificant nonlinear terms, it is not difficult to solve this problem. How-
ever, Model (2.3) can be converted into a mix integer linear programming
model. The constraint set s−d × s+d = 0 (d = 1, . . . , D) indicates that at
least one of the variables s−d or s+d (d = 1, . . . , D) in each constraint
should be equal to zero. Therefore, the following conditions are added to
the problem instead of the constraint set s−d × s+d = 0 (d = 1, . . . , D).
s−d ≤Mβd, d = 1, . . . , D,

s+d ≤M(1− βd), d = 1, . . . , D,

βd ∈ {0, 1}, d = 1, . . . , D,

(2.4)
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where M is a large positive number. Therefore, the inefficiency caused
by auxiliary variables can be measured using the following model:

max Soverall
o =

m∑
i=1

s−i +
D∑

d=1

s−d + s+d +
s∑

r=1

s+r

s.t.
n∑

j=1

λjxij + s−i = xio, i = 1, . . . ,m,

n∑
j=1

λjzdj + s−d − s+d = zdo, d = 1, . . . , D,

n∑
j=1

λjyrj − s+r = yro, r = 1, . . . , s, (2.5)

− zdo ≤ s−d − s+d ≤ zdo, d = 1, . . . , D,

s−d ≤Mβd, d = 1, . . . , D,

s+d ≤M(1− βd), d = 1, . . . , D,

βd ∈ {0, 1}, d = 1, . . . , D,

s−d , s
+
d , s

−
i , s

+
r , λj ≥ 0, d = 1, . . . , D; i = 1, . . . ,m; r = 1, . . . , s;

j = 1, . . . , n.
If the slack set s+∗

r (r = 1, . . . , s), s−∗
i (i = 1, . . . ,m), s−∗

d (d = 1, . . . , D)
and s+∗

d (d = 1, . . . , D) equal to zero, DMUo is optimistic efficient, oth-
erwise is an optimistic non-efficient DMU.
Then the optimistic non-efficient DMUo can be transferred to the effi-
ciency frontier using projection point 2.6:
x̂io = xio − s−∗

i , i = 1, . . . ,m,

ẑdo = zdo − (s−∗
d − s+∗

d ), d = 1, . . . , D,

ŷro = yro + s+∗
r , r = 1, . . . , s.

(2.6)

Example 2.1 Consider five DMUs that use the input x to produce the
intermediate product z in the first stage and use this product in the second
stage to produce the output y as shown in the columns 2 to 4 of Table 1.
Figure 1 shows production frontiers of two stages where the right-hand
side shows five DMUs with the superscript (2.1) that use x to produce
z, while the left-hand side shows five DMUs with superscript (2.2) that
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use z to produce y. When the first stage is considered as an independent
production process, the frontier is made of five DMUs under constant
returns to scale with the radius OC(1).

Table 1
Data sets and inefficiency slacks of the first and second stages

DMU x z y Inefficiency slacks of the Inefficiency slacks of the

first stage second stage

s(1)−∗ s(1)+∗ S
(1)∗
o s(2)−∗ s(2)+∗ S

(2)∗
o

A 2 1 0.5 1.00 0.00 1.00 0.00 0.87 0.87

B 4 2 1 2.00 0.00 2.00 0.00 1.75 1.75

C 4 3 2 0.00 0.00 0.00 0.00 2.12 2.12

D 5 4 5.5 1.00 0.00 1.00 0.00 0.00 0.00

E 6 5 5.5 1.00 0.00 1.00 0.00 1.37 1.37

The fifth columns of Table 1 shows inefficiency slacks of five DMUs where
only C is an optimistic efficient DMU. Similarly, when the second stage is
considered as an independent production process, OD(2) will be frontier
and the inefficiency slacks of five DMUs are shown in the sixth column
where only D is an optimistic efficient DMU. None of the DMUs is effi-
cient in both stages. If the whole system is considered as a block box that
consumes input x to produce output y, then D is an optimistic efficient
DMU. Figure 2 shows the production frontier for five DMUs where OD
shows the frontier. The inefficiency slacks measured by the Model (2.5)
are shown in the third column of Table 2.

The black box model does not take into account the operation of each
of the stages when is directly applied to measure the efficiency of the
system. For example, consider the DMUE to see the effect. This DMU
makes use of 6 units of x to produce 5 units of z in the first stage with
the projection point of Ê(1) (x

Ê(1)
= 5) from the first stage. This DMU

uses 5 units of z to produce 5.5 units of y in the second stage with the
projection point of Ê(2) (x

Ê(2)
= 6.875).
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Fig. 1. Frontiers of the two stages of production

Table 2
Inefficiency slacks obtained from the black box model and Model 2.5

DMU Inefficiency slacks Inefficiency slacks

from black box model from Model 2.5

s−∗ s+∗ S∗
o s−∗ sintermediate* s+∗ Soverall∗

o

A 0.00 1.70 1.70 0.00 -0.60 1.70 2.30

B 0.00 3.4000 3.40 0.00 -1.20 3.40 4.60

C 0.00 1.30 1.30 1.18 1.54 0.00 2.72

D 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E 0.00 1.10 1.10 1.00 1.00 0.00 2.00

2 4 6 
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Fig. 2. The frontier of the black box

2.2 Pessimistic additive DEA model for a two-stage process

According to the pessimistic theory [2,5,7,14], intermediate products in
the first stages should be reduced as outputs and should be increased as
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inputs to the second stage to calculate the efficiency measure from the
inefficient production frontier. The following pessimistic additive DEA
model is proposed for calculating inefficiency slacks of DMUo:

max Soverall∗
o =

m∑
i=1

s+i +
D∑

d=1

|sintermediate
d |+

s∑
r=1

s−r

s.t.
n∑

j=1

λjxij − s+i = xio, i = 1, . . . ,m,

n∑
j=1

λjzdj + sintermediate
d = zdo, d = 1, . . . , D, (2.7)

n∑
j=1

λjyrj + s−r = yro, r = 1, . . . , s,

− zdo ≤ sintermediate
d ≤ zdo, d = 1, . . . , D,

s+i , s
−
r , λj ≥ 0, i = 1, . . . ,m; r = 1, . . . , s; j = 1, . . . , n,

sintermediate
d free in sign.

Model (2.7) is a nonlinear model due to the existence of an absolute value
function. However, the absolute function value can be eliminated from
the objective function of the model by the following change of variable: s−d = 1

2
(|sintermediate

d |+ sintermediate
d ), d = 1, . . . , D,

s+d = 1
2
(|sintermediate

d | − sintermediate
d ), d = 1, . . . , D

(2.8)
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Substituting in Model (2.7), we have:

max Soverall
0 =

m∑
i=1

s+i +
D∑

d=1

s−d + s+d +
s∑

r=1

s−r

s.t.
n∑

j=1

λjxij − s+i = xio, i = 1, . . . ,m,

n∑
j=1

λjzdj + s−d − s+d = zdo, d = 1, . . . , D, (2.9)

n∑
j=1

λjyrj + s−r = yro, r = 1, . . . , s,

s−d × s+d = 0, d = 1, . . . , D,

− zdo ≤ s−d − s+d ≤ zdo, d = 1, . . . , D,

s−d , s
+
d , s

+
i , s

−
r , λj ≥ 0, d = 1, . . . , D; i = 1, . . . ,m; r = 1, . . . , s;

j = 1, . . . , n.
To obtain a linear model, the following conditions replace the constraint
set s−d × s+d = 0 (d = 1, . . . , D):

s−d ≤Mβd, d = 1, . . . , D,

s+d ≤M(1− βd), d = 1, . . . , D,

βd ∈ {0, 1}, d = 1, . . . , D,

(2.10)
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Finally, the following model can be used to measure inefficiency slacks
from a pessimistic point of view:

max Soverall∗
o =

m∑
i=1

s+i +
D∑

d=1

s−d + s+d +
s∑

r=1

s−r

s.t.
n∑

j=1

λjxij − s+i = xio, i = 1, . . . ,m,

n∑
j=1

λjzdj + s−d − s+d = zdo, d = 1, . . . , D,

n∑
j=1

λjyrj + s−r = yro, r = 1, . . . , s, (2.11)

− zdo ≤ s−d − s+d ≤ zdo, d = 1, . . . , D,

s−d ≤Mβd, d = 1, . . . , D,

s+d ≤M(1− βd), d = 1, . . . , D,

βd ∈ {0, 1}, d = 1, . . . , D,

s−d , s
+
d , s

+
i , s

−
r , λj ≥ 0, d = 1, . . . , D; i = 1, . . . ,m; r = 1, . . . , s;

j = 1, . . . , n.
If the slack sets s−∗

r (r = 1, . . . , s), s+∗
i (i = 1, . . . ,m), s−∗

d (d = 1, . . . , D)
and s+∗

d (d = 1, . . . , D) equal to zero, DMUo is pessimistic inefficient, oth-
erwise is a pessimistic non-inefficient DMU.
Then the pessimistic non-inefficient DMUo can be transferred to the in-
efficiency frontier using projection point (2.12):
x̂io = xio + s+∗

i , i = 1, . . . ,m,

ẑdo = zdo − (s−∗
d − s+∗

d ), d = 1, . . . , D,

ŷro = yro − s−∗
r , r = 1, . . . , s.

(2.12)

3 Explanatory Example

In this section, a performance scoring problem is examined by using the
additive DEA models developed in this study.
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3.1 Application in the sustainable supply chain

Briefly, sustainable supply chains consider social and environmental im-
pacts of activities and products of the supply chain along with economic
benefits of businesses with the aim of optimizing the supply chain man-
agement from economic, social and environmental aspects. Due to current
global environmental challenges such as climate changes and greenhouse
gas emissions as well as social concerns such as the use of children in
the industry, industries pursue a broader range of objectives than just
achieving profitable economic performance.
We are witnessing attitude changes in management theories and political
economy with a special attention to social responsibilities of enterprises
in the social and environmental spheres. This attitude change is tak-
ing place both in the macroeconomic and microeconomic levels so that
economic enterprises assume themselves as a whole along with the gov-
ernment and public institutions and take responsibilities regarding social
welfare and damages to water, land and air.
In this section, the additive DEA models proposed in this study are used
to analyze the performance of 27 resin producing companies in Iran. Data
in Table 3.1 were obtained from Khodakarami, et al. [11]. The inputs,
intermediate products and outputs of DMUs are as follows:
x1: Annual cost,
x2: Annual personnel turnover,
x3: Environmental cost,
z1: Number of products from supplier to manufacturer,
z2: Partnership cost in green production plans,
y1: Number of trained personnel in the fields of job, safety, and health,
y2: Number of green products,
y3: Revenue.
Table 3

DMU Inputs Intermediate Outputs

products

x1 x2 x3 z1 z2 y1 y2 y3

(1000)$ (1000)$ (1000)$ (1000)$

Aria Resin Co. 2982 0.2 117 8 145 158 5 4760

Azar Resin Co 2684 0.5 101 6 135 191 5 3240
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Peka Chemie Co. 3753 0.15 84 11 213 217 9 4850

Bonyan Kala Chemie Co. 2961 0.1 121 9 152 295 13 4190

Pars Pamchal Chemical Co. 2789 0.35 116 5 139 337 7 4710

Paint Sahar Co. 2951 0.6 135 14 91 263 8 4510

Taba Coatings 2856 0.2 174 8 153 338 13 4930

Paksan Co. 2654 0.45 132 11 175 194 11 4350

Chemical Carbon Acid Co. 2921 0.2 110 7 97 172 4 4130

Alborz Chelic Co. 2723 0.7 98 10 64 387 3 3860

Mobin Petrochemical Co. 3975 0.5 164 11 142 419 6 5157

Marun Petrochemical Co. 1855 0.65 135 7 118 476 9 4230

Fajr Petrochemical Co. 4186 0.3 139 13 164 117 10 5970

Laleh Petrochemical Co. 2774 0.2 112 7 143 218 6 3370

Khosh & Kcc Co. 2657 0.45 176 9 115 176 5 4670

Rang Afarin Co. 3852 0.5 161 12 178 197 12 5110

Dorsa Chemie Co. 3758 0.1 95 8 126 423 9 4840

Bushehr Chemical Industries
Co.

3984 0.3 153 15 114 259 12 5710

Rang Avar Paint & Chemical
Co.

3656 0.55 76 11 89 110 9 4380

Rangsazi Iran Co. 2814 0.6 241 7 135 73 6 3850

Petromad Kimia Co. 3881 0.4 135 9 84 198 5 5650

Pars Zinc Dust Co. 3175 0.1 92 6 124 331 6 4140

Peik Chimie Co. 746 0.5 168 7 97 578 8 4470

Resin Fam Co. 2667 0.2 114 8 119 114 5 3750

Doreen Chimie Co. 2894 0.65 139 11 142 135 9 4180

Pars Eshen Co. 3651 0.5 175 9 136 238 7 4460

Nikoo Resin Co. 1956 0.1 131 13 157 194 12 4290

4 Analysis of resin producing companies from an optimistic
perspective

Optimistic efficient and non-efficient DMUs can be identified by apply-
ing the Model (2.5) on data in Table 3.1. It is clear from Table 4 that

56



eight DMUs including DMUs 3, 4, 10. 12. 17, 19, 23 and 27 are identi-
fied by the Model (2.5) as optimistic DMUs. According to the results of
Model (2.5), the slack of the intermediate product z1 is negative for eight
DMUs. Moreover, the slack of the intermediate product z2 is negative
for ten DMUs. Positive slacks of intermediate products are identified for
DMUs 2, 25, and 26. The value of M is equal to 105 in this numerical
example.
Optimistic efficient and non-efficient DMUs in the first and second stages
can be identified by applying the optimistic additive DEA model of tradi-
tional black box under CRS assumption on data in Table 3.1. The results
are listed in Tables 4 and 4. According to the slacks in Table 4, DMUs
3, 19, 23 and 27 are identified as optimistic efficient DMUs in the first
stage. Among the inefficiency slacks in Table 4, the DMUs 5, 7, 10, 18,
21 and 23 are identified as optimistic efficient DMUs in the second stage.
It should be noted that DMU23 which was identified as an optimistic ef-
ficient DMU in the first stage, is also identified as an optimistic efficient
DMU and system in the second stage.
Table 4

DMU s−∗
1 s−∗

2 s−∗
3 sintermediate∗

1 sintermediate∗
2 s+∗

1 s+∗
2 s+∗

3 soverall∗o

1 223.66 0.00 0.0000 -3.32 -36.27 122.03 5.10 0.00 390.40

2 1521.15 0.22 0.00 0.20 41.91 141.27 0.86 0.00 1705.63

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.00 0.00

5 175.36 0.06 0.00 -4.48 -30.10 17.39 1.62 0.00 229.05

6 866.36 0.16 0.00 5.22 0.00 103.26 0.00 0.00 975.01

7 376.97 0.00 0.00 -7.4620 -38.28 0.00 1.67 727.52 1151.91

8 637.44 0.28 0.00 0.00 33.07 99.44 0.00 0.00 770.24

9 772.3028 0.0000 0.0000 -2.6780 -51.8602 99.6687 4.86 0.00 931.37

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 13.9841 0.06 0.00 0.00 -44.07 105.23 4.58 659.34 2182.30

12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

13 508.19 0.00 0.00 0.00 -66.55 274.91 1.49 72.23 923.39

14 1417.50 0.00 0.00 0.00 45.09 67.24 1.79 0.00 1531.64

15 1525.55 0.00 0.00 -0.25 -7.33 364.16 4.84 217.68 2119.84

16 1786.90 0.23 0.00 0.00 23.31 207.92 0.00 0.00 2018.38

17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18 610.22 0.07 0.00 0.00 -114 76.02 1.46 292.99 1094.78
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19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 1187.91 0.00 0.00 -6.09 -37.06 652.31 7.80 2887.74 4778.93

21 437.20 0.1269 0.00 -1.15 -84 294.55 5.39 0.00 822.43

22 144.64 0.00 0.00 -2.22 0.00 0.00 2.58 118.67 268.12

23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

24 1005.51 0.00 0.00 0.00 11.40 205.33 3.30 0.00 1225.55

25 1538.64 0.34 0.00 2.01 20.81 248.88 0.00 0.00 1810.70

26 2775.14 0.00 0.00 1.16 29.11 345.63 1.74 254.06 3406.87

27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5

DMU s−∗
1 s−∗

2 s−∗
3 soutput∗1 soutput∗2 S1∗

o Peer group

1 1128.73 0.10 0.00 3.72 0.00 1132.56 3,27

2 865.52 0.41 0.00 4.35 0.00 870.29 3,27

3 0.00 0.00 0.00 0.00 0.00 0.00 NA

4 998.93 0.00 0.00 3.17 0.00 1002.11 3,27

5 1057.35 0.26 0.00 6.50 0.00 1064.12 23,27

6 495.59 0.41 0.00 0.00 70.43 566.43 19,27

7 1058.06 0.00 25.96 4.42 0.00 1088.45 23,27

8 309.31 0.33 0.00 2.49 0.00 312.14 3,27

9 1858.38 0.00 1.60 0.70 0.00 1860.69 23,27

10 1059.37 0.58 0.00 0.00 53.28 1113.24 19,27

11 2447.66 0.1805 0.0000 0.2185 0.0000 2448.0595 23,27

12 578.99 0.3909 0.0000 2.3376 0.0000 581.7225 3,27

13 2154.25 0.18 0.00 0.5540 0.00 2154.99 23,27

14 906.58 0.10 0.00 4.3225 0.00 911.01 3,27

15 1565.05 0.00 2.12 0.00 4.3276 1571.50 23,27

16 1700.65 0.32 0.00 2.5910 0.00 1703.56 23,27

17 2069.35 0.01 0.00 1.71 0.00 2071.09 3,27

18 1732.89 0.17 0.00 0.00 67.38 1800.46 23,27

19 0.00 0.00 0.00 0.00 0.00 0.00 NA

20 1674.57 0.00 26.23 2.96 0.00 1703.76 23,27

21 2666.51 0.12 0.00 0.00 30.35 2697.00 3,23

22 1495.66 0.01 0.00 3.45 0.00 1499.13 3,27
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23 0.00 0.00 0.00 0.00 0.00 0.00 NA

24 1262.55 0.05 0.00 1.67 0.00 1264.28 23,27

25 1233.86 0.4563 0.00 0.51 0.00 1234.83 23,27

26 2283.43 0.10 0.00 1.53 0.00 2285.07 23,27

27 0.00 0.00 0.00 0.00 0.00 0.00 NA

Table 6

DMU sinput∗1 sinput∗2 s+∗
1 s+∗

2 s+∗
3 S2∗

o Peer group

1 0.00 0.00 190.91 2.66 1458.98 1652.56 5,21

2 0.00 0.00 135.22 1.94 1870.90 2008.06 5,21

3 0.00 0.00 296.25 2.15 3932.94 4231.35 5,21

4 0.00 0.00 132.43 0.00 1173.04 1305.48 7,18,23

5 0.00 0.00 0.00 0.00 0.00 0.00 NA

6 2.05 0.00 0.00 0.00 470.72 472.78 10,18,21

7 0.00 0.00 0.0000 0.00 0.00 0.00 NA

8 0.00 0.00 431.36 0.00 3511.27 3942.63 5,21,27

9 0.00 0.00 59.85 1.33 803.27 864.46 5,21

10 0.00 0.00 0.00 0.00 0.00 0.00 NA

11 0.00 0.00 0.0000 2.52 2310.36 2312.89 5,21,23

12 0.00 0.00 24.1011 0.00 479.0353 503.13 5,7,23

13 0.00 0.00 381.3529 0.00 2773.29 3154.64 5,21,23

14 0.00 0.00 126.94 1.44 2345.99 2474.37 5,21

15 0.00 0.00 98.21 1.41 1507.48 1607.11 5,21

16 0.00 0.00 530.20 0.00 3143.59 3673.79 5,21,23

17 0.00 0.00 166.22 0.00 671.54 837.77 5,21,23

18 0.00 0.00 0.00 0.00 0.00 0.00 NA

19 0.00 0.00 132.51 0.00 79.53 212.05 18,21,23

20 0.00 0.00 252.27 1.07 1729.86 1983.21 5,21

21 0.00 0.00 0.00 0.00 0.00 0.00 NA

22 0.00 0.00 0.00 0.68 741.13 741.82 5,21,23

23 0.00 0.00 0.00 0.00 0.00 0.00 NA

24 0.00 0.00 170.99 1.47 2026.58 2199.04 57,21
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25 0.00 0.00 345.41 0.00 3205.17 3550.58 5,21,23

26 0.00 0.00 87.84 0.37 2074.81 2163.03 5,21

27 0.00 0.00 575.35 0.00 3879.94 4455.29 18,21,23

4.1 Analysis of resin producing companies from a pessimistic perspective

More advanced technology in industries that require high capital costs
such as high-tech or largescale manufacturing industries usually means a
lot of money. In high-risk industries such as insurance or banking, high
profits are usually associated with high risk. Investment risk assessment
is of great importance for financial institutions or individuals investing
in high-risk industries or those requiring high capital. In the case of bad
investment, Type I risk and loss from a failed investment cannot be iden-
tified. Type I error indicates investment risk that should be minimized.
Obviously, the cost of Type I error is much greater than that of Type
II risk (the loss that a financial institution or an investor would suffer
in the case of a successful investment). Therefore, it is very important
to identify and measure the risk of investment. Financial institutions or
individual investors should evaluate the performance of industrial com-
panies before investing in such corporates.
Optimistic models identify companies that are potentially under pressure
based on the extent of inefficiency in the optimal scenario which is not
suitable for the real world. In the vulnerable competitive business space,
potential companies that first exit business are usually those with the
lowest competitive power in the worst scenario, especially when a reces-
sion or financial crisis occurs. Therefore, for investment risk assessment
or bankruptcy prediction, a more meaningful method is to evaluate the
worst performance of entities in the most unfavorable scenario.
For this real case study, the Model (2.11) is first applied to all DMUs to
measure their inefficiency slacks from a pessimistic perspective. Then the
pessimistic additive DEA model of the traditional black box is applied in
both stages to measure their inefficiency slacks from a pessimistic point
of view. The results are shown in Tables 4.1 to 4.1. It is clearly seen that
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inefficiency slacks measured from two different DEA perspectives are sig-
nificantly different.
According to Table 4.1, the DMUs 2, 9, 10, 11, 19, 20, 21, and 26 are
identified as pessimistic inefficient DMUs by the Model (2.11). Based on
the results obtained from the Model (2.11), the slack of the intermediate
product z1 is negative for 4 DMUs. The slack of the intermediate product
z2 is also negative for 3 DMUs. Both slacks of the intermediate products
of DMUs 1, 4, 7, 8, 13, 15, 16, 24, and 27 are positive while both are
identified negative for the intermediate products of DMUs 12 and 22.
Table 7

DMU s−∗
1 s−∗

2 s−∗
3 sintermediate∗

1 sintermediate∗
2 s+∗

1 s+∗
2 s+∗

3 soverall∗o

1 0.0000 0.1693 0.0000 0.6708 60.6076 0.0000 0.0000 768.7939 830.2416

2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.0000 0.4241 1.9582 0.0000 112.3963 87.9348 0.0000 348.5727 551.2861

4 0.0000 0.3159 0.0000 1.2818 51.6528 129.0398 6.9032 591.0501 780.2436

5 0.0000 0.1725 0.0000 -1.3032 0.0000 148.7125 1.7426 1307.3946 1459.3254

6 0.0000 0.0000 0.0000 4.9969 0.0000 60.2967 2.5836 565.0472 632.9243

7 0.0000 0.2662 0.0000 0.9376 36.0616 190.4403 7.3128 1296.9346 1531.9530

8 0.0000 0.0000 0.0000 3.8257 80.6059 97.1659 5.0986 997.2105 1183.9066

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

12 1621.6361 0.0000 0.0000 -0.7938 -56.6661 232.5242 2.5000 19.1736 1933.2938

13 0.0000 0.4652 87.9715 1.5301 11.1040 0.0000 0.4064 587.9171 689.3942

14 0.0000 0.2165 0.0000 0.0000 39.0148 52.8573 0.4155 2.7678 95.2719

15 0.0000 0.0146 0.0000 2.1137 1.8201 19.9988 0.0000 1133.0168 1156.9640

16 0.0000 0.0647 0.0000 1.8231 47.6780 0.0000 3.8808 394.5142 447.9608

17 0.0000 0.5130 5.5194 -2.2785 0.0000 255.3055 0.5453 325.6684 589.8301

18 0.0000 0.3005 0.0000 4.2104 0.0000 119.6756 3.7583 510.4407 638.3855

19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

22 0.0000 0.4864 25.0768 -1.2078 -31.9983 110.9117 0.0000 308.5875 478.2684

23 1883.2780 0.0053 0.0000 0.0000 -8.3039 506.1369 2.1034 1022.723 3422.5503

24 0.0000 0.1804 0.0000 1.1588 39.1729 0.0000 0.0000 202.5974 243.1094

25 173.8689 0.0000 111.0764 3.1972 0.0000 44.6079 2.5078 0.0000 335.2581

26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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27 0.0000 0.2432 0.0000 8.1561 73.5471 105.2537 8.0375 1755.8196 1951.0573

Pessimistic inefficient and non-inefficient DMUs in the first and second
stages are identified by applying the pessimistic additive DEA model of
traditional black box on data in Table 3.1. The results are listed in Table
4.1 and 4.1. According to the slacks in Table 4.1, the DMUs 2, 5, 12, 20,
21, and 22 are identified as pessimistic inefficient DMUs in the first stage.
According to the slacks reported in Table 4.1, the DMUs 1, 2, 3, 6, 10,
13, 19, 20, 24, 25, and 27 are identified as pessimistic inefficient DMUs
in the second stage. DMU2 , DMU10 and DMU20 identified as pessimistic
inefficient DMUs in the first stage are also identified as pessimistic inef-
ficient DMUs and systems in the second stage.
Table 8

DMU s−∗
1 s−∗

2 s−∗
3 soutput∗1 soutput∗2 S1∗

o Peer group

1 1067.76 0.00 6.88 0.00 0.00 1074.65 5,21,22

2 0.00 0.00 0.00 0.00 0.00 0.00 NA

3 1943.96 0.06 84.24 0.00 0.00 2028.27 21,22

4 1507.66 0.133 16 0.00 0.00 1523.80 21,22

5 0.00 0.00 0.00 0.00 0.00 0.00 NA

6 1154.76 0.00 9.20 2.92 0.00 1166.88 10,21

7 1005.95 0.29 0.00 0.00 0.00 1006.25 5,20,21

8 2650.04 0.00 50.09 0.00 0.00 2700.13 5,21,22

9 353.68 0.07 0.00 0.00 0.00 353.75 5,21,22

10 0.00 0.00 0.00 0.00 0.00 0.00 NA

11 1058.24 0.00 13.78 0.00 0.00 1072.02 5,21,22

12 0.00 0.00 0.00 0.00 0.00 0.00 NA

13 1788.62 0.17 57.25 0.00 0.00 1846.04 21,22

14 878.81 0.00 3.85 0.00 0.00 882.67 5,21,22

15 1259.67 0.04 0.00 0.00 0.00 1259.72 5,20,21

16 1833.17 0.00 34.82 0.00 0.00 1868.00 5,21,22

17 135.40 0.12 26.50 0.00 0.00 162.04 21,22

18 1283.07 0.24 30.21 2.78 0.00 1316.31 21

19 381.31 0.00 65.48 0.46 0.00 447.26 10,21

20 0.00 0.00 0.00 0.00 0.00 0.00 NA
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21 0.00 0.00 0.00 0.00 0.00 0.00 NA

22 0.00 0.00 0.00 0.00 0.00 0.00 NA

23 1868.33 0.00 0.00 0.11 0.00 1868.44 10,20,21

24 1165.91 0.0469 7.3039 0.00 0.00 1173.26 21,22

25 1741.01 0.0000 101.69 0.00 0.00 1842.71 5,20,22

26 476.65 0.0029 0.00 0.00 0.00 476.65 5,20,22

27 3958.12 0.39 65.04 0.00 0.00 4023.56 21,22

Table 9

DMU sinput∗1 sinput∗2 s+∗
1 s+∗

2 s+∗
3 S2∗

o Peer group

1 0.00 0.00 0.00 0.00 0.00 0.00 NA

2 0.00 0.00 0.00 0.00 0.00 0.00 NA

3 0.00 0.00 0.00 0.00 0.00 0.00 NA

4 0.00 0.00 132.13 5.31 560.82 698.28 3,27

5 2.18 0.00 195.38 1.12 1544.97 1743.67 3

6 0.00 0.00 0.00 0.00 0.00 0.00 NA

7 0.00 0.00 181.44 6.42 1431.78 1619.65 3,27

8 0.00 0.00 2.05 1.45 78.38 81.89 3,27

9 0.00 0.00 0.00 0.00 946.34 946.34 1,3,10,24

10 0.00 0.00 0.00 0.00 0.00 0.00 NA

11 0.00 0.00 73.54 0.00 481.61 555.16 2,3,10

12 0.00 0.00 349.48 3.02 1410.6910 1763.1881 3,27

13 0.00 0.00 0.00 0.00 0.00 0.00 NA

14 0.32 0.00 69.10 0.00 103.93 173.36 2,3

15 0.00 0.00 0.00 0.00 661.30 661.30 3,6,10,24

16 0.00 0.00 0.00 1.51 601.20 602.71 3,25,27

17 0.00 0.00 284.24 2.03 1752.74 2039.02 3,27

18 0.00 37.87 14.87 0.00 801.25 854.00 6,27

19 0.00 0.00 0.00 0.00 0.00 0.00 NA

20 0.00 0.00 0.00 0.00 0.00 0.00 NA

21 0.00 0.00 0.00 0.00 2297.85 2297.85 3,6,10,24

22 0.40 0.00 204.67 0.76 1316.52 1522.36 3

23 0.00 0.00 465.32 1.71 1970.32 2437.36 3,27

24 0.00 0.00 0.00 0.00 0.00 0.00 NA
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25 0.00 0.00 0.00 0.00 0.00 0.00 NA

26 0.00 0.00 69.72 0.00 911.25 980.97 3,6,27

27 0.00 0.00 0.00 0.00 0.00 0.00 NA

5 Conclusion

There are two concepts for measuring the efficiency of a system including
efficiency decomposition and aggregation. When efficiency decomposition
is used, the system efficiency should be defined as objective function as
the ratio of aggregate exogenous output to exogenous input taking into
account operation of sectors. The partial efficiency is calculated by di-
viding the aggregate output by the aggregate input. The efficiency ag-
gregation concept is based on the definition of system efficiency as the
sum of partial efficiencies. Due to the nonlinear form, the weight used in
the weighted average should be selected carefully to obtain an implicit
linear model. The weight of a part is usually defined as the ratio of input
aggregate efficiency used in this part to that consumed by the two parts.

Several additive DEA models were developed to measure the inefficiency
of inputs and outputs of two-stage DEA from optimistic and pessimistic
perspectives. Unlike efficiency decomposition and aggregation approaches,
the inefficiency slacks of intermediate products are considered in the ob-
jective function. It was also shown that how the network DEA analysis
of the worst performance with the aim of identifying inefficient firms
can be used to identify DMUs with the worst performance, especially
for bankruptcy assessment. In addition, it was found that the use of
optimistic and pessimistic perspectives may lead to a much higher clas-
sification accuracy. Furthermore, optimistic and pessimistic perspectives
provide more flexibility in choosing the best DMU, and thus the risk can
be included in the calculations.
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