
Theory of Approximation and Applications

Vol. 12, No.1, (2018), 93-115

Stochastic Multiplicative DEA for

Estimating Most Productive Scale Size

Hossein Dibachi a,∗
aDepartment of Mathematics, Arak Branch, Islamic Azad University, Arak,

Iran

Received 01 July 2018; accepted 03 October 2018

Abstract

In this paper, stochastic multiplicative data envelopment analysis (MDEA)
model under variable return to scale (VRS) technology in the presence of
log-normal distribution is proposed for estimating most productive scale size
(MPSS). Banker and Maindiratta introduced MPSS pattern in MDEA model.
The MDEA model requires that the values for all inputs and outputs be known
exactly. But this assumption is not always correct, because data in many prac-
tical situations cannot be precisely measured. One of the most important meth-
ods, when we’re dealing with imprecise data is considering stochastic data.
Moreover, for solving stochastic model, a deterministic equivalent is obtained
and also stochastic α−MPSS is defined for decision making units (DMUs).
Finally, an example of the systems reliability is presented to demonstrate our
proposed modeling idea and its efficiency.
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1 Introduction

Data envelopment analysis (DEA) involves an alternative principle for
extracting information about a population of observations called decision
making units (DMUs) with similar quantitative characteristics. This is
reflected by the assumption that each DMU uses the same set of inputs
to produce the same set of outputs, but the inputs are consumed and
outputs are produced in varying amounts.

The first DEA model (CCR model) that successfully optimized each in-
dividual observation, DMU, with the objective of calculating a discrete
piecewise frontier was proposed by Charnes et al. (1978) and extended
by Banker et al. (1984). One class of models introduced in DEA is called
multiplicative data envelopment analysis (MDEA) model, in which, as
shown by Banker and Maindiratta (1986), the piecewise linear frontiers
usually employed in DEA are replaced by a frontier that is piecewise
Cobb-Douglas. Banker and Maindiratta (1986), introduced a model to
identify the most productive scale size (MPSS) pattern, and Banker et
al. (2004) presented a two-stage method for the identification of returns
to scale in MDEA model. In the BCC model the convexity postulate
permits increasing, constant or decreasing returns to scale in different
regions of the production function.

However, this also requires the marginal products (see, Menger (1954),
for a comparison of returns to scale and rate of change of marginal prod-
uct) to be nonincreasing. This restriction in the BCC approach may not
be appropriate for production technologies where the production func-
tion is nonconcave in some regions and the production possibility set is
not convex. To allow for such situations, Banker and Maindiratta (1986),
replace the ordinary convexity postulate of BCC by “geometric” convex-
ity to interpolate between observed production possibilities. This implies
that the piecewise linear frontiers, usually employed in DEA, are re-
placed by a frontier that is piecewise log-linear (Zarepisheh et al., 2009;
Mehdiloozad et al., 2014). Since the introduction of DEA, there has been
an impressive growth both in its theoretical developments and applica-
tions (Hollingsworth et al., 1999; Cook and Seiford, 2009; Cooper et al.,
2006; Cao and Yang, 2011).
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Reader can also refer to Xing et al. (2013) where some applications of
DEA in service industries are mentioned. The economical concept of
returns to scale has also been widely studied within the DEA frame-
work. If in an empirical application there are a priori reasons to be-
lieve that marginal products are increasing in some regions, then the
log-linear model is the appropriate DEA model for the analysis. Banker
et al. (1981) describe a procedure for piecewise log-linear estimation of
the efficient production surface. Then, Charnes et al. (1982) employed
this log-linear envelopment principle in Banker et al. (1981) to suggest a
multiplicative efficiency measure. For more details about the multiplica-
tive models and applications, see e.g., Chang and Guh (1994), Charnes,
Cooper, Seiford, and Stutz (1983), Seiford and Zhu (1998), Sueyoshi and
Chang (1989), Zarepisheh et al. (2010) and Davoodi et al. (2015). Clas-
sic DEA models do not allow stochastic variations in input-output data,
such as measurement errors and data entry errors. In traditional form of
DEA models, the data of inputs and outputs of the different DMUs are
assumed to be measured with precision. On the other hand, this is not
always possible. For removing this weakness in the classic DEA models,
some authors proposed stochastic input and output variations into the
DEA. The stochastic data envelopment analysis (SDEA) approach was
developed by considering the value of inputs and outputs as random vari-
ables. Banker (1993), for example, incorporated the statistical elements
into the DEA and developed a nonparametric approach with maximum
likelihood methods to effect inferences in the presence of statistical noise.
Olesen and Petersen (1995) developed a chance-constrained DEA model
which used the piecewise linear envelopments of confidence regions for
use with stochastic multiple inputs and multiple outputs.

Cooper et al. (1998) developed a“joint chance-constrained ” DEA model
to naturally generalize “ Pareto-Koopman’s Efficiency” to stochastic sit-
uations. Huang and Li (1996) utilized this joint chance-constrained con-
cept to discuss general dominance structures in the stochastic situations.
Cooper et al. (2002, 2003) have introduced the chance-constrained models
to deal with the technical inefficiencies and congestion in the stochastic
situation. Land et al. (1993) presented an alternative chance-constrained
formulation of DEA, starting out from the multiplicative model and as-
suming that the joint probability distribution of all outputs is log-normal.
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Khodabakhshi (2009) input-output oriented model which was first intro-
duced by Jahanshahloo and Khodabakhshi (2003), developed in stochas-
tic data envelopment analysis to identify MPSS units and assuming that
the all input and output components are jointly normally distributed.

Lee (2015) proposed a multi-objective mathematical program with DEA
constraints to set an efficient target which shows a trade-off between the
MPSS benchmark and a potential demand fulfillment benchmark. When
dealing with failure and repair mechanisms in general, the most suitable
and applied distribution is the log-normal distribution. Therefore, in this
paper, we propose the stochastic input-output oriented MDEA model un-
der VRS technology for estimating stochastic MPSS pattern of systems.
We consider these systems as DMUs with the inputs and outputs having
log-normal distributions where inputs and outputs are stochastic repair
times and stochastic failure times, respectively. This paper is structured
as follows:

Some basic concepts in statistics, input-output BCC model and deter-
ministic MDEA model will be introduced in the next section. Section 3
addresses the proposed method for estimating the stochastic MPSS in
input-output stochastic MDEA model. A brief discuss about the pro-
posed models and an numerical example in systems reliability are given
in section 4. Conclusions will appear in section 5.

2 Preliminaries

In this section, we recall some basic concepts and results which will be
used through the paper.

2.1 Log-normal Distribution

A random variable which is log-normally distributed takes only positive
real values. In probability theory, a log-normal distribution is a contin-
uous probability distribution of a random variable whose logarithm is
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normally distributed. The log-normal distribution is important in the
description of natural phenomena. Some of these applications are as fol-
lows:

• In quantitative economics and finance, the log-normal distribution is
ubiquitous and it arises, among other things, in connection with geo-
metric Brownian motion, the standard model for the price dynamics
of securities in mathematical finance.
• In finance, in particular the Black-Scholes model, changes in the log-

arithm of exchange rates, price indices, and stock market indices are
assumed normal.
• A main area of application for the log-normal distribution is lifetime

research and reliability theory.

Definition 2.1 A random variable X is said to have the log-normal dis-
tribution if its probability density function is given as follows:

fX(x) =


1

x
√

2πσ2
e−

1
2σ2

(lnx−µ)2 ; x > 0

0 ; o.w
(2.1)

We will use the notation X ∼ LN(µ, σ2) to denote the random variable
X having the log-normal distribution with parameters σ > 0 and µ ∈ R
where µ = E(LnX) and σ2 = V ar(LnX).

Remark 2.1 If X ∼ LN(µ, σ2), then Y = LnX having the normal
distribution with scale parameter σ > 0 and location parameter µ ∈ R
where is denoted by notation Y ∼ N(µ, σ2). Thus, probability density
function of Y is given as follows:

fY (y) = 1√
2πσ2

e−
1

2σ2
(y−µ)2 ; y ∈ R (2.2)

The corresponding cumulative distribution function has the following form:

FY (y) =
∫ y

−∞

1√
2πσ2

e−
1

2σ2
(t−µ)2dt (2.3)

Note that if Y ∼ N(0, 1) then fY (y) is called standard normal distribu-
tion and FY (y) is denoted by Φ(y) and Φ−1, its inverse, is the so-called
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fractile function. For example, Φ−1(0.1) = −1.28, Φ−1(0.33) = −0.44,
Φ−1(0.5) = 0, Φ−1(0.67) = 0.44, and Φ−1(0.9) = 1.28.

2.2 System Reliability

A system contains one or several subsystems of components, henceforth
called items, interconnected so that the system is able to perform of
number of required functions. The reliability of the system denotes the
relationship between the systems required performance and its achieved
performance. The probabilistic approach of the system’s reliability deals
with the uncertainty of this relation. To prevent system failures, e.g. fail-
ures that prevents the system from performing any of its supposed func-
tions, the potential failures should be identified. To describe an item’s
characteristics in terms of reliability there are several functions that can
be used. The failure rate function, z(t) describes the components ten-
dency to fail, failures per time unit, for t ≥ 0. However, the instantaneous
failure rate at the time t0 for functional items rate is called γ = z(t0),
the corresponding instantaneous repair rate for faulted items is called
µ. In order to comprehend an item’s stochastic behaviour concerning its
uptime, functional, and downtime, faulted, the item’s probabilistic be-
haviour can be represented using a distribution function (see, Stapelberg,
2009). In reliability analysis, failure time and repair time a system is often
distributed log-normally.

2.3 Input-Output Oriented BCC Model

One of the basic DEA model for evaluating DMUs is the BCC model
where introduced by Banker et al. (1984). They omitted the ray un-
boundedness postulate from the CCR postulates and deduced the fol-
lowing production possibility set:

TBCC = {(x,y) | x ≥
n∑
j=1

λjxj &y ≤
n∑
j=1

λjyj&
n∑
j=1

λj = 1 & λj ≥ 0}

(2.4)
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Where xj = (x1j, x2j, . . . , xmj) ∈ Rm
≥0 and yj = (y1j, y2j, . . . , ysj) ∈ Rs

≥0

are the input and output vectors of DMUj, respectively. Banker (1984),
introduced the following model to identify the MPSS pattern for an effi-
cient DMUo in the input-output oriented BCC model

φ∗o
θ∗o

= Maximize φo
θo

s.t.
n∑
j=1

λjyrj ≥ φoyro, r = 1, . . . , s,

n∑
j=1

λjxij ≤ θoxio, i = 1, . . . ,m,

n∑
j=1

λj = 1,

λj ≥ 0, j = 1, . . . , n

(2.5)

Using the above model Cooper et. al (1996) provided a theorem which
defines MPSS as follows:

Definition 2.2 DMUo is said to be MPSS if and only if the following
two conditions are both satisfied for model (2.5):

i) φ∗o
θ∗o

= 1

ii) All slack variables are zero in the alternative optimal solution.

Definition 2.3 (Banker’s Definition):(Xo, Yo) ∈ T is most productive
scale size (MPSS) if and only if for every (θoXo, φoYo) ∈ T we have
θo ≥ φo.

Note that the Cooper et al.’s definition of MPSS is stronger from Banker’s
definition, because of considering slacks in alternative optimal solutions,
in other words they defined strong or Pareto-efficient MPSS.
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2.4 Multiplicative Data Envelopment Analysis Model

Multiplicative data envelopment analysis (MDEA) model was first in-
troduced by Charnes et al. (1982). Suppose that there are n DMUs,
where each DMUj (j=1,. . . , n) uses m different inputs, xij > 0 (i=1,. . . ,
m), to produce s different outputs, yrj > 0 (r=1,. . . , s) and suppose
also that the data set is deterministic. Therefore for each DMUj, let
xj = (x1j, x2j, . . . , xmj) and yj = (y1j, y2j, . . . , ysj) are the input and
output vectors of DMUj, respectively. A production technology trans-
forming an input vector xj ∈ Rm

>0 into an output vector yj ∈ Rs
>0 can be

characterized by the technology set TM which is defined as follows:

TM = {(x,y) ∈ Rm+s
>0 | x can be produced by y} (2.6)

We assume that TM satisfies the following four postulates:

i) TM is a closed set.
ii) For each x ∈ Rm

>0 the set B(x) = {(u,y) ∈ TM | u ≤ x} is bounded.
iii) TM satisfies free disposability for all the inputs and outputs, i.e., if

(x,y) ∈ TM and (x,−y) ≤ (x′,−y′) then (x′,y′) ∈ TM .
iv) TM has the geometric convexity, i.e., if (x1,y1) ∈ TM and (x2,y2) ∈
TM then (x1

λx2
1−λ,y1

λy2
1−λ) ∈ TM for all λ ∈ [0, 1]

To further clarify the Postulate (iv), we define the log form of TM as

lnTM = {(lnx, lny) | (x,y) ∈ TM}, (2.7)

in which lnx = (lnx1, lnx2, · · · , lnxm) and lny = (lny1, lny2, · · · , lnys).
By using of the strict monotonicity property of the natural logarithm
function, there is a one-to-one correspondence between TM and lnTM .
Therefore, the geometric convexity of TM is equivalent to the ordinary
convexity of lnTM . This establishes that TM is geometric convex if and
only if for all (lnx1, lny1), (lnx2, lny2) ∈ lnTM , and all λ ∈ [0, 1] the
following condition is satisfied:

(λlnx1 + (1− λ)lnx2, λlny1 + (1− λ)lny2) ∈ lnTM . (2.8)
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Assuming the inputs and outputs to be strictly positive, we define the
piece-wise log-linear technology T1 that is constructed from the observed
DMUs under Postulates (i)–(iv). Since assuming geometric convexity for
TM is tantamount to assuming convexity for lnTM , lnTM will be piece-
wise linear provided TM is geometric convex, and as a result, T1 is called
piece-wise log-linear. Banker and Maindiratta (1986) replaced the ordi-
nary convexity postulate of BCC by “geometric” convexity, and intro-
duced the following production possibility set (PPS):

T1 = {(x,y) ∈ Rm+s
>0 | x ≥

n∏
j=1

x
λj
j & y ≤

n∏
j=1

y
λj
j &

n∑
j=1

λj = 1 & λj ≥ 0}

(2.9)
and

lnT1 = {(x,y) ∈ Rm+s
>0 | lnx ≥

n∑
j=1

λj lnxj & lny ≤
n∑
j=1

λj lnyj &

n∑
j=1

λj = 1 & λj ≥ 0}

(2.10)
Note that T1 is free from this restriction, and allows for increasing, con-
stant and decreasing marginal products. For details of the empirical tech-
nological structures of T1 and lnT1, see Mehdiloozad et al. (2014). There-
fore, output-oriented MDEA model under VRS technology for evaluating
DMUo is given by the following model:

φ∗o = Maximize φo

s.t.
n∏
j=1

y
λj
rj ≥ φoyro, r = 1, . . . , s,

n∏
j=1

x
λj
ij ≤ xio, i = 1, . . . ,m,

n∑
j=1

λj = 1,

λj ≥ 0, j = 1, . . . , n

(2.11)

With the above assumptions to convert these inequalities to equations

we setting φoyro = e−s
+
r

n∏
j=1

y
λj
rj and xio = es

−
i

n∏
j=1

x
λj
ij and also replace
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the objective in (2.11) with φoexp(ε(
m∑
i=1

s−i +
s∑
r=1

s+
r )). Now, by taking

the natural logarithm of both sides, in the first and second constraint in
model (2.11) non-Archimedean model is stated as follows:

φ̃∗o = Maximize φ̃o + ε(
m∑
i=1

s−i +
s∑
r=1

s+
r )

s.t.
n∑
j=1

λj ỹrj − s+
r = φ̃o + ỹro, r = 1, . . . , s,

n∑
j=1

λjx̃ij + s−i = x̃io, i = 1, . . . ,m,

n∑
j=1

λj = 1,

λj ≥ 0, s+
r ≥ 0, s−i ≥ 0, j = 1, . . . , n

(2.12)

in which “ ∼ ” denotes “natural logarithm” and also s−i ≥ 0 and s+
r ≥ 0

represent slacks. The optimal value φ∗o = eφ̃
∗
o obtained from the linear

programming formulation in (2.12).

Definition 2.4 DMUo is said to be efficient if and only if the following
two conditions are both satisfied for model (2.12):

i) eφ̃
∗
o = 1.

ii) All slack variables are zero in the alternative optimal solution.

Similarly, input-oriented MDEA model under VRS technology is stated.
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2.5 Most Productive Scale Size Pattern in MDEA Model

Banker and Maindiratta (1986), introduced the following model to iden-
tify the MPSS pattern for an efficient DMUo

φ∗o
θ∗o

= Maximize φo
θo

s.t.
n∏
j=1

y
λj
rj ≥ φoyro, r = 1, . . . , s,

n∏
j=1

x
λj
ij ≤ θoxio, i = 1, . . . ,m,

n∑
j=1

λj = 1,

λj ≥ 0, j = 1, . . . , n

(2.13)

They showed that (θ∗oxo, φ
∗
oyo) is a MPSS pattern for DMUo. Similar to

the steps for determining model (2.12) we setting φoyro = e−s
+
r

n∏
j=1

y
λj
rj

and θoxio = es
−
i

n∏
j=1

x
λj
ij and also replace the objective in (2.13) with

φo
θo
exp(ε(

m∑
i=1

s−i +
s∑
r=1

s+
r )). Now, by taking the natural logarithm of both

sides, in the first and second constraint in model (2.13) non-Archimedean
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model is stated as follows:

φ̃∗o − θ̃∗o = Maximize φ̃o − θ̃o + ε(
m∑
i=1

s−i +
s∑
r=1

s+
r )

s.t.
n∑
j=1

λj ỹrj − s+
r = φ̃o + ỹro, r = 1, . . . , s,

n∑
j=1

λjx̃ij + s−i = θ̃o + x̃io, i = 1, . . . ,m,

n∑
j=1

λj = 1,

λj ≥ 0, s+
r ≥ 0, s−i ≥ 0, j = 1, . . . , n

(2.14)

As in axiomatic approach of Banker et al. (1984), we can axiomatically
derive the formulation in model (2.14) by adding the “Ray Extension”(i.e.
if (x,y) ∈ TM and t > 0 then (tx, ty) ∈ TM)) Postulate to the set of

Postulate (i)–(iv) we can then also obtain the optimal value φ∗o
θ∗o

= eφ̃
∗
o−θ̃∗o

from the linear programming formulation in (2.14).

Definition 2.5 DMUo is said to be MPSS if and only if the following
two conditions are both satisfied for model (2.14):

i) eφ̃
∗
o−θ̃∗o = 1

ii) All slack variables are zero in the alternative optimal solution.

For solving model (2.14) at first without any attention to slacks we obtain
Maximum(φ̃o− θ̃o), and then in the second stage we maximize slacks by
fixing φ̃∗o and θ̃∗o values instead of φ̃o and θ̃o under their corresponding
constraints. Note that in this approach there is no need to determine any
value for ε.
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3 Stochastic Most Productive Scale Size Pattern in Multi-
plicative Model

In this section, input-output oriented multiplicative model introduced
by Banker and Maindiratta (1986) is developed into stochastic multi-
plicative DEA to identify most productive scale size units. Through-
out this article, random variables are denoted by capital letters. For
each DMUj, (j = 1, . . . , n), let Xj = (X1j, X2j, . . . , Xmj) ∈ Rm

>0 and
Yj = (Y1j, Y2j, . . . , Ysj) ∈ Rs

>0 are the input and output random vectors
ofDMUj, respectively. Suppose that all input and output components are
jointly Log-normally distributed, i.e., Xij ∼ LN(µij, σ

2
ij), (i = 1, . . . ,m)

and Yrj ∼ LN(γrj, τ
2
rj), (r = 1, . . . , s). By Remark (2.1) LnXij = X̃ij ∼

N(µij, σ
2
ij) and LnYrj = Ỹrj ∼ N(γrj, τ

2
rj). Now, by using model (2.13)

the stochastic input-output oriented multiplicative model to identify the
stochastic MPSS pattern for an efficient DMUo is proposed as follows:

φ∗o(α)
θ∗o(α)

= Maximize φo
θo

s.t.

P (
n∏
j=1

Y
λj
rj ≥ φoYro) ≥ 1− α, r = 1, . . . , s,

P (
n∏
j=1

X
λj
ij ≤ θoXio) ≥ 1− αi = 1, . . . ,m,

n∑
j=1

λj = 1,

λj ≥ 0, j = 1, . . . , n

(3.1)

where α is a predetermined number between 0 and 1 which specifies the
significance level and P means “Probability Measure”. Since a solution
with θo = φo = 1, λo = 1, λj = 0 (j 6= o), always exists, the optimal value
of objective function is greater than or equal to one. The corresponding
stochastic version of the model (3.1), including slack variables, is stated
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as follows:

φ̃∗o(α)− θ̃∗o(α) = Maximize φ̃o − θ̃o + ε(
m∑
i=1

s−i +
s∑
r=1

s+
r )

s.t.

P (
n∑
j=1

λjỸrj − s+
r − Ỹro ≥ φ̃o) = 1− α, r = 1, . . . , s,

P (
n∑
j=1

λjX̃ij + s−i − X̃io ≤ θ̃o) = 1− α, i = 1, . . . ,m,

n∑
j=1

λj = 1,

λj ≥ 0, s+
r ≥ 0, s−i ≥ 0, j = 1, . . . , n

(3.2)

3.1 Deterministic Equivalent

In this section, we utilize the log-normality assumption to introduce a
deterministic equivalent to the model (3.2). If Xij ∼ LN(µij, σ

2
ij) and

Yrj ∼ LN(γrj, τ
2
rj) then X̃ij ∼ N(µij, σ

2
ij) and Ỹrj ∼ N(γrj, τ

2
rj). There-

fore, for all r ∈ {1, 2, . . . , s}, o ∈ {1, 2, . . . , n}, and i ∈ {1, 2, . . . ,m} we
have:

σ2
i (λ) = V ar(

n∑
j=1

λjX̃ij − X̃io + s−i − θ̃o)

=
n∑

k=1,k 6=o

n∑
j=1,j 6=o

λjλkCov(X̃ik, X̃ij)

+2(λo − 1)
n∑

j=1,j 6=o
λjCov(X̃ij, X̃io) + (λo − 1)2σ2

io

(3.3)
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Similarly,

τ 2
r (λ) = V ar(

n∑
j=1

λjỸrj − Ỹro − s+
r − φ̃o)

=
n∑

k=1,k 6=o

n∑
j=1,j 6=o

λjλkCov(Ỹrk, Ỹrj)

+2(λo − 1)
n∑

j=1,j 6=o
λjCov(Ỹrj, Ỹro) + (λo − 1)2τ 2

ro

(3.4)

Using this results, can obtain the deterministic equivalent of model (3.2).

Theorem 3.1 Deterministic equivalent of model (3.2) is as follows:

φ̃∗o(α)− θ̃∗o(α) = Max φ̃o − θ̃o + ε(
m∑
i=1

s−i +
s∑
r=1

s+
r )

s.t.
n∑
j=1

λjγrj − γro − s+
r + τr(λ)Φ−1(α) = φ̃o, r = 1, . . . , s,

n∑
j=1

λjµij − µio + s−i − σi(λ)Φ−1(α) = θ̃o, i = 1, . . . ,m,

σ2
i (λ) =

n∑
k=1,k 6=o

n∑
j=1,j 6=o

λjλkCov(X̃ik, X̃ij)

+2(λo − 1)
n∑

j=1,j 6=o
λjCov(X̃ij, X̃io) + (λo − 1)2σ2

io, i = 1, . . . ,m,

τ 2
r (λ) =

n∑
k=1,k 6=o

n∑
j=1,j 6=o

λjλkCov(Ỹrk, Ỹrj)

+2(λo − 1)
n∑

j=1,j 6=o
λjCov(Ỹrj, Ỹro) + (λo − 1)2τ 2

ro, r = 1, . . . , s,

n∑
j=1

λj = 1,

λj ≥ 0, s+
r ≥ 0, s−i ≥ 0, j = 1, . . . , n

(3.5)
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Proof. From the first constraint in model (3.2) and Equation (3.4) we
have:

P (
n∑
j=1

λjỸrj − s+
r − Ỹro − φ̃o ≥ 0) = 1− α ⇐⇒

P (

n∑
j=1

λjỸrj − Ỹro − s+
r − φ̃o − (

n∑
j=1

λjγrj − γro − s+
r − φ̃o)

τr(λ)

≥
−

n∑
j=1

λjγrj + γro + s+
r + φ̃o

τr(λ)
) = 1− α ⇐⇒

P (Z ≥
−

n∑
j=1

λjγrj + γro + s+
r + φ̃o

τr(λ)
) = 1− α ⇐⇒

Φ(

−
n∑
j=1

λjγrj + γro + s+
r + φ̃o

τr(λ)
) = α ⇐⇒

Φ−1(α) =

−
n∑
j=1

λjγrj + γro + s+
r + φ̃o

τr(λ)
⇐⇒

n∑
j=1

λjγrj − s+
r − γro + τr(λ)Φ−1(α) = φ̃o

(3.6)

108



Similarly, from the second constraint in model (3.2) and Equation (3.3)
we have:

P (
n∑
j=1

λjX̃ij − X̃io + s−i − θ̃o ≤ 0) = 1− α ⇐⇒

P (

n∑
j=1

λjX̃ij − X̃io + s−i − θ̃o − (
n∑
j=1

λjµij − µio + s−i − θ̃o)

σi(λ)
≤

−
n∑
j=1

λjµij + µio − s−i + θ̃o

σi(λ)
) = 1− α ⇐⇒

P (Z ≤
−

n∑
j=1

λjµij + µio − s−i + θ̃o

σi(λ)
) = 1− α ⇐⇒

Φ(

n∑
j=1

λjµij − µio + s−i − θ̃o
σi(λ)

) = α ⇐⇒

Therefore,

Φ−1(α) =

n∑
j=1

λjµij − µio + s−i − θ̃o
σi(λ)

⇐⇒
n∑
j=1

λjµij − µio + s−i − σi(λ)Φ−1(α) = θ̃o

(3.7)

Thus, by (3.6) and (3.7), the deterministic model is completely speci-
fied. 2

Stochastic α−MPSS by solving model (3.5) can be defined as follows:

Definition 3.1 DMUo is said to be stochastic α −MPSS if and only
if the following two conditions are both satisfied for model (3.5):

i) eφ̃
∗
o(α)−θ̃∗o(α) = 1

ii) All slack variables are zero in the alternative optimal solution.

In Definition (3.1), if for an optimal solution, eφ̃
∗
o(α)−θ̃∗o(α) 6= 1, or some of

slacks are non zero, then DMUo is not stochastic α−MPSS. DMUs which
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are only satisfied in condition (i) are called weakly stochastic α−MPSS.

Remark 3.1 If α = 0.5, then Φ−1(0.5) = 0. Therefore, the MPSS clas-
sification of DMUo in input-output orientation MDEA model (2.13) is
the same as in stochastic input-output orientation MDEA model (3.1) in
which the mean values of inputs and outputs are used.

4 Numerical Example of System Reliability

We apply the proposed stochastic MPSS pattern in input-output stochas-
tic MDEA methodology for estimating the stochastic α−MPSS of 12 sys-
tems. We consider this systems as DMUs, and denote them byDMUj, (j =
1, 2, . . . , 12). Every DMUj is composed of 2 components (or items) which
have the random length of time until failure. Suppose that Yrj , r = 1, 2
are the random failure time of component r of DMUj where have the
log-normal distribution with parameters τ 2

rj and γrj which are denoted
with Yrj ∼ LN(γrj, τ

2
rj). When a component fails it undergoes repair.

Suppose that Xij , i = 1, 2 are the random repair time of component i
of DMUj where have the log-normal distribution with parameters σ2

ij

and µij which are denoted with Xij ∼ LN(µij, σ
2
ij). Thus, by solving

model (3.5) can be obtain the stochastic α−MPSS of systems. The la-
bels of inputs and outputs are as Table 1. The data set for this example

Table 1
The labels of inputs and outputs.

Input1: The random repair time of the first component of system

Input2: The random repair time of the second component of system

Output1: The random length of time until failure of the first component of system

Output2: The random length of time until failure of the second component of system

is shown in Table 2. We run model (3.5) by means of GAMS software for
all α ∈ {0.1, 0.33, 0.5, 0.67, 0.9} and the results are shown in Table 3.

In Table 3, DMU1 and DMU2 have optimal solutions eφ̃
∗
o(α)−θ̃∗o(α) = 1,

s−∗1 = 0, s−∗2 = 0, s+∗
1 = 0, and s+∗

2 = 0 for each α ∈ {0.1, 0.33, 0.5, 0.67, 0.9}.
Therefore, these systems are stochastic α−MPSS by Definition (3.1).
Also, the above table expresses that for a set of n systems, if α < α′,
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Table 2
The data set of numerical example.

DMUj Input 1 Input 2 Output 1 Output 2

DMU1 X11 ∼ LN(20, 25) X21 ∼ LN(25, 16) Y11 ∼ LN(1000, 100) Y21 ∼ LN(900, 400)

DMU2 X12 ∼ LN(15, 4) X22 ∼ LN(23, 18) Y12 ∼ LN(800, 200) Y22 ∼ LN(950, 300)

DMU3 X13 ∼ LN(10, 4) X23 ∼ LN(9, 9) Y13 ∼ LN(950, 400) Y23 ∼ LN(500, 450)

DMU4 X14 ∼ LN(18, 8) X24 ∼ LN(10, 8) Y14 ∼ LN(850, 500) Y24 ∼ LN(550, 430)

DMU5 X15 ∼ LN(17, 6) X25 ∼ LN(18, 7) Y15 ∼ LN(980, 550) Y25 ∼ LN(800, 100)

DMU6 X16 ∼ LN(16, 4) X26 ∼ LN(19, 15) Y16 ∼ LN(700, 520) Y26 ∼ LN(600, 250)

DMU7 X17 ∼ LN(11, 9) X27 ∼ LN(20, 14) Y17 ∼ LN(750, 700) Y27 ∼ LN(650, 230)

DMU8 X18 ∼ LN(19, 20) X28 ∼ LN(17, 4) Y18 ∼ LN(850, 350) Y28 ∼ LN(830, 450)

DMU9 X19 ∼ LN(12, 10) X29 ∼ LN(15, 17) Y19 ∼ LN(600, 150) Y29 ∼ LN(580, 160)

DMU10 X110 ∼ LN(13, 5) X210 ∼ LN(10, 12) Y110 ∼ LN(970, 300) Y210 ∼ LN(560, 400)

DMU11 X111 ∼ LN(16, 6) X211 ∼ LN(22, 16) Y111 ∼ LN(780, 110) Y211 ∼ LN(700, 350)

DMU12 X112 ∼ LN(9, 4) X212 ∼ LN(8, 3) Y112 ∼ LN(650, 90) Y212 ∼ LN(860, 310)

Table 3
Results of the stochastic α−MPSS systems

α-MPSS α-MPSS α-MPSS α-MPSS α-MPSS

DMUj α = 0.1 α = 0.33 α = 0.5 α = 0.67 α = 0.9

DMU1 1 1 1 1 1

DMU2 1 1 1 1 1

DMU3 e15.11 e26.9 e34 e41.1 e54.6

DMU4 e116 e128 e135 e142 e156

DMU5 1 e5.91 e13 e20.1 e33.6

DMU6 e263 e283 e294 e301 e315

DMU7 e210 e230 e241 e248 e261

DMU8 e54.8 e70.3 e78.6 e87.3 e105

DMU9 e303 e318 e327 e335 e353

DMU10 1 e7.9 e15 e22.1 e35.63

DMU11 e172 e190 e200 e211 e233

DMU12 e41.8 e63.6 e75 e86.4 e108

then the number of systems stochastic α′−MPSS is less than or equal to
the number of systems stochastic α−MPSS.
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5 Conclusion

The purpose of classic MDEA model is to evaluate the performance of a
set of DMUs by considering precise data. These models are very sensitive
to measurement errors and data entry errors. Therefore, in real-world sce-
narios, stochastic models may be better suited for MDEA model when
there exists uncertainty associated with the inputs and or outputs of
DMUs. To estimate MPSS in the presence of inputs and outputs having
log-normal distributions, the input–output orientation model that was
introduced by Banker and Maindiratta (1986) in classic MDEA is de-
veloped in stochastic MDEA. The deterministic equivalent of stochastic
input output oriented MDEA model is obtained and also the concepts
of stochastic α−MPSS is defined. As an example of system reliability
was used to demonstrate the capability of the proposed approach. This
example was run in five cases of α and it is observed that the number
of systems featured stochastic α−MPSS decreases when the value of α
increases. In order to further studies, the approach of this research may
be extended to some other distributions.
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