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Abstract

This paper discusses about the solution of fuzzy Volterra integral equation of
the first-kind (F-VIE1) with nonlinear fuzzy kernels using spectral method.
In this method the Gauss-Legendre points and Legendre weights are used to
solve fuzzy Volterra integral equation of the first-kind (F-VIE1) with nonlinear
fuzzy kernels. Indeed the parametric form of fuzzy driving term is applied for
F-VIE1. Three classifications for F-VIE1 are searched to solve them, that
these classifications are considered based on the interval sign of the kernel.
Finally, two examples in two different cases are got to illustrate more. However,
accuracy and efficiency are shown in tables.
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1 Introduction

The integral equations are seen in many problems in applied math-
ematic. The solutions of Integral equations are important for applying
science, such as mechanics or physics. Many Integral equations have fuzzy
parameters and a few methods expanded to fuzzy integral equations. The
numerical methods are used widely in recent years that these can to ob-
tained the solutions of with great accuracy.

Spectral scheme is a powerful method that uses basis functions which
are nonzero over the domain such as Legendre polynomial. Actually spec-
tral methods take on a global approach. Specially for this reason, spectral
methods have excellent error properties, with the so-called exponential
convergence being the fastest possible, when the solution is smooth, [7,?].

The concepts of fuzzy numbers were first introduced by Zadeh, [25]
but Friedman and et.al introduced the numerical solution of the fuzzy
integral equation by embedding method. There are some research over ex-
istence and unique of integral equations and sufficient conditions for con-
vergence of their proposed method, [13,16,18,19,22,24]. Special Park and
Jeong search exist and uniqueness of Fredholm-Volterra integral equation
(F-VIE), [19]. Abbasbandy and et. al, used a parametric fuzzy number to
convert a linear fuzzy Fredholm integral equation of second kind, such as
the Nystrom approximation, [2]. Molabahrami et.al, by using the para-
metric form of the fuzzy number converted a linear fuzzy F-VIE to two
linear systems of the second kind of integral equation in crisp case. They
used the Homotopy analysis method to find the approximate solution of
these systems, [17]. Ghanbari et.al, used the Block-pulse functions to ap-
proximate the numerical solution of fuzzy F-IE, [14]. Sadeghi goghari et.
al, present two methods which exploit hybrid Legendre and Block Pulse
functions and Legendre wavelets to find the approximate solution for a
system of linear fuzzy F-IE of the second kind with two variables, [21].
Babolian et.al converted a linear fuzzy F-VIE of the second kind to a lin-
ear system of integral equation in the crisp case by Adomian method, [6].
Abbasbandy snd et. al applied spectral method for for Volterra-Fredholm
integral equations of the first kind and proved the main theorem of spec-
tral relationships and its application, [1].

In this paper the numerical method for solving the F-VIE1 equations in

116



the form ∫ x

a
K(x, s)ũ(s)ds = g̃(x), x ∈ [a, b] (1.1)

is discussed. This numerical method is restricted to spectral method.
In section 2, some needed concepts are reviewed briefly . In section 3,

we proposed our method to find solution by spectral method. In section
4, F-VIE1 is classified. Finally we get two example to illustrate more our
method in section 5. In whole of paper ã is a notation for the fuzzy set of
a.

2 Basic concepts

The basic definitions of a fuzzy number are given in [11,15,25,26] as follows:

Definition 2.1 A fuzzy number is a fuzzy set like u : R→ [0, 1] which
satisfies:

1. u is an upper semi-continuous function,
2. u(x) = 0 outside some interval [a,d],
3. There are real numbers b, c such as a ≤ b ≤ c ≤ d and
3.1 u(x) is a monotonic increasing function on [a, b],
3.2 u(x) is a monotonic decreasing function on [c, d],
3.3 u(x) = 1 for all x ∈ [b, c].

Definition 2.2 A fuzzy number u in parametric form is a pair (u, u) of
functions u(r), u(r), 0 ≤ r ≤ 1, which satisfy the following requirements:

1. u(r) is a bounded non-decreasing left continuous function in (0, 1], and
right continuous at 0,

2. u(r) is a bounded non-increasing left continuous function in (0, 1], and
right continuous at 0,

3. u(r) ≤ u(r), 0 ≤ r ≤ 1.

Definition 2.3 For arbitrary ũ = (u(r), u(r)) and ṽ = (v(r), v(r)) ,
0 ≤ r ≤ 1, and scalar k, we define addition, subtraction, scalar prod-
uct by k and multiplication are respectively as following:
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addition : u+ v(r) = u(r) + v(r), u+ v(r) = u(r) + v(r)
subtraction : u− v(r) = u(r)− v(r), u− v(r) = u(r)− v(r)

scalar product: kũ =

 (ku(r), ku(r)), k ≥ 0

(ku(r), ku(r)), k < 0
multiplication : uv(r) =

max{u(r)v(r), u(r)v(r), u(r)v(r)u(r)v(r)}
uv(r) = min{u(r)v(r), u(r)v(r), u(r)v(r)u(r)v(r)}

Definition 2.4 The metric structure is given by Hausdorff distance
D : RF × RF −→ R+ ∪ 0
D(u(r), v(r)) = Max{sup|u− v|, sup|u− v|}

(RF , D) is a complete metric space and following properties are well known:
D(u+ w, v + w) = D(u, v), ∀u, v, w ∈ RF

D(ku, kv) = |k|D(u, v), ∀u, v ∈ RF , ∀k ∈ R
D(u+ v, w + e) ≤ D(u,w) +D(v, e), ∀u, v, w, e ∈ RF

If the fuzzy function f(x) is continuous in the metric D, its definite integral
exists. Furthermore

(
∫ b

a
f(x)dx) = (

∫ b

a
f(x)dx)

(
∫ b

a
f(x)dx) = (

∫ b

a
f(x)dx)

For arithmetic in overall s ∈ [a, b] for the following equation

f̃(x) =
∫ x

a
K(x, s)ũ(s)ds,

can be transform to two equations:

f(x) =
∫ x

a
v1(x, s, u(s), u(s))ds

f(x) =
∫ x

a
v2(x, s, u(s), u(s))ds
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which

v1(s, t, u(s, r), u(s, r)) =

 k(x, s)u(s), k(x, s) ≥ 0

k(x, s)u(s), k(x, s) < 0

and

v2(s, t, u(s, r), u(s, r)) =

 k(x, s)u(s), k(x, s) ≥ 0

k(x, s)u(s), k(x, s) < 0

Definition 2.5 For simplify in arithmetics over parametric form of fuzzy
number we define: Let u(r) = [u(r), u(r)], 0 ≤ r ≤ 1 be a fuzzy number we
take

uc =
u(r) + u(r)

2

ud =
u(r)− u(r)

2

It is clear that ud(r) ≥ 0 and u(r) = uc(r)−ud(r) and u(r) = uc(r)+ud(r)

Definition 2.6 Let u(r) = [u(r), u(r)], v(r) = [v(r), v(r)], 0 ≤ r ≤ 1
are two fuzzy numbers and also k, s are two arbitrary real numbers. If
w = ku+ sv then by using definition (2.5)

wc(r) = kuc(r) + svc(r)

wd(r) = |k|ud(r) + |s|vd(r)

3 Fuzzy Legendre-collocation method

Consider the first-kind Volterra fuzzy integral equation in the form (1).
The collocation points are chosen as the set of (N + 1) Gauss-Legendre
{xi}Ni=0. Then Eq. (1) is transformed to the following equation:∫ xi

−1
K(xi, s)ũ(s)ds = g̃(xi), 0 ≤ i ≤ N (3.1)
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Now apply the following linear transformation:

s(x, θ) =
x+ 1

2
θ +

x− 1

2
, − 1 ≤ θ ≤ 1 (3.2)

then Eq. (3) becomes as follows:

1 + xi
2

∫ 1

−1
K(xi, s(xi, θ))ũ(s(xi, θ))dθ = g̃(xi), 0 ≤ i ≤ N (3.3)

Using (N + 1)−point Gauss-Legendre quadrature formula relative to the
Legendre weights {ωk} gives the bottom equation:

1 + xi
2

N∑
j=0

K(xi, s(xi, θ))ũ(s(xi, θ))ωj = g̃(xi), 0 ≤ i ≤ N (3.4)

which ũ is estimated by Lagrange interpolation polynomials as following
sentences:

ũ(σ) ≈
N∑
j=0

ũjlj(σ) (3.5)

where the lj is j-th Lagrange basic function. Combination Eqs. (6) and
(7) yields:

1 + xi
2

N∑
j=0

ũj(
N∑
p=0

K(xi, s(xi, θ))lp(s(xi, θ))ωp) = g̃(xi), 0 ≤ i ≤ N (3.6)

If K(x, s) is continuous function over [−1, 1], then respect to the sign of
K(x, s), three cases can be considered that searched in the next section.

4 The classification of F-VIE1

By using sign of K(x, s) over [−1, 1] three cases are got, that are perused
them. The parametric form of equation (1) can be write in following:∫ x

−1
K(x, s)[u(x), u(s)]ds = [g(x), g(x)], x ∈ [−1, 1] (4.1)
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u(r) and u(r) for all 0 ≤ r ≤ 1 and for x ∈ [−1, 1] by Lagrange polynomials
can be consider in following terms:

u(x) ≈
N∑
j=0

uj(r)lj(x)

u(x) ≈
N∑
j=0

uj(r)lj(x)

4.1 Case (1)

If K(x, s) is positive over [−1, 1] Eq. (1) is transformed to∫ x

−1
K(x, s)u(s)ds = g(x), x ∈ [−1, 1] (4.2)

and ∫ x

−1
K(x, s)u(s)ds = g(x), x ∈ [−1, 1] (4.3)

Now by using Eq. (4), consider Eqs. (9) and (10) in following respectively:

1 + xi
2

∫ 1

−1
K(xi, s(xi, θ))u(s(xi, θ))(r)dθ = g(xi)(r), 0 ≤ i ≤ N (4.4)

1 + xi
2

∫ 1

−1
K(xi, s(xi, θ))u(s(xi, θ))(r)dθ = g(xi)(r), 0 ≤ i ≤ N (4.5)

by using the set of (N+1) Gauss-Legendre {xi}Ni=0, the Eqs. (11) and (12)
transform to the following equations respectively:

ui(r) =
1 + xi

2

N∑
j=0

uj(r)(
N∑
p=0

K(xi, s(xi, θ))lp(s(xi, θ))ωp), 0 ≤ i ≤ N

(4.6)

ui(r) =
1 + xi

2

N∑
j=0

uj(r)(
N∑
p=0

K(xi, s(xi, θ))lp(s(xi, θ))ωp), 0 ≤ i ≤ N

(4.7)

Now two crisp equations of the matrix form (13) and (14) must to solve
and u(r) and u(r) for all 0 ≤ r ≤ 1 and x ∈ [−1, 1] are got.
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4.2 Case (2)

In this case, hypothesis K(x, s) is negative over [−1, 1]. Then Eq. (5) is
transformed to two following equations:

u(xi)(r) =
1 + xi

2

∫ 1

−1
K(xi, s(xi, θ))u(s(xi, θ))(r)dθ, 0 ≤ i ≤ N (4.8)

u(xi)(r) =
1 + xi

2

∫ 1

−1
K(xi, s(xi, θ))u(s(xi, θ))(r)dθ, 0 ≤ i ≤ N (4.9)

then put (4) in (15) and (16), we holds:

ui(r) =
1 + xi

2

N∑
j=0

uj(r)(
N∑
p=0

K(xi, s(xi, θ))lp(s(xi, θ))ωp), 0 ≤ i ≤ N

(4.10)

ui(r) =
1 + xi

2

N∑
j=0

uj(r)(
N∑
p=0

K(xi, s(xi, θ))lp(s(xi, θ))ωp), 0 ≤ i ≤ N

(4.11)
Now if we get

Ai,j =
1 + xi

2

N∑
j=0

K(xi, s(xi, θ))lj(s(xi, θ))ωj, 0 ≤ i ≤ N (4.12)

then to find solution in (17) and (18) and using definitions (2.5) and (2.6)
for all 0 ≤ i ≤ N we have

uci(r) = Aij

N∑
p=0

ucp(r) (4.13)

udi (r) = Aij

N∑
p=0

udp(r) (4.14)

Now two crisp equations of the matrix form (20) and (21) can to solve.
Using definition (2.6) we can obtain ũi = [ui, ui] for i = 0, 1, ..., N . When
the values of ũi = [ui, ui] for i = 0, 1, ..., N , are resulted the numerical
solution for x ∈ [−1, 1] can be obtained by Lagrange polynomials.
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4.3 Case (3)

In case (3), suppose that K(x, s) is continuous in −1 ≤ s ≤ 1 and for fix
x, the sign of K(x, s) changes in finite points as ti, for example without
lose generality K(x, s) is positive over [−1, t] and negative over [t, x], we
have

ũ =
∫ t

−1
K(x, s)ũ(s)ds+

∫ x

t
K(x, s)ũ(s)ds (4.15)

then by (N+1) Gauss-Legendre points we can write:

ũ(xi) =
∫ t

−1
K(t, s)ũ(s)ds+

∫ xi

t
K(xi, s)ũ(s)ds (4.16)

Now it can transform interval [t, 1] to [−1, 1] by

s =
xi + t

1− t
η +

x− 1

1− t
,−1 ≤ η ≤ 1 (4.17)

by (4) and (24) we have

ũ(xi) =
1 + t

2

∫ 1

−1
K(t, s(t, θ))ũ(s)dθ +

xi + t

1− t

∫ 1

−1
K(xi, s(t, η))ũ(s)dη

(4.18)
Now by using Legendre weights, the Eq. (25) is transformed to

ũi =
1 + t

2

N∑
j=0

(ũj
N∑
j=0

K(t, s(t, θ))lj(s(t, θ))ωj)+
xi + t

1− t

N∑
j=0

(ũj
N∑
j=0

K(xi, s(t, η))lj(s(xi, η))ωj)

(4.19)
then with using the sign of K on the intervals we have

ui(r) =
1 + t

2

N∑
j=0

(uj(r)
N∑
j=0

K(t, s(t, θ))lj(s(t, θ))ωj)+
xi + t

1− t

N∑
j=0

(uj(r)
N∑
j=0

K(xi, s(t, η))lj(s(xi, η))ωj)

(4.20)

ui(r) =
1 + t

2

N∑
j=0

(uj(r)
N∑
j=0

K(t, s(t, θ))lj(s(t, θ))ωj)+
xi + t

1− t

N∑
j=0

(uj(r)
N∑
j=0

K(xi, s(t, η))lj(s(xi, η))ωj)

(4.21)
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then we can write following matrices:

uci(r) = (Bj + Cij)
N∑
p=0

ucp(r), 0 ≤ i ≤ N (4.22)

udi (r) = (Bj − Cij)
N∑
p=0

udp(r), 0 ≤ i ≤ N (4.23)

which

Bj =
1 + t

2

N∑
j=0

K(t, s(t, θ))lj(s(t, θ))ωj

Cij =
xi + t

1− t

N∑
j=0

K(xi, s(t, η))lj(s(xi, η))ωj

By using definition (2.5) we can obtain ũi = [ui, ui] for i = 0, 1, ..., N .
When the values of ũi = [ui, ui] for i = 0, 1, ..., N , are the numerical solu-
tion for x ∈ [−1, 1] can be obtained by Lagrange polynomials.

Now in Eqs. (13), (14), (20), (21), (29) and (30), we use the spectral col-
location algorithm to solve them. We get spectral collocation algorithm in
the next section.

Now spectral collocation method is applied: Denoting UN = {u0, u1, ..., uN}t.
Lj(s) is expressed in Legendre functions

lj(s) =
N∑
p=0

αp,jLp(s) (4.24)

where αp,j is discrete polynomial coefficients. The inverse relation

αp,j(s) =
1

γp

N∑
i=0

lj(xi)Lp(xi)ωi =
Lp(xj)ωj

γp
(4.25)

where

γp =
N∑
i=0

L2
p(xi)ωi = (p+

1

2
)−1, p < N (4.26)
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and γN = (N + 1
2
)−1 for the Gauss formulas.

lj(s) =
N∑
p=0

Lp(xj)Lp(s)ωj

γp
(4.27)

Consider UN = {u1, u2, ...uN} and UN = {u1, u2, ...uN} instead of UN and
g
N

= {g(x1), g(x2), ...g(xN)} and gN = {g(x1), g(x2), ...g(xN)} instead
of gN . Then in Eqs. (13), (14), (20), (21), (29) and (30), can be used the
spectral collocation algorithm to solve them. The Legendre-Gauss-Lobatto
points that are zeros of L′(N + 1)(x) are used as the collocation points.
For the Legendre- Gauss-Lobatto points, the corresponding weights are

wj =
2

(1− x2j)[L′N+1(xj)]
2
, 0 ≤ j ≤ N.

5 Numerical Example

In this section two examples are presented and solved by Legendre-spectral
method and tables and figures are presented. The estimate and exact solu-
tions are compared in examples and different between them are computed.

Example 5.1 Consider the following fuzzy Volterra integral equation of
first kind:

[r
x5

5
(1− 2x), (2− r)x

5

5
(1− 2x)] =

∫ x

0
s2(1− 2x)u(s)ds

This equation is in case (3). The exact solution is u(t) = [rt2, (2 − r)t2].
Spectral scheme is applied for it. The absolute errors for u(t) and u(t)
are shown in Table (5.1). These results indicate that the desired spectral
accuracy is obtained for N = 12 and N = 20 with x = 0.1 and x = 2.

Example 5.2 Consider the following fuzzy Volterra integral equation:

[(r − 1)(x2cosx− xsinx−), (1− r)(x2cosx− xsinx)] =
∫ x

0
−x2u(s)ds
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r |Err(u)|, N =
12, x = 0.1

|Err(u)|, N =
20, x = 0.1

|Err(u)|, N =
12, x = 2

|Err(u)|, N =
20, x = 2

|Err(u)|, N =
12, x = 0.1

|Err(u)|, N =
20, x = 0.1

|Err(u)|, N =
12, x = 2

|Err(u)|, N =
20, x = 2

0 0 0 0 5.233E(-11) 0.00001213 3.199E(-7) 3.199E(-7) 1.348E(-11)

0.1 0.000065327 3.945E(-7) 4.302E(-7) 3.323E(-11) 0.00003732 2.158E(-7) 3.199E(-7) 3.232E(-11)

0.2 0.000031271 2.032E(-7) 2.981E(-7) 4.013E(-11) 0.00002543 4.332E(-7) 3.199E(-7) 2.299E(-11)

0.3 0.000042754 2.103E(-7) 4.433E(-7) 3.857E(-11) 0.00001263 3.123E(-7) 3.199E(-7) 1.442E(-11)

0.4 0.000034391 3.325E(-7) 3.176E(-7) 3.409E(-11) 0.00002643 1.329E(-7) 3.199E(-7) 2.324E(-11)

0.5 0.000038423 2.333E(-8) 2.231E(-7) 3.109E(-12) 0.00005342 3.231E(-7) 3.199E(-7) 2.124E(-11)

0.6 0.000022329 3.311E(-7) 3.045E(-7) 2.347E(-12) 0.00003254 4.262E(-7) 3.199E(-7) 1.324E(-11)

0.7 0.000035432 2.223E(-7) 5.423E(-7) 2.653E(-12) 0.00002365 3.324E(-7) 3.199E(-7) 2.324E(-11)

0.8 0.000042186 3.235E(-7) 2.423E(-7) 2.143E(-12) 0.00001437 2.173E(-7) 3.199E(-7) 4.324E(-11)

0.9 0.000032987 3.204E(-7) 1.134E(-7) 1.834E(-12) 0.00002354 3.373E(-7) 3.199E(-7) 5.621E(-11)

1 0.000027654 2.991E(-7) 1.681E(-8) 1.634E(-12) 0.00003254 1.275E(-7) 3.199E(-7) 3.523E(-11)

Table 5.1: Error results for x = 0.1 and x = 2 with N = 12 and N = 20 for u and u in Example (5.1)

r |Err(u)|, N =
12, x = 0.2

|Err(u)|, N =
20, x = 0.2

|Err(u)|, N =
12, x = 1

|Err(u)|, N =
20, x = 1

|Err(u)|, N =
12, x = 0.2

|Err(u)|, N =
20, x = 0.2

|Err(u)|, N =
12, x = 1

|Err(u)|, N =
20, x = 1

0 2.245E(-3) 2.375E(-6) 0 5.3E(-13) 3.232E(-3) 1.320E(-6) 4.001E(-8) 3.438E(-14)

0.1 3.278E(-3) 1.163E(-6) 4.334E(-7) 4.812E(-13) 1.239E(-3) 5.345E(-6) 4.102E(-8) 2.148E(-14)

0.2 2.256E(-2) 1.263E(-6) 3.198E(-7) 4.543E(-14) 2.335E(-3) 5.123E(-6) 4.033E(-8) 2.245E(-14)

0.3 5.225E(-3) 1.327E(-6) 4.543E(-7) 3.876E(-14) 1.543E(-3) 5.373E(-6) 3.345E(-8) 3.128E(-14)

0.4 2.187E(-2) 1.735E(-6) 1.213E(-7) 3.314E(-14) 4.232E(-3) 5.230E(-6) 1.149E(-8) 4.018E(-14)

0.5 5.983E(-2) 1.318E(-5) 2.543E(-8) 3.1181E(-13) 3.523E(-3) 3.243E(-6) 3.001E(-7) 3.132E(-14)

0.6 2.345E(-2) 1.316E(-5) 3.543E(-7) 2.243E(-14) 2.221E(-3) 6.303E(-6) 4.202E(-7) 4.206E(-14)

0.7 1.105E(-3) 1.443E(-5) 5.129E(-7) 2.343E(-14) 3.271E(-3) 2.334E(-5) 3.465E(-7) 3.398E(-14)

0.8 2.551E(-3) 1.322E(-5) 8.324E(-7) 2.129E(-14) 3.193E(-3) 5.113E(-6) 2.334E(-7) 3.343E(-14)

0.9 2.007E(-2) 1.543E(-5) 2.154E(-7) 1.033E(-14) 2.443E(-3) 1.033E(-6) 3.133E(-7) 2.178E(-14)

1 3.142E(-3) 1.319E(-5) 1.643E(-8) 1.022E(-13) 1.287E(-3) 2.233E(-6) 1.151E(-7) 1.067E(-14)

Table 5.2: Error results for x = 0.2 and x = 1 with N = 12 and N = 20 for u and u in Example (5.2)

This equation is in case (2). The exact solution is u(x) = [(r−1)sins, (1−
r)sins]. The absolute errors for u(t) and u(t) are shown in Table (5.2).
These results indicate that the desired spectral accuracy is obtained for
N = 12 and N = 20 with x = 0.2 and x = 1.

6 Conclusion

In this work, fuzzy Volterra integral equations of first kind were studied.
The spectral scheme was successfully employed for solving it, based on
Legendre points and Lagrange interpolation polynomials. The obtained
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results was illustrated very near to the exact solutions. It was shown that
this technique is useful to implement to producing accurate results and the
accuracy of obtained data of spectral method is high. This method can be
extended to fuzzy Volterra integro-differential equations with linear fuzzy
kernels with some needed modifications. The computations in this paper
were performed by using Maple 18.
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