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Abstract

Charles Dodgson (1866) introduced a method to calculate matrices deter-
minant, in a simple way. The method was highly attractive, however if the
sub-matrix or the main matrix determination is divided by zero, it would
not provide the correct answer. This paper explains the Dodgson method’s
structure and provides a solution for the problem of ”dividing by zero” called
"virtual center”.
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1 Introduction

Various methods have been used to calculate matrices determinant, in-
cluding Laplus generalization, Sarrus method, Gaus method, etc. All
methods have both weak points and strengths. The main weak points
are:

- Being too complex
- Having too long calculations
- Errors in manual calculation

Dodgson method [1-3] was very simple; it was similar to calculation of
2x2 matrices determinant accompanied by some divisions, for example:

101
A=1131
011
10[[01
o 1133 _ (33
13[31 12
01](11
3 -3
12
det (A) = AW = ; =3

where the power ”(k)” denotes the order of the matrix.

Shivanian).
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Definition 1

Each square matrix has a center. The center of each matrix is a (n — 2) X
(n —2) sub-matrix with a distance of 1 from other elements of the main
matrix.

For instance, the center of a 3x3 matrix is a 1x1 matrix, e. g.

101
A=1131
011
center = 3

Dodgson used the center of matrix to calculate n x n matrix determinant.
In the Dodgson method each n x nmatrix was changed into (n — 1)
2x2 matrices, (n — 2)?3x3 matrices, (n — 3)?4x4 matrices, and so on.
In calculation of n x nmatrices n > 3, Dodgson had to determine 3x3
matrix determinant; therefore, the center of the 3x3 matrices was non-
zero. In addition, in n X n matrices, n > 4, the determinant of the center
of the main matrix (A) must be non-zero.

This point may provide difficulties in some cases. To overcome the prob-
able, it is necessary to displace the rows and columns positions, and in
some cases, we may not calculate the determinant at all. However, the
problem can improved considerably.

2  Virtual Center

Consider 3x3 matrix A, we can use ai2,a01,a23 and ags instead of ags
as the center of this matrix. Since, the elements are not in the center
position, we can apply algorithm in which a;s,a21,a23 and aszs are virtually
center of the 3x3 matrix.

One may easily prove that this displacement is practical:
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a1l aiz a3 a1 Gz ag
Assume that A = | a9y a9y ass | = | a4 a5 ag

asy Gz ass ary as ag
Case 1) a, is the virtual center
Assume that ay # 0, then:
ay ag as

A= a4 Q5 Qg

a7 ag Qg

a1 Gz | |Gz as
A(Q) _ a4 Qs as Qg
a1 as | (a2 as
ar ag| |ag ag
a1as — Aoy AoGg — Q30
A(2) _ 1U5 204 U2UEG 3W5
a1ag — A2a7 Q209 — G308
A —

a1a5a2a9 — a1a5a308 — a4a22ag + asaqasag — asagagal + a6a22a7 + asasaiag — asasa20a7
az

= a1a5a9 — 40209 + A403a8 — AgA8A1 + G207 — A3G507

Case 2) ag is the virtual center

Assume that ag # 0, then:

ap az ag
A= a4 as ag

a7 ag ag
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aj as as as

a4 Qg as Qg

AR —
a4 Gg as ae
ar ag as ag
A(2) B a1 — a3a4 agag — azas

asa9 — ApeQ7 509 — A6A8

a1aegarag9 — a1a26a8 — azaqasa9y + asaqaegag — a2a6a40a9 + a2a26a7 + azaraqsag — asasaeay

AL —

ae
= a105a9 — A10608 + A3A408 — A20409 + A2a6G7 — A3A507

Case 3) a4 is the virtual center
Assume that a4 # 0, then:
a; az as

A= a4 a5 ag

a7 ag ag

ap ag ai ag

a4 a5 a4 Ag

A —
a4 Aas a4 Qg
ar ag ar ag
A(2) . ajas — aga4 a1 — a3a4

aqag — Asar a4a9 — agay

a1a5a4a9 — a1a5a6a7 — A2a%4a9 + A2a4a6a7 — Q1460408 + a1a6a705 + a3a?4as — aza4a5ar

A —
a4

= a105a9 — A20409 + A20607 — Q10648 + A3A408 — A3A5Q7

Case 4) ag is the virtual center
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Assume that ag # 0, then:

aj az as
A= a4 as ae

a7 ag ag

ap az az ag

a7 as as ag

A2 —
a4 a5 as ag
ar asg ag ag
A(z) ajag — asa7 aza9 — azag
asag — asa7 a5a9 — agag
A —

ajagasag — a1a28a6 — a2a7a509 + a2a706a8 — Q2090408 + G2a9a5a7 + a3a28a4 — asagasay

as

= a1a5a9 — 1080 + A2a706 — A20904 + 34804 — A3A507

The above proof methods are called U, R, L, D and the Dodgson method is
called M. Consider the following matrix

235
A=1106
721

Based on Dodgson method, we have

23((35
Lo | [1o]]os
10/]06
72( |21
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-3 18

AQ) —
2 —12
-3 18
2 —12
AW = =0
0

As it is seen, Dodgson method faced difficulty with zero at center and could not
calculate determinant, correctly. In this method, we have changed the positions
of rows and columns to overcome the problem, so that the center is no more
at the center. As a result, the final determination is multiplied by -1 and
the number of multiplications increases for calculation of the determination.
However, if we apply one of the virtual center methods, we would not face
such a problem. Now, we apply method L then

23(]25
4 _ | 11of]re
10/(16
720 (71
-3 7
2 —41
AW = | =109

If we apply method R, then we have

25(|35
Lo | 1] ]os
16|06
71] (21
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7 18

AQ) —
—41 —12
7 18
—41 —12
AW = | =1

Now, consider the following example

133 4
6509
A=

13810

2431
50

Matrix Ais a 4x4 matrix and has a 2x2 center. This center is and the

38

determinant is non-zero; therefore, it has no difficulty, concerning the center;
and to calculate determinant of matrix A, we need to calculate determinant 4
of the 3x3 sub-matrix of Ay, Ao, A3 and Ay:

133 334 650 509
Ar=1650|,4=1509|,43=[138],41=]3810
138 3810 243 431

As it is seen, the center of the sub determinant As is zero, because of being in
the center. That is why the determinant of the matrix A would be calculated
wrongly, based on the Dodgson method. To overcome this problem, we can
displace the row 2 by the first or fourth row and the third column by the first or
fourth column. The number of necessary multiplication, divisions, addition and
subtraction for the Dodgson algorithm isd |(n — 1)% + (n — 2)% + ...... + 1] ~

4 e n en? when we displace a row column, we actually add this value.
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Condition are not always so proper for the Dodgson algorithm, and a simple
displacement would not solve the problem. Sometimes it may require 2 and
even 3 displacements. In some cases, the algorithm is totally inconsistent and
unable to calculate determinant. We are going to present a complementary
method for Dodgson method and reduce number of displacement to one.

Theorem (Jacobi’s Theorem). Let
Abe an n X n matrix;

M an m x m minor ofA, where m < n, chosen from rows iy, ...... ,tm and
columns ji, ...... s Jms

M’ the corresponding m x m minor ofA’, the matrix of cofactors ofA, and

M*the (n — m) x (n —m) minor ofAcomplementary to MThen det M’ =
det(A)™ 1. det M*,(—l)ZLzliL'FjL

3 Virtual center algorithm

Assume that A, is a non-diametric n X nmatrix with Has its center. It firstly,
the center should not be of determinant zero; otherwise we displace columns
and rows. Hwould be as follow and since there is a 3x3 matrix in A, (n > 3),
the centers of the 3x3 matrices form the components of Hfrom left to night,
respectively, i.e.

a2 e azn

A(n—-1),2 " A(n—1),(n—1)

1- M L combination:

For n = 4, we use this combination when Hhas no zero or zeroes are in the
last column.

2- RM combination:

91



Fig. 1. Implementation of the Jacobian theorem for 4x4 matrices.

For M L, we use this combination when Hhas no zero or zeroes are in the first
column.

In both of the above combination, the maximum number of zeros in the first
or last column may not exceed ((n —2) — 3).

3- RM Lcombination:

For matrices of n > 5, this combination is applied. There may no zero in Hor
zeroes may be at first and the last columns.

In this combination, the maximum permitted number of zeroes in the first and
the last columns is ((n — 2) — 1); and no two zeroes are allowed to be adjacent
and no column should be totally zero.

Consider the 4x4 matrix at the end of section 1 and 2. The last contraction
would result in.

det A0 — |A®)] _ <|A1..371..3! | A2 42.4] —|A2.41.3] |A1..372..4\>
Ag‘? |A2.3.2.3]

Concerning the Jacobian theorem (figure 1), we select 2x2 sub-matrices from
the corners of A:

a1y a4
M =

41 Q44
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Whose complement is the sub-matrix of M* = (A3 32.3).The cofactor matrix
is:

/ !/
M — 1 —Ay

A /
41 44

Where, A}, = (A2.42.4) , Ay = (A1.3,1.3) , Ay = (A2.41.3), Ay = (A1.32.4);
using the Jacobian theorem we would have:

det (M') = (det A2 det M (—1) A

det M’
A=
det det M *
et A — |A®)| _ <IA1__3,1..3| | A2 42 4] — A2 41 3] \Al..3,2..4!)
AB)oy | A2 32 3]

Note: This is implemented just in the last step of virtual center in A. More-
over, when determinant is being calculated, the minus values of M’ are not
considered.

Proof (combination 1):

Assume that A is a 4x4 matrix. We show that M L combination uses Jacobian
theorem

| A1 21.2] |A1.2,2.3] |A1.2,2.4]
3
A®) = | A2 31.2| [A2.32 3| |A2.32.4]

| A3 41.2| |A3.42.3| |As3.4,2.4]

And
|A1.21.2| |[A1.22.3]| ||A1.2,2.3] |A1.2,2.4]
|A2 31.2] |A2.32.3] | ||A2.32.3] |A2.3,2. 4]
A(2) _ a2 a22
|A2.31.2| |[A2.32.3]| ||A2.32.3] [A2.32.4]
|A3 a1.2| |As.a2.3]| ||A3.42.3| |As.4,2.4]
as2 asz2
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To show that A2 is consistent with the Jacobian theorem consider a 3x3 sub-
matrix from the upper corner of A*:

ai; aiz ais
A=A1.31.3=| as azx ax
asi asp ass

Removing the row 2 and the column 2 from A, would result in:

a1 ais
M =

as1 ass

Whose complementary in A is M* = (age)and A’ s are 2x2 matrices similar
to cofactor M.

ag asz | | a1 ag
asp asz | |azy aszz |A2. 323 |A2.3.1.2]

M, = =
a2 a13 a1 a2 ‘Al..2,2..3| |A1..2,1..2‘

Q22 Q23| | 21 G22
We use Jacobian theorem and displacement of rows and columns:

det (M') = (det A)*~" - det M* - (—1)'H1H3+3

det M’
det A =
¢ det M *
|A1.21.2] [A1.2,2.3]
| A2 31.2| |A2.3,2.3]
det A =

a22

This determinant equals to the value of the upper right corner of A% . Also:

The value of the below right corner of A? equals A 4f2..4, which is calculated
using the same process. The next step and the last step is:

et 4D — <|A<2>\> _ <|A1..3,1..3| [As.4,2.4] — [A2.41.5] |A1..3,2..4|>

AB) oy |A2.3.2.3]
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The Jacobian theorem is implemented in A; we use 2x2 sub-matrices in A and
achieve:

A] = |A1 31.3]|A2.42.4] — |A2.41.3||A1.3,2.4]
| A2 3.3

Proof (combination 2)

Assume that A is a 4x4 matrix. We show that RM combination uses the
Jacobian theorem.

|A1.2.1.3| [A1.22.3] |A1.2,3.4]
3
A®) = | A2 31.3] |A2.32.3] |A2.3,3.4]

|A3.4,3.3] |A3.42.3| |A3.4,3.4]

|A1.21.3| |[A1.22.3]| ||A1.22.3] |A1.2,3.4]
|A2.31.3| |A2.32.3]| ||A2.32.3] |A2.33.4]
AR — az3 azs
|A2.31.3| |A2.32.3]| ||A2.32.3] |[A2.33.4]
|A3 43.3] |As.42.3|| ||As3.42.3| |A3.4,3. 4]
a33 ass

To show consistency of A? with the Jacobian theorem, consider a 3x3 matrix
from the upper left corner of A*:

a1l a2 aig

A=A131.3=| ag azn axy

a3l a3z ass

Omitting row 2 and column 2, we achieve:

ail a3
M =

asy1 ass

Whose complement in A is M* = (ags)and A's are 2x2 matrices similar to
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cofactor M.

a1l ai3 | | a2 ais
az1 G23 | | G22 a23 B |A1.21.3] [A1.2,2.3]

asy as3 | | az ags |A2.31.3| |A2.32.3]

a3l ass | | az2 a33
We use Jacobian theorem and displacement of rows and columns to achieve:

det (M') = (det A)*~' - det M* - (—1)T1H3+3

det M’
det A =
¢ det M *
|A1.21.3] |A1.2,2.3]
| A2 31.3| |A2.3,2.3]
det A =

a23

This determinant equals to the value of the upper left corner of A%2. Moreover:

- The same method is used to calculate the value of lower left corner of A2
which is equal to determinant Ao 4p1.3.

For Aj. 32 4consider
a12 a13 Q14

A=A1312.4= | ag asz an

a32 a33 a34

Deleting row 2 and column 2, we achieve:

a2 (24
M =

42 Q44

Whose complement in A isM* = (ag3). A’s are 2x2 matrices similar to cofactor
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a2 a13| | a13 ais
agz a3 | |azs az| | [ [A1.22.3 [A1.23.4|

ag ags | | a3 a | A2 32 3] |A2.3,3.4]

az2 a33 a33 a34

Using Jacobian theorem and displacement of rows and columns, we would
achieve:

det (M) = (det A)*~' - det M* - (—1)'+1+3+3

det M’
det A =
¢ det M«
|A1.22.3] |A1.2,3.4]
| A2 39 3| |A2.3,3.4]
det A =

a23

This determinant equals to the value of the upper left corner of A%. Also:

- The value of lower left A% equals to Ag_4p9. sdeterminant which is calculated
using the same method. ForA; 3. 4, consider:
a2 a13 a14
A= Al..3H2..4 = a92 423 a4
a32 a3z a3q

Deleting row 2 and column 2 we would have:

a2 a4 . : .
M = Whose complement in A is M*= (ag3). A’s are 2x2 matrices

Q42 Q44
similar to cofactor M.

ai2 a13 | |a13 ais
agz a3 | |ags az| | [ [A1.22.3 [A1.23.4|
ag ags | | a3 a | A2 32 3] |A2.3,3.4]

az2 a33 a33 a34
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Using the Jacobian theorem and displacement of rows and columns, we would
achieve:

det (M) = (det A)>1 - det M* - (—1)1+1+3+3

det M’
det A =
¢ det M x
|A1.22.3] |A1.2,3.4]
| A2 39 3| |A2.3,3.4]
det A =

a3

This determinant equals to the value of the upper left corner of A2. Also:

- The lower left corner value of A% equals to the determinant Ay 452 4, Which
is calculated using the same method. For A 32 sconsider:

a2 a13 a4
A=A1312.4= | a as3 an

a32 a33 a34

Deleting row 2 and columns, we would achieve:

a2 (24
M =

42 Q44

Whose complement isM* = (ag3). A’s are 2x2 matrices similar to cofactor M.

a12 a13 a13 414

A — agz a3 | |ags az| | [ [Ar.22.3] [A1.23.4|

a22 23 a23 24 ‘AZ..S,Q..3| |A2..3,3..4‘

as2 a33 a33 a34

Using the Jacobian theorem and displacement of rows and columns. We would
have:

det (M') = (det A)*>~' - det M* - (—1)1H3+3
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i .7 i .7 +k +1

A

Peldk el j+k

A A

Pk +1,7 Tk 4Ly ke +1

Fig. 2. Implementation of the Jacobian theorem, using the virtual center
method for nxn matrices.

det M’
det A =
¢ det M *
|A1 22 3| |A1.2,3.4]
| A2 39 3| |A2.3,3.4]
det A =

a3

This determinant equals to upper right corner of A2. Also:

- The Value of lower right corner of A% equals to determinant Ay 4 2.4, which
is calculated using the same method.

The next step and the last step is:

det AD — |A®)] _ (!Al..3,1..3| |A2 42.4| — |A2.41.3] \A1..3,2..4|>
AB) oy |A2.3.2.3]

The Jacobian theorem is implemented on A and use M*s of the 2x2 sub-
matrices in Ay. Then:

4] = |A1.31.3||A2.42.4] — |A2.41.3]|A1.3,2.4]

|A2.3.2.3]

Consider a (K + 1) x (K + 1) sub-matrix from the matrix A, so that A =
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Ai...i—l—k—i—l,j‘..j—s—k—l—l- The 2x2 matrix M would be:

A; A
3J 1,J+k+1
V— J

Aitkt1, Aitk1,j+k+1

Whose supplement is M* = (A;41..i+k,j+1..j+k)- The M cofactor matrix in A
is

A A

i,j+k+1
/
iAi+l<:+1,j A

M’ =
!
itk+1,j+k+1

So that:
/
Aij = A1 ik 1541 k|
/ — A o
ij+k+1 = ’ z+1...z+k+1,]...j+k|
ety = i stk gkl
i+k+1,; = |1Aiitkj+1.j+k+1

/ — ‘A. . . ’
i+k+1,j+k+1 — i...0+k,j...5+k

Using Jacobian theorem, we would achieve:

/
‘Am‘

/ / i
’ ‘Ai—&-k-i-l,j-i-k’-i-l‘ - ‘Ai,j+k+1‘ ) ‘Az’+k+1,j‘

det M =
| A1 itk 1okl

Proof (combination 3)

Using deduction on K, we prove that, Deduction basis: K = 1 is a certain
theorem: provides a contraction:

|A1.2,1.3] |A1.22.3] - |AL2n—1.n]

A1) _ |A2. 31.3]  |A2.iy22. 12 -+ |A2.3n—2.n]

|[An—1.m1.3] |[An—i.n2. iv2| - |[An—1..nn-2.n

Deduction assumption: K is constant. Assume that, for L = 1,...... , K, the
Lth contraction results in AN ~L) so that for all i > 1, j < n,we have:

(N-L) _
AT = A i (v-p) g (N -1
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Deduction procedures: Firstly, we assume that K = 1; then

ie{l,.,n=2},j=1

A(nfk) XA(nfk) _A(nfk) XA(nfk)

(n—(k+1)) _ i, i+1,j+1 i+1,5 1,J+1
i.j - (n—(k—1))
A7;+1,j+2

Forie{l,...n—2},5>2,7<n-—2

A("—k) A(”—k) A("—k) A(”—k)

An=(k+1)) _ g i+1,+1 — it i,j+1
) A= (k1))
i+1,5

Forie{l,...n—2},j=n—-2

A(”—k) x A(n—k) A(”—k) X A("—k)

Aln=(k+1)) _ g i+1,j+1 it ij+1
0. A(n—(k=1)
i+1,j

And for K > 2

A(”*k) X A(”*k’) A("*k) A(n*k)

A(n—(k+1)) Y] i+1,+1 ~ Y41, 1,541
i.j = A1)
i+1,j+1
Using the deduction assumption, we can displace, when K = 1. For i €

{1,....n—=2},5=1:

%,J

Forie{l,...n—2},j>2j<n-—2

| A1 ik j42. k1

%,J

Forie{l,...n—2},j=n—2

| A1 ik 1.kl

,J

And for K > 2

pn=(k1) _ (’Ai...i+k,j‘..j+k‘ | A1 ikt gtk 1| = Atk 1 gk | A ik gt |

| A1 itk 1okl

(=) _ <|Ai...i+k,j.‘.j+k| | At it 1 g1 girbt | = [ Atk 1 k| | Ak 1 k1]

)

%,J

101

|Aif 1 itk 1. gk

A=) _ (!Ai...i+k,j...j+k\ |Aif 1 itk 1 41kt | — Qi1 itk 1k [Ai itk 1. k1]

A= (et1)) _ (|Ai...i+kz,j...j+k+1| | A1 ik 1 gLkt | = At br 1 ke | A ik 1 k1

)

)

)



We use the Jacobian theorem, based on the following condition:

A=A itkt1j. jrktl

Ms are 2x2 matrices resulted from corners of A;
M’s are component 2x2 matrices corresponding to A’;

M* is complementary kxk matric corresponding to A;

Ultimately:
—(k+1
AZ(’; (k+1)) |Aiith,jo k1
Example 5
10321
21200
A=113202
12314
00005

We use RM L method, because zeros are at the last column of the center; and

321 200
since the center of the two sub-matricesHs = | 200 | , Hs=| 202 |are
202 314

zero, we cannot use the Dodgson method.

131103132} |31
22(1121120]1|20
22(1121120]1|20
1213212022
121322022
13123131134
13123131134
00(|00}|00] |05

AW —
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S| 2 a0
1 5 2 2
0 0 0 15
R I
9 —4| -4 0|°
9 4 40
A | ; ;
15 5 2
s NI
3 3 3
00 00
11 -8 —8
A® = | 7 _4 4
0 0 10
L |-s| -8 -8
B Y R
AQ) —
T e
5 2
00 0 10
Ao 730
0 —20
AL — R =—15
=410 —20
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Example 6:

133 4
6509
13810
2431

We use M L method to calculate determinant:

50
38

center = H =

det (H) =40 # 0

131133 |34

65150 [59
qo_ | |85][50]]5 0

13] (38| (310

13] 138|310

24|43 41

1315 7
A® = 13 40 23

_9 _93 _37

|- -s) s 7

113 40| | 40 23
A2 —

130 a0 2

_9 _93| °|_23 _37

o [ 6512

73 —317
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AL = | — — 287
40| _73 _317
Example 6:
133 4
6509
A=
13810
2431

We use RM method to calculate determinant

07
35

center = H =

det (H) =—-21#0

13]33]]34
67107 (79
Lo |87 07| |79
15/ 135||56
15/ 35|56
6314331
11 21 -1
AB® = [ 93 _91 _3
97 _11 —13
TR R I
"1 a3 —21] T|-21 -3
AR —
|2 s
*l o7 —11] 7 =11 —13
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—-36 —12

AQ) —
—164 48
-36 —12
Ao - (L = 176
=21 _164 48
Example 7:
10101
05310
A=113211
01110
20201
531
center=H =321
111
53|51
11132131 1 (12
3113231 3112
11] 11

det(H) = 0, to resolve this problem, we have to displace a row column in the
center with a row and column out of the center

10110
05301
A=113211
01101
20210
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031

H=|121
011
03101
111120111 1 (-3 -1
det (H) = — = - = -2
Lll12]]11 L\ 1 1
01]1]01

det(H) = 0; now we can calculate RM L determinant of the matrix A, using
the RM Lmethod

11|01 (j11](10
03(153]130] (31
0315330131
121132]121] (21

AW —
121132 (|21] (21
0O1(|111(10] |11
01 11 1011
22110211211 120
3 -5-31

| 3L e
1 1 -1 1
-2 2 1 =2
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3-8 |5 -8] |31
3 3 3
31 1 3 31
e I L R
- 2 2 2
11 1-1 11
ol -] e
1 1 1
—99 2 1 1 -2
4 -4 -9
AB = _9 9 9
13 1
a4 a2
Mg o] P22 9
AQ) —
22| |22
1 —1
43 31
Lo [0
2 8
IO B R
—219 g

And we must multiply the determinant by (-1), in order to have a displacement
in columns.

det(A) =—4x —-1=14
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Example 7

12401
00106
A=(45512
00111
12031
010
center=H =1 551
011
00|10
det (H) = 1 R
511151
01] (11
We use RML
1424|140
01|(01]]10
01|(01]]10
4@ 45155 |51
45[155] |51
01(j01}1(11
01((01}1(11
10[120](03
1 20 23
4@ —4 —-51-28
4 5 4 3
-1-23 1

=5%#0

41
16
16
52
o 2
11
11
01
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12 20| o023
1 1 1
—4-5| |=51] |1 -28
O T s PR R
- 5 5 5
4 5 5 4174 3
IR ANEEIENEE
1 1 1
—1-2] |-23 31
3 2 —23
AB = o —5 23
393 -5
32 |2 -2
“lo-5] '|=5 23
A@) —
o5 -5 23
5 4
393 23 —5
Lo [ 369
—3 126
PR B A
=5 1.3 .12
Example 8:
832152
605401
412210
A=
281982
132343
122385
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821132 |21|(15
65|]05]]|54| (40
65|]05]]|54| (40
421112} 122] |21
4211121 122] |21
211 (8111191198
211181119198
1232|2334
1232|2334
12](22]]23]||38
28 15 3 —-20 -7
8§ =5 2 4 =2
0 -15 16 7 4
3 13 —-156 12 21
0 2 0 12 6
l28 15 1 15 3
5 5

-8 =5 -5 2
1—8 -5 Il -5 2
2

0 —15 —15 16
l0_15 1—15 16
1 1

3 13 13 —-15
l313 l13_15
2 2

02 2 0

111

12
41
41
20
20
92
92
33
33
35

=

D=

Ol

Ll

3 —20
2 4
2 4
16 7
16 7
—15 12
—15 12
0 12

PN

N[ =

Rello

Wl

—-20 =7
4 -2
4 -2
7 4
7 4
12 21
12 21
12 6




-4 9 13 17
60 —25 —-25 15

AW —
45 17 33 11
3 15 —60 —60
R R Rt R,
2 4
60 —25 —95 —925 ~95 15
4o _ | o [60-25] | |-25-25) =215
- —15 16 7
45 17 17 33 33 11
Llasir) imss | |83 1
315 |15 —60 60 —60
88 50 155
A® = [ 143 95 —110
48 101 —110
Ll 88 50| | |50 155
—25 —25
—143 —925 —95 —110
AR —
| -143 —25| | |25 110
17 33
48 101 101 —110
4o [ 198 65
—779 420
1 [-198 65
ICO I — 1301
=251 779 420
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