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Abstract

In this paper, we consider the concepts co-farthest points in normed linear
spaces. At first, we defi ne farthest points, farthest orthogonality in normed
linear spaces. Then we de fine co-farthest points, co-remotal sets, co-uniquely
sets and co-farthest maps. We shall prove some theorems about co-farthest
points, co-remotal sets. We obtain a necessary and coeficient conditions about
co-farthest points and dual spaces.
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1 Introduction

A kind of approximation, called best co-approximation was introduced by
Franchettei and Furi in 1972 [12]. Some results on best co-approximation
theory in linear normed spaces have been obtained by P. L. Papini and I.
Singer [35]. In this section we consider co-proximinality and co-remotality
in normed linear spaces.

Definition 1.1 Let (X, ||.||) be a normed linear space, G a non-empty
subset of X and x € X. We say that gy € G s a best co-approrimation
of © whenever ||g — go|| < ||z — g|| for all g € G. We denote the set of all
best co-approrimations of x in G by Rg(x).

We say that G is a co-proziminal subset of X if Rg(x) is a non-empty
subset of G for all x € X. Also, we say that G is a co-Chebyshev subset
of X if Ra(x) is a singleton subset of G for all x € X .

Definition 1.2 Let (X, ||.||) be a normed linear space, A a subset of X,
x € X and my € A. We say that mgy is co-farthest to x if ||mg — al| >
|z —al| for every a € A. The set of co-farthest points to x in A is denoted

by
Ca(z) ={ap € A: |lag —al|| > ||z — a|| for every a € A\{ao}}.

The set A is said to be co-remotal if Cx(x) has at least one element for
every x € X. If for each v € X, Cy(x) has ezxactly one element in A,
then the set A is called co-uniquely remotal. We define for ag € A,

Cy Nag)={r € X: |lag—al > ||z — a|| for every a € A}.

Ca'(ap) is a closed set and ag € Ca~'(ag). Note that if x € A, then
xr € Cx(x).

Example 1.1 Suppose X = R and A = [1,2]U{3}\{1}. We set = =1
and ag = 3. Then ag € Cy(x).
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2 Co-Proximinality, co-Chebyshevity and co-Remotality

In this section we consider co-proximinality and co-Chebyshevity and
co-remotality in normed linear spaces.

Theorem 2.1 Let (X, |.||) be a normed linear space and A a subset of
X.

a) If for every x € X and for every a € A, a € Hy,, then A is co-
proximinal.

b) If for every x € X and for every a € A, there exists a unique b €
HIF?%H’ then A is co-Chebyshev.

Proof. a) Suppose x € X, for every a € A there exists ag € A such that
a— ay € B[0,d,]. Therefore for every a € A

la = aol < d,
<|lz = all.

That is ag € Ra(x) so A is co-proximinal.

b) Suppose = € X, a € A and there exists an unique b € H,
(a), Ra(z) is non-empty. The set A is co-proximinal.

by part

lz—all>

For each x € X if there exist a;,as € Ra(x), then for a € A we have
|la; —a|| < ||z —al|| for i = 1, 2. Therefore for a € A, a;,—a € B0, ||z —alll,

and for a € A, we have a; € H H?*a\\ . This is a contraction. It follows
that A is co-Chebyshev.

Theorem 2.2 Let (X, |.||) be a normed linear space and A a subset of
X.

a) If for every x € X and for everya € A, a € Ky, then A is co-remotal.
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b) If for every x € X and for every a € A, there exists a unique b €
KD

o—al| then A is co-uniquely remotal.

Proof. a) Suppose x € X and a € A. Suppose there exists an ag € A
such that a — ay € B°|0, d,]. Therefore for every a € A

la — aoll > 5,
> ||z — al.

That is ap € Ca(x) so A is co-remotal.

b) If x € X and a € A if there exists an unique b € kP

is non-empty. The set A is co-remotal.

For z € X if there exist a1, as € C4(x), then for a € A we have ||a; —al| <
||z — a|| for i = 1,2. Therefore for a € A, a; — a € B°[0, ||z — al|], and

for a € A, we have a; € K H?—GH . This is a contraction. It follows that

A is co-uniquely remotal. Let W be a non-empty bounded subset of a
normed linear space (X, ||.|]). If there exists a point wy € W such that
Iz, W) =sup{lj]z —w| : we W} = |z —wl for x € X. Then wy is
called farthest point in W from x. The set of all such wy € W is denoted
by Fy (z).

Theorem 2.3 Let A be a bounded subset of a normed linear space, A +
A=A —A=Aand0 € A,
(i) If ag € A, then Ca™"(ao) = —ao + Ca™'(0),

(ii) Ca(x) = (—z + C41(0)) N A.

(iii) If ag € A, then x € Cy(ag) if and only if x — ag € C3"(ap)

Proof. (i)
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WS C’A_l(ao) S ag € C’A(x)
& ||lag — all > ||z — a|| for every a € A\{ap}
< lu|| = ||z — ap — u|| for every u € A since A+ A=A
s +ag € Cy(0)
ST € —ag+ CA_I(O).

(i)
ap € Cu(z) &2 € Cyag)

S +ag€ Ca(0)
Sag € —x— Cy1(0) and ag € A.

(iii) Suppose x — ag € C'y'(ap), then
lall = llz — ao —al.
Since A+ A=A and —A = A, then a —ay € A+ A. Then

1ol = [z — a0 = bl b€ A,

Therefore x — ag € C;*(ap).

Theorem 2.4 Let A be a bounded subset of a normed linear space, then
the following statements are equivalent:

(i) A is co-remotal,
(i) X = —A+ C4(0).

Proof. (i) — (ii). Suppose A is co-remotal and = € X, there exists
a ap € A such that ay € Cy(x). Then vy = = + ag € C, '(0), and
T =—ag+uy € —A+Ca7'(0).

(ii) — (i). if X = —A+ C,7'(0) and x € X. Then there exist a ag € A
such that o + ag € C4*(0). Thus ay € C4(x) and A is co-remotal.

Theorem 2.5 Let A be a co-remotal subset of a normed linear space,
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A=A+ A and 0 € A, then there ezists an element z € X\{0} such that
0e CA(Z)

Proof. Suppose x € X\ A, since A is co-remotal, there exists ag € Cy(z)
and so z =z +ag € C4 (0). Hence 0 € Cy(2), z # 0.

Theorem 2.6 Let (X, |.||) be a normed linear space, A a bounded subset
of X,z € X, A=A+Aand0€ A. If0 € Cu(x), then Alpzx.

Proof. If 0 € Cs(x) and a € A. Then ||a|| > ||z — a|, therefore AL px.

Theorem 2.7 Let (X, ||.||) be a normed linear space and x,y € X. Then
the following statements are equivalent:

(i) ALpz or 0 € Cy(x),
(i1) For every m € A, there exists an f € X* such that f satisfies
[fIl =1 and [f(m)| = 6(z, A).

Proof. (i) — (ii). Suppose ALlpx then for m € A, mLpx. That is
|lm|| > 6(x.A). By Hahn-Banach Theorem, there exists an f € X* such
that [|f]| = 1 and |f(m)| = [|m[| = 0(z, A).
(i1) — (7). Suppose there exists an f € X* such that f satisfies ||f|| = 1
and | f(m)| > d(z, A). For m € A, we have

[l = 1LF |l
> [f(m)]
<[l = m]|.

Therefore m_1l px and Al pzx.

Theorem 2.8 Let (X, ||.||) be a normed linear space and z € X.

(i)If a nonempty bounded set A in X is co-remotal then

AN Cla—ap) # 0,

geX
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where Clg—q) = AN B[g, 0z).

(i) For every x € X, if AN(Nyex Clla—a|) # 0. Then A is co-remotal.

Proof. (i) Suppose A is co-remotal and x € X. Then there exists aag € A
such that ||g — aol| > ||g — z|| for every g € A. Therefore ag € Cj—_q| for
every g € A, it follows that ag € Nyex Cla—g), and AN(Nyex Cla—g|) 7 0.
(ii) Suppose = € X, since AN(Nyex Cla—g|) # 0. There exists a ag € A
such that ay € (Nyex Clla—g))- Therefore [jag — g|| > ||z — g]| for every
g € A\{ap}. Therefore A is co-remotal.

Theorem 2.9 Let (X, ||.||) be a normed linear space and A a co-remotal
subset of X, A=A+ A and 0 € A. If C,(0) is singleton, then A is

co-uniquely remotal.

Proof. Suppose # € X and a1,ay € Ca(z). Then z € Oy *(a;) for i =
1,2. Therefore z —a; € C4~'(0) for i = 1,2. It follow that x —a; = x —ay
and a; = ay. Thus A is co-uniquely remotal.

Theorem 2.10 Let (X, ||.||) be a normed linear space, and A be a bounded
subset. Then Cy~*(ag) is convex.

Proof. If z1, 25 € C4 '(ag) and 0 < A < 1. Since ||ag — al| = ||z1 — ao|
and ||ag — a|| = ||xe — ag||, for every a € A\{ap}. Then

[Az1 + (1 = Nzo — al| = [[Ma1 — a) + (1 = ) (22 — a)|
<Az —all + (1 = A)[Jxa — al
< Alag — al| + (1 = A)|lao — al|,

for every a € A\{ag}. Therefore Az, + (1 — N)ay € Ca™'(ag). It follows
that C'4 7' (ag) is convex.

Theorem 2.11 Let (X, ||.||) be a normed linear space, A a subset of X,
—A=A A=A+Aand 0 € A. If A is co-remotal, then A is co-uniquely
remotal.
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Proof. Suppose z € X and ¢1,90 € Ca(x) by g1 # go. Since g1,92 €
Cu(z), We have x + g1, + go € C, 1(0). Also —g, — 2 € C, Y(0),
1

1
therefore 5[91 — go] = §[g1 + 2 —x — go] € C;'(0). That is, for every
a € A\{0},

1
15191 = 9] = all < all.
Since g1 — g2 € A and a = (g1 — ¢2) € A. Then

1
||§[91 — go) + [91 — 92|l < llg1 — g2,

and
3
5”91 — g2l < lg1 — g2l
and 3
g S

is contraction. That is, A is co-uniquely remotal.

Theorem 2.12 Let (X, ||.||) be a normed linear space, A a subset of X
and x € X. If A compact(weakly compact) then C(x) is compact(weakly
¢ ompact).

Proof. Suppose {7}, is a sequence in C4(x). Then for every sequence

{an}nzl in A\{z}

|20 — anll = [|z — axll.
Since A is compact, there exists a convergent subsequence {a,;} and
{xn} in A, 2o and ag € A such that z,,>; — zo and a,, — ao.
Then ||xn, — anyl| > |2 — anpll. Then ||z — aol| > ||z — agl|. Therefore
19 € Cy(x) and x,, — x. Therefore {z,}, ., has a subsequence in
Ca(z) and Cy(x) is compact (weakly compact).

Theorem 2.13 Let A be a compact subset of a normed linear space
(X, ||.). Then
(i) for every v € X, Cy(z),

(ii) C4 is upper semi-continues on D(Cly).
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Proof. (i) Suppose {a,}»>1 is any sequence in C4(x). Therefore for every
n>1, |la, —a|| > ||z — a|| for every a € A\{a,}. Since A is compact,
the sequence ||a,},>1 has a subsequence {a,,} such that a,, — ay € A.
Therefore
lao — all = limioollan, — all = [lz = af,

for every a € A\{a,}, it follows that ag € Cx(z). Thus Cy(z) is compact.
(ii) Suppose N is a closed subset of A and B = {x € D(Cy) : Cyu(z)N
N # 0}. To show that B is closed, if = is a limit point of B. Then there
exists a sequence {z,},>1 in B such that z,, — z. Now, z,, € B, implies
that there exists a a, € Ca(z,) NN, and so ||a, —al|| > ||z, —a| for every
a € A\{z,}. Since A is compact, there exists a subsequence {a,,};>1 of
{an}n>1 such that a,, — ag, and so |la,, — a| > ||z, — al for every
a € A\{ay,}. Implies that |ag — a|| > ||z — a|| for every a € A\{ap}.
Therefore ag € Ca(z) NN, i.e., x € B, so that B is closed. Therefore Cy
is upper semi-continues.

Theorem 2.14 Let A be a compact subset of a normed linear space
(X, |I1)- Then for every subset B of D(C'4), the subset C4(B) is compact
in A.

Proof. Suppose {a,},>1 is a sequence in C4(B). Then there exists a
x, € B, such that a, € Ca(z,), so that ||a, — a|| > ||z, — al| for every
a € A\{a,}. Since A is compact, there exists a subsequence {a,, };>1
of {an}n>1 such that a,, — a9 € A. Since x,, € A, the compactness
of B implies that the existence of a subsequence {x;,}m>1 such that
z;, — ¢ € B. Now, a;,, € Ca(x;,,, implies ||a;,, — al| > ||z;,, — al| for
every a € A\{a;,,}, in limiting case implies ||ag — a|| > ||z — al| for every
a € A\{ap}. Therefore ag € Cx(z) C Ca(B). Hence C4(B) is compact.
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