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 ABSTRACT 

 In this paper, the extended finite element method (XFEM) is employed 

to investigate the statics and vibration problems of cracked isotropic 

bars and beams. Three kinds of elements namely the standard, the 

blended and the enriched elements are utilized to discretize the 

structure and model cracks. Two techniques referred as the increase of 

the number of Gauss integration points and the rectangle sub-grid are 

applied to refine the integration within the blended and enriched 

elements of the beam in which the priority of the developed rectangle 

sub-grid technique is identified. The stiffness and the mass matrices of 

the beam are extended by considering the Heaviside and the crack tip 

functions. In a plane stress analysis, the effects of various crack 

positions and depths, different boundary conditions and other 

geometric parameters on the displacement and the stress contours are 

detected. Moreover, in a free vibration analysis, changes of the natural 

frequencies and the mode shapes due to the aforementioned effects are 

determined.                   © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 NGINEERING structures such as buildings, highways, aircraft, etc. may be destroyed due to geometric and 

material discontinuities usually created during their manufacturing processes or the working life. The 

investigation of the mechanical phenomena in discontinuous structures requires a more detailed understanding of the 

fracture mechanics concepts. So, the mathematical modeling of the discontinuities especially the crack and the 

development of the numerical methods for solving these problems are regularly attended by many designers and 

researchers. The finite element method was fully discussed by Wriggers [1], Reddy [2] and Logan[3]. The vibration 

analysis of different structures can be found in Leissa [4], Rao [5] and Cook [6]. Kahya and Turan [7] employed a 

finite element model for vibration and buckling of functionally graded beams based on the first-order shear 

deformation. Darvizeh et al. [8] presented pre- and post-buckling behaviors of beams made of functionally graded 

materials using the finite element formulation based on the Euler-Bernoulli beam theory. Elasto-plastic pre- and 

post-buckling behaviors of FGMs beams were investigated with a continuum-based finite element method by Alijani 
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et al. [9]. The different theoretical techniques such as the discrete spring model, the smeared crack model, the local 

and non-local models, fracture mechanic theories, the meshless method, XFEM and etc. are used for modeling 

strong and weak discontinuities in structures. The concepts of fracture mechanics and XFEM were introduced by 

Mohammadi [10]. Different applications in XFEM were discussed in [11]. Biondi and Caddemi [12] proposed 

closed-form solutions of Euler–Bernoulli beams with discontinuities which were modeled as singularities of the 

flexural stiffness via distribution theory. A simple method was employed to model a crack as an element on a beam 

with stepped cross sections in [13]. Skrinar formulated the finite element method of a beam with an arbitrary number 

of transverse cracks replaced by linear rotational springs [14] . Yang et al. studied the bending deformation of the 

Timoshenko beam with cracks in which the crack with a gap was represented by means of an equivalent nonlinear 

internal rotational spring [15]. Also, Moës and et al. presented a new technique for modeling crack in the finite 

element method in which a standard displacement was enriched near a crack by incorporating discontinuous through 

a partition of unity method [16].  Then, the extended finite element method was applied to model the growth of 

arbitrary cohesive cracks by Moës and Belytschko [17]. Also, Sukumar and et al. described an extended finite 

element method for three-dimensional crack modeling. A discontinuous function and the two-dimensional 

asymptotic crack-tip displacement fields were added to the finite element approximation in [18]. De Borst and et al. 

[19] investigated discrete and smeared crack models for the concrete fracture. These models were constructed using 

the partition-of-unity property of the finite element shape functions. A recently developed consecutive-interpolation 

local enriched partition-of-unity method was used to study quasi-static crack propagation in [20]. Also, Alijani et al. 

[21] investigated the static behavior of cracked Euler–Bernoulli beam resting on an elastic foundation in which 

analytical, approximate and numerical approaches were implemented. In the following, Mottaghian et. al [22] 

developed a new one-dimensional finite element model to investigate the nonlinear elastic response of cracked 

beams in which a linear rotational spring is used to simulate the crack. Free vibration analysis of an elastically 

cracked beam was carried out by employing a line spring model to formulate the problem via differential quadrature 

method by Matbuly and et al.[23]. Nahvi and Jabbari [24] utilized the analytical and the experimental approaches to 

detect the crack in beams by FEM vibration analysis. Free and forced vibration analyses of a cracked beam were 

performed via the ANSYS 8.0 finite element program in order to determine the single- and two-edge cracks in a 

cantilever beam [25]. The free vibration of a shear deformable beam with multiple open edge cracks was studied 

using a lattice spring model (LSM) by Attar and et al.[26]. Behzad and et al. [27] presented a new continuous model 

for the vibration analysis of a beam with an open edge crack by using a modified weighted residual method. Shifrin 

and Ruotolo [28] employed a technique to calculate natural frequencies of a beam with an arbitrary finite number of 

transverse open cracks. Bachene and et al. [29] implemented the XFEM to analyze the vibrations of cracked plates 

which was developed for functionally graded material plates in [30].  Nguyen-Thoi and et al. proposed a cell-based 

smoothed discrete shear gap method (CS-DSG3) using triangular elements for statics and free vibration analyses of 

Mindlin plates based on XFEM [31]. 

In this paper, the statics and vibration problems of cracked isotropic bars and beams are investigated by using 

XFEM. In XFEM analysis, to prevent the complication in the determination of the nodal displacements, a shift 

function for the enriched nodes is utilized to interpolate the displacement field. In statics analysis, the displacement 

and modified stiffness matrix are determined for bars and beams via one and two-dimensional models, respectively. 

Two techniques namely the increasing the number of Gauss integration points and dividing the elements of near 

crack into sub-grids are implemented to modify the displacement, strain and stress fields. In vibration analysis, an 

eigenvalue solution is proposed to calculate the natural frequencies and the mode shapes by the improving stiffness 

and the mass matrices of the beam containing the crack. The effects of depths and positions of the crack, two 

integration techniques, different boundary conditions and other geometric parameters on the deflection pattern and 

changes of the natural frequencies and the mode shapes are studied in beams. The validity of the present work is 

confirmed by the comparison with reported results in references.  

2    OVERVIEW OF THE STIFFNESS MATRIX IN THE FINITE ELEMENT METHOD (FEM) 

The stiffness matrix is a significant parameter in the finite element analysis. Four steps can be proposed to determine 

the stiffness matrix for different structures and various phenomena. The kind of element is selected in the first step. 

One, two or three- dimensional models are initially suggested to simulate problems according to geometric 

characteristics. In the second step, the shape functions are chosen to interpolate the displacement field. In the third 

step, the kinematic and constitutive relationships are established to obtain displacement-strain and strain-stress 

equations, respectively. In the fourth step, the stiffness matrix can be derived using the principle of minimum 
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potential energy in the combination with the aforementioned steps. In geometrically linear analysis, the variation of 

strain energy can be reduced [1] 

    
T

:  

V

U dV   σ ε u K u       

 

      (1) 

 

In which, the stiffness matrix is independent of the displacement. 

2.1 FEM in bars 

The displacement field is just considered in the axial direction; also no shear force and bending moment are applied 

in bars. The bar element can be modeled as a one- dimensional element with two nodes in which geometric and 

material parameters are assumed constant. 

The displacement field in each element can be calculated in terms of the nodal displacement and the local 

coordinate via shape functions [3] as follows:  
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      (2) 

 

Linear shape functions are used to interpolate the axial displacement as: 
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According to Fig. 1, following equation is used to transform the global coordinate into the parent coordinate  
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(3b) 

 

The linear displacement-strain relationship in bars is written as: 
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(4a) 

 

In which the derivative of shape functions is indicated 
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(4b) 

 

The elastic stress-strain relationship is obtained from [3] 

 

x xE         (5) 

 

The strain energy equation is written to specify the stiffness matrix  

 

    
1 1

 
2 2

TT
x x

V

U dV   u K u       

 

(6a) 

 

By integration with the normally Gauss technique presented in Appendix A, the stiffness matrix is calculated as 

follows: 
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(a) 
 

 (b) 
Fig.1 

One-dimensional element: (a) Global coordinate (b) Parent coordinate. 

2.2 FEM in beams  

A beam is a slender structure which can be modeled by one and two-dimensional elements in the finite element 

method. In common theories of the beam like Euler-Bernoulli, Timoshenko and geometrically exact beam, the 

simulating is carried out by one-dimensional elements, while the isoperimetric formulation based on plane stress or 

plane strain states is usually utilized to model the beam with two-dimensional elements. Here, the two-dimensional 

rectangular elements including four nodes are utilized to mesh the beam. According to Fig. 2, the interpolation of the 

displacement and the position is offered by using the following shape functions [1] 

 

  
1

1 1  
4

i i iN             
  

(7) 

 

The linear displacement-strain relationship in plane-stress state is written [3] 
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(8) 

 

In reference to Eq. (2), the derivative of the shape functions for each node is  
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(9) 

 

According to Fig. 2, the following equation is utilized for transforming the global coordinate into the parent 

coordinate 
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The Jacobian matrix is defined [1] 
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(10b) 

 

The elastic stress-strain relationship is formed from [3] 

 

σ Dε           (11a) 

 

The isotropic plane-stress stiffness is introduced 
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By substituting Eqs. (9) and (11) into (6a) and using the normally Gauss integration presented in Appendix B, 

the stiffness matrix related to the nodal combination of i  and
  

j within an element is determined  
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Fig.2 

Two-dimensional element: (a) Global coordinate  (b)  Parent coordinate. 
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3    OVERVIEW OF THE STIFFNESS MATRIX IN THE EXTENDED FINITE ELEMENT METHOD 

XFEM is a numerical method for modeling discontinuities such as cracks, holes and notched sections which is 

formulated by combining the standard finite element method and special functions. These functions added to the 

standard FEM equations are defined based on the type of discontinuity. Two specified function types are generally 

used to model cracks in structures. One of them is called the 'Heaviside function' which is used to define the 

discontinuity during the crack length. The other one assigned as the 'crack tip function' is efficiently used to estimate 

the stress concentration effects in the near crack tip. Adding these functions increases the degrees of freedom in 

nodes of elements around the crack length and tip referred as the 'nodal enrichment'. In XFEM, the crack is modeled 

independently from mesh and virtually. 

 

3.1 XFEM in bars 

In XFEM analysis, the displacement field is divided into two parts including the standard and the enriched 

displacement [10] 

 

     std enr u x u x u x            (13) 

 

The enrichment function is specifically defined as the Heaviside function in the one-dimensional model, so 
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         

      

     (14) 

 

Here, i and j indicate the number of standard and Heaviside enriched nodes, respectively. The Heaviside function 

is defined as Fig. 3 and following equation 
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1          otherwise         

H x
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     (15) 

 

The displacement in each enriched node i can be calculated as: 

 

               i i i iu x u H x a             (16) 

 

The nodal parameter iu  is not the real displacement value in the enriched node [10] so a simple shifting 

enriched function is used to determine the nodal displacements without involving enriched term. Accordingly, Eq. 

(14) can be rewritten as: 
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In which, Eq. (16) is changed to 

 

 i iu x u                (17b) 

 

The strain in one-dimensional XEEM is indicated by the use of the shifting enriched function and according to 

Eq. (4a) as: 
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is obtained  
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(18c) 

and the derivative of the shape functions for each element is achieved as: 
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Substituting Eqs. (18) and (5) into (6a), the stiffness matrix, the displacement and the force vectors are 

introduced as the following equilibrium equation 

 

uu ua u

au aa a

      
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K K u f
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(19) 

 

In this case, one degree of freedom is enhanced to each enriched node. 

 

 

 

 

 

 

Fig.3 

Domain V of a solid body containing a crack. 

3.2 XFEM in beams 

Two kinds of the Heaviside and the crack tip enriched functions can be used to model the cracked beams. The 

Heaviside function is utilized in the element which is completely cut off by the crack. In this case, two extra degrees 

of freedom are enhanced to each enriched node. The crack tip functions are employed to enrich the element 

including the crack tip. In this case, eight extra degrees of freedom are added to each enriched node. Other elements 

of around the crack affected from crack tip and length are partially enriched which are called 'blended elements', as 

shown in Fig. 4. 

The displacements in each point are determined by the  summation of the standard, the Heaviside and the crack 

tip terms [11] 
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(20) 

 

Here, i, j and k indicate number of the standard , the Heaviside and the crack tip enriched node, respectively, and 
  is the number of the crack tip functions.  

Substituting Eq. (20) into (8), the strain vector can be determined. The Heaviside and the crack tip strains are 

specified [11] 
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In which according to Fig. 5, the crack tip functions are introduced in the local and polar coordinates [10] as: 
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According to Eq. (19), the stiffness matrix related to the nodal combination of i  and j, the nodal displacement and 

the force vectors can be determined by substituting Eq. (21) into Eqs. (11) and (12), ten extra degrees of freedom are 

added to each enriched node, so ijK  possesses the size 12 12 .  
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where, 
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(22d) 

 

The nodal force vector for a cracked structure under traction force can be calculated as: 
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(22e) 

 

Here, 
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(22h) 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Two-dimensional standard, blended and enriched elements. 

  

 

 

 

 

 

 

 

Fig.5 

Local and polar coordinate of crack tip. 

 



911                           F. Mottaghian et.al. 

© 2018 IAU, Arak Branch 
 

4    INTEGRATION TECHNIQUES 

The polynomial shape functions are commonly used to interpolate in the quadratic standard elements. The normally 

Gauss integration technique in such problems can be implemented to obtain acceptable results. On the other side, the 

enhanced terms in XFEM may create non-polynomial and non-smooth functions, so one of the important and 

complex problems is the integration within the enriched elements. Due to considerable variations of parameters in 

the crack region, using the normally Gauss integration technique may lead to ill condition for stiffness matrix and 

inappropriate numerical results. Increasing the number of Gauss points is proposed as a conventional technique to 

remedy these poor results. Another alternatively useful technique for numerical integration is adopted by dividing 

the enriched and the blended elements into smaller elements called the 'sub-grid elements'. This technique is only 

employed for numerical integration without adding any extra degrees of freedom. These three techniques are 

illustrated in Fig. 6. 

 

 
Fig.6 

Different integration techniques: (a) Normally Gauss integration technique (b) Gauss integration technique with 16 points (c) 

Sub-grid technique. 

4.1 FEM in bars via the sub-grid technique 

For the investigating of the sub-grid concept in FEM, one standard element of the bar is divided into two sub-grids 

according to Fig. 7. The strain energy of this element is computed by the energies summation of two sub-grids. 

 

1

sub

k
element sub

k

U U



 
   

 

(23) 

 

The strain energy in the left sub-grid can be determined according to Eq. (6a) as: 

 

   0

0

1
 

2

Tx

L L
L

u x u x
U EA dx

x x

    
           


   

 

(24) 

 

The left sub-grid displacement field can be interpolated according to Eq. (2)  

 

1 1 2 2
L L

Lu N u N u 

   

(25) 

 

The derivative of the shape functions of the left sub-grid is achieved according to Eq. (4b) as: 

 

0 0

1 1
L

x x

 
  
 

B

   

 

(26) 

 

The left sub-grid strain energy is calculated in terms of the displacements of the sub-grid as: 
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(27a) 

 

In which, the left sub-grid stiffness matrix is obtained according to Eq. (6b)  
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(27b) 

 

By the same analysis, the right sub-grid strain energy can be evaluated as: 
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(28a) 

 

The right sub-grid stiffness is introduced 
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(28b) 

 

The nodal displacement vector of the basic element can be connected to the sub-grids nodal displacement vector 

as: 
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(29a) 
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(29c) 
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(29d) 

 

Here,   LC  and    RC are called as 'the conversion matrices' for the left and right sub-grids, respectively. By using 

the conversion matrices, Eqs. (27) and (28) can be rewritten as: 
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(30a) 
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(30b) 

 

According to Eqs. (23), the stiffness matrix of the basic element can be determined by the sum of the two sub-

grids stiffness matrices 
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(31) 

 

 

 

 

 

 

 

Fig.7 

Sub-grid for intact bar element. 

4.2 XFEM in bars via the sub-grid technique 

In this analysis, two types of elements are defined to develop the governing equations of bars. One is the standard 

elements and another is the elements containing the discontinuity enriched by the Heaviside function. It is assumed 

that the enriched elements are divided into three sub-grids including the crack length, the left side and the right side 

of the crack as Fig. 8. In reference to Eq. (23), the strain energy of the basic element is given 
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(32a) 

 

In reference to Eq. (6b), the stiffness matrix for each sub-grid element of length 
3

 L  can be determined as: 

1 13

1  1 

k
sub

AE
k

L

 
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 
   

 

(32b) 

 

As mentioned, the nodal displacements of each sub-grid element can be connected to the nodal displacement 

vector of the basic element as: 
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(33a) 

 

The nodal displacement vectors of each sub-grid and basic elements are introduced as: 
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(33b) 
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(33c) 

 

The conversion matrix which contains two parts of the standard and Heaviside is obtained 
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In which 
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(34b) 
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(34c) 

 

Based on the position of the crack and Eq. (15), the Heaviside function value in the first and second nodes of 

basic element is computed as: 
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(34d) 

 

By considering Eqs. (27) and (28), the strain energy for each sub-grid can be rewritten 
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So, the improved sub-grid stiffness matrix is achieved as: 
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(35b) 

 

 

 

 

 

 

Fig.8 

Sub-gird for cracked bar element. 

 

4.3 XFEM in beams via the sub-grid technique 

As indicated in section 3.2, for the cracked beam analysis, the elements are divided into three parts as the standard, 

the blended and the cracked elements enriched by the Heaviside and the crack tip functions. For employing the sub-

grid technique, the blended and the enriched elements should be divided into some sub-grids as Fig. 6. According to 

Eq. (23), the strain energy of each blended or enriched element can be determined as the energies summation of the 

sub-grids as: 
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(36) 

 

Here, the stiffness matrix for each sub-grid can be calculated as Eq.(12). According to Eq. (33a), in a two-

dimensional analysis, the nodal displacements of each sub-grid element can be defined in terms of the nodal 

displacements of the basic element as: 
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(37a) 

 

The nodal displacement vectors of each sub-grid and the basic elements are indicated as: 
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(37b) 
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(37c) 

 

So, the conversion matrix includes three parts of the standard, the Heaviside and the crack tip. This matrix can be 

formed for each node as: 

 

   , ,k std hev tip
sub i i i

i

 
 

C C C C

  
     

 

 

(38a) 

  

In which, each part of the coversion matrix is obtained from  
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(38d) 

 

Substituting Eqs. (37), (38) into (36), the strain energy for each sub-grid in terms of basic nodes is determined as: 

 

   1

2

T T
k e k k k e

sub sub sub subU      
     

u C k C u

 
     

 

 

(39a) 

 

In which, the improved sub-grid stiffness matrix is computed as: 

 
T

k k k k
sub sub sub sub

     
     

K C k C
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5    FREE VIBRATION ANALYSIS IN TWO-DIMENSIONAL XFEM   

A free vibration analysis in XFEM can be established by adding the enriched functions into the stiffness and the 

mass matrices. Constructing the mass matrix is completed by enhancing the shape functions of the Heaviside and the 

crack tip. This enhanced shape function matrix can be defined for each blended and enriched node as: 
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The mass matrix in FEM is defined as [4] and [1] 

 

   T
     ij i j

V

dV M N N
     

 

 

(41) 

 

Substituting the shape function matrix into Eq. (41), the mass matrix related to the nodal combination of i  and j  

within an element in XFEM is assigned as: 
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(42) 

 

The natural frequency is obtained by substituting the enriched stiffness and the mass matrices into the eigenvalue 

equation [5] 

 

     2 0 K M
     

 

 

(43) 

 

Here, K and M are total stiffness and mass matrices. 

6    RESULTS AND DISCUSSION 

The effects of the crack on results of statics and vibration analyses of the beams are investigated according to the 

aforementioned formulations by using some case studies. Different boundary conditions including simply supported-

simply supported (SS-SS), clamped-free (C-F) and clamped-clamped (C-C) are considered for a beam with material 

properties 30 E  GPa, 
30.3 , 7850  /kg m   and geometrical parameters shown in Fig. 9. In the statics 

analysis, the deformation pattern and the stress contours under a uniformly distributed force are evaluated for 

various crack depths and positions. In the vibration analysis, changes of the natural frequencies and the mode shapes 

due to a crack are studied.  

Results of Fig.10 confirm a convergence in the XFEM analysis. This figure depicted for a two-dimensional beam 

shows that by increasing the number of elements (after about 189 elements), a negligible change is seen between the 

obtained results. 

A comparison in Fig.11 is drawn to validate the results. This figure depicts a close agreement (about 4% error) 

between the results of the present work and Abaqus software. 

 

 
 (a) 

  
(b) 

  

  
(c) 

 

 

 

Fig.9 

Different boundary conditions: (a) C-F (b) SS-SS (c) C-C. 
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Fig.10 

Convergence rate for a C-F beam containing a crack on
 

1 
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cx
L
 and 1

2 
c

h
 .  

  

 

 

 

 

 

 

 

 

 

 

Fig.11 

Comparison  of the deflection in present work and Abaqus 

software for C-C cracked beam at 1
2 

cx
L
  and 1

2 
c

h
 .  

6.1 Statics analysis 

Table 1. shows the maximum deflection of the cracked beam determined with the three different techniques of the 

normally Gauss integration, the increase of the number of Gauss integration points and the rectangular sub-grid. The 

normally Gauss integration technique is defined with 4 Gauss points located within each enriched element. 16 Gauss 

points, see Appendix B, for elements around the crack are selected in the technique of increasing the number of 

Gauss integration points. In the sub-grid technique, the enriched and blended elements are divided into 49 ( 7 7 ) 

sub-grids with 4 Gauss points within each sub-grid.  

By considering non-polynomial shape functions in XFEM, poor results are achieved by using the normally 

Gauss integration technique. This table confirms that accuracy of the integration can be improved by adding Gauss 

points. In order to obtain a more appropriate outcome, the sub-grid technique is implemented. The effects of 

discontinuity along the crack and the singularity at the crack tip are diminished by using this technique in which 

more computational effort is required in comparison with the other techniques. So, the results of the present work 

are derived based on the rectangle sub-grid technique. Since the assumed distributed force in the C-C beams 

generates small deflections; the minor influence of the sub-grid technique on the results of this boundary condition 

can be recognized in Table1.  

The effects of the crack position on the deflection are demonstrated in Figs. 12(a), 12(b) and 12(c) for C-F, SS-SS 

and C-C B.C., respectively. Here, the crack depth is considered as 1   . 
2 

c
h
 Fig. 12(a) illustrates that more 

deflection can be observed as the crack positions closer to the clamped support, while for Figs. 12(b) and 12(c), 

more deflection can be seen if the crack approaches to the middle of the beam. Also, a symmetry in the deflection 

patterns about the beam center is observed between the crack position at 
3

L   and  2  
3

L . In a constant crack depth 

like 1 
2 

c
h
 , ratios of the maximum deflection between the cracked and the perfect beam are diversely found in 

terms of crack positions and boundary conditions. It means that in
  1

2 
cx

L
 , these ratios are computed 19%, 41% 
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and 89% for C-F, C-C and SS-SS B.C., respectively, while these ratios are achieved 78%, 1.4% and 25.3% at 

1
5 

cx
L
 .  

In Fig. 13, the effect  of crack the depth on the deflection is illustrated by considering three different crack depths 

in a constant crack position 1
2 

cx
L
  . It is obviously observed that the deflection increases by raising the crack 

depth for all boundary conditions. Based on these figures, SS-SS B.C. possess the widest variation range of 

deflection with increasing the crack depth. In other words, for SS-SS B.C, the maximum deflection in the presence 

of the crack at
 

  1  
2 

c
h
  increases 89% in comparison with the perfect beam, while this value increases 41% and 

19% in C-C and C-F B.C., respectively.  
 

Table 1  

Maximum deflection in the cracked beam with three different techniques. 

(a)   C-F B.C. 

  4 16   4 Gauss No 
 c

h
  cx

L
 

7-7 1-1 1-1  sub-grid No 

0.5928 0.6023 0.6509   1
2

  1
5

 

0.4850 0.4917 0.5228   1
2

  1
3

 

0.3970 0.3991 0.4198   1
2

  1
2

 

0.3527 0.3531 0.3564   1
2

  2
3

 

0.3620 0.3639 0.3715   1
3

  1
2

 

0.3461 0.3464 0.3534   1
6

  1
2

 

 ب

(b)   SS-SS B.C.   

4 16 4 Gauss No 
 c

h
  cx

L
 

7-7 1-1 1-1 sub-grid No 

0.0441 0.0444 0.0462   1
2

  1
5

 

0.0567 0.0578 0.0631   1
2

  1
3

 

0.0667 0.0677 0.0780   1
2

  1
2

 

0.0560 0.0565 0.0607   1
2

  2
3

 

0.0494 0.0503 0.0541   1
3

  1
2

 

0.0416 0.0417 0.0450   1
6

  1
2

 

. 

 (c)   C-C B.C. 

4 16 4 Gauss No 
 c

h
  cx

L
 

7-7 1-1 1-1 sub-grid No 

0.0074 0.0074 0.0074   1
2

  1
5

 

0.0081 0.0081 0.0082   1
2

  1
3

 

0.0103 0.0103 0.0107   1
2

  1
2

 

0.0080 0.0080 0.0081   1
2

  2
3

 

0.0092 0.0092 0.0096   1
3

  1
2

 

0.0083 0.0083 0.0087   1
6

  1
2

 

 

 



Extended Finite Element Method for Statics ….                         920 

© 2018 IAU, Arak Branch 

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

 

Fig.12 

Effect of crack position on the deflection at 1
2 

c
h
 : (a) C-

F (b) SS-SS (c) C-C. 

 

 

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

 

 

Fig.13 

Effect of crack depth on the deflection at 0.5 cx
L
 : (a) C-

F (b) SS-SS (c) C-C. 

 

The estimation of stress contours for beams containing a crack at 1
2

cx

L
  or

  1
4

cx
L
  with   1

2 
c

h
 is 

indicated in Figs. 14 and 15, respectively. It is noticed that the maximum stress is created around the crack tip. In the 

other words, there is a stress concentration near the crack. With considering Figs. 14(a) and 14(b), a relative equality 

in values of maximum and minimum stresses is observed between C-F and SS-SS B.C , while according to Figs. 

15(a)and 15(b), these stress values increase (decrease) in C-F (SS-SS) B.C. With the comparison of Figs. 14(c) and 
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15(c), a negligible variation is seen in the values of maximum and minimum stresses for C-C boundary conditions, 

while the stress concentration around the crack in Fig.14(c) significantly changes in comparing with Fig.15(c). 

 

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

Fig.14 

Stress contour for cracked beam with 0.5 cx
L
  and    0.5c

h
  

(a) C-F (b) SS-SS (C) C-C. 

 

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

Fig.15 

Stress contour for cracked beam with 0.25 cx
L


 
and

  
  0.5c

h


 
 (a) C-F (b) SS-SS (C) C-C. 

6.2 Free vibration analysis 

In this section, the effects of different crack positions and depths are investigated on the mode shapes and the natural 

frequencies in C-F, SS-SS and C-C boundary conditions. Fig. 16 shows the influence of crack position on the first 

natural frequency ratio between the cracked beam and perfect beam. This figure confirms the verification of the 

results of the free vibration analysis. The fewer values in the results of present work illustrate the effects of full 
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crack simulation in the XFEM analysis. This simulation is performed by considering the discontinuity and the crack 

tip functions, while Shifrin and Ruotolo [27] adopted a rotational spring model for the simulation the crack. This 

nearly complete simulation the indicates that the natural frequency ratio of Ref. [27] is computed with the greatest 

difference about 6% in the comparison with the present work.  

Fig. 17 demonstrates the influence of the crack position on the first natural frequency for various crack depths in 

the three boundary conditions. Fig. 17(a) shows that the influence of the crack depth is negligible where the crack 

position is close to the free end. It means for all crack depths in C-F B.C, values of the natural frequency are nearly 

estimated 57 ( 1
s

). As the crack positions closer to the clamped support, the fewer values of the natural frequency 

are observed. By increasing the crack depth, these values reduce in all crack positions. 

According to Fig. 17(b) depicted for SS-SS B.C., the minimum natural frequency in each crack depth is observed 

where the crack sits at the middle of the beam. Increasing the crack depth leads to the decrease of natural 

frequencies values similar to C-F boundary conditions. The maximum natural frequency is achieved where the crack 

is located near to the supports.  

Fig. 17(c) emphasizes the increase of the crack depth results in the decrease of the natural frequency for C-C 

B.C. the minimum value of the natural frequency is found for each crack depth where the crack position is at the 

middle of the beam. The maximum value of the natural frequency in each crack depth is roughly estimated where 

the crack position sits at cx
L

 =0.22 or  0.78 . It is noticed that for these two positions, the effect of crack depth can 

be ignored on the determination of the natural frequency. In other words, the difference of these natural frequencies 

is 2.42%. 

 

 

 

 

 

 

 

 

 

Fig.16 

Validation of the first natural frequency of the present work 

with reference [27] in C-F cracked beam at 0.3.c
h
   

 

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

 

 

Fig.17 

First natural frequency of cracked beam: (a) C-F (b) SS-SS 

(c) C-C. 
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Fig. 18 depicts the second natural frequency in terms of different crack positions and depths for three boundary 

conditions. According to Fig. 18(a) for C-F B.C., the value of natural frequency in all depths is maximized where 

the crack is located nearly at 0.2cx
L
 . Here, the maximum difference between the values of the beam with the 

deepest crack and the perfect beam is visually detected 2.48%. As the crack positions closer to the free boundary 

condition, the effect of the crack diminishes on the natural frequency values. By increasing the crack depth, the 

points corresponding to the minimum natural frequencies take some distance from the middle of the beam. 

The second natural frequency for SS-SS B.C. is shown in Fig. 18(b). Here, the value of the natural frequency in 

each depth is minimized where the crack is located about cx
L

=0.88 or 0.12 and. Also, the maximum value of the 

natural frequency in the whole crack depths can be achieved where the crack approximately places at the middle of 

the beam.  

Fig. 18(c) demonstrates the influence of the crack on the second natural frequency for C-C B.C. The maximum 

values of the natural frequency in all depths are estimated where the crack is located at the middle of the beam and 

near the supports. Also, the values of the natural frequency are minimized where the crack sits at a distance about 

3
L  from the both supports. 

By comparing between the first and the second natural frequencies relevant to C-C and SS-SS boundary 

conditions, it is observed where the value of the first natural frequency is minimized; the value of the second natural 

frequency is maximized. The greatest change in the first natural frequency of cracked beam in the comparison with 

the perfect beam is observed in C-F, SS-SS and C-C B.C. almost 64.32%, 59% and 17.8%, respectively, while these 

changes for the second natural frequency are achieved 60.72%, 50.3% and 17.32% in SS-SS, C-F and C-C B.C., 

respectively.  

3D displays on Figs. 17 and 18 are arranged in Fig. 19 to evaluate the first and the second natural frequencies in 

terms of different crack depths and positions. 

 

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

 

 

 

 

Fig.18 

Second natural frequency of cracked beam: (a) C-F (b) SS-SS 

(c) C-C. 
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(a) 

 
(a) 

  

 
(b) 

 

 
(b) 

  
(c) 

 
(c) 

Fig.19 

Natural frequencies of the cracked beam in terms of crack position and depth: (a) C-F (b) SS-SS (c) C-C. 

 

The first three mode shapes of a cracked beam are demonstrated in Fig. 20 for different boundary conditions as 

the crack characteristics are identified by 
 

0.4cx
L
   and 0.5c

h
 .   

In Fig. 20(a), the effect of the crack on the first mode shapes is shown as the opening in elements of near crack for 

SS-SS B.C. and the sliding in the similar elements for C-C and C-F boundary conditions. A strong likeness can be 

seen between the results of the first mode shapes in the vibration analysis and the deflection pattern in the statics 

analysis.   

The second mode shapes are illustrated in Fig. 20(b). The influence of the crack on each B.C. is revealed as the 

sliding in elements of near crack. 

Fig. 20(c) shows the third mode shapes in different boundary conditions. The crack makes the opening in near 

crack elements for SS-SS and C-C and the siding in the similar elements for C-F boundary conditions. 
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(a) 

 

 

 

(b) 

  

  

 

 

 

  

  

 
 

 

 

(c) 

 

 

 

 

 

 

 

Fig.20 

First three mode shapes of beam containing a crack at 

1  cx m with   0.5 c
h
 : (a) First (b) Second (c) Third mode 

shapes in different boundary conditions. 

 

7    CONCLUSIONS 

In this paper, the statics and vibration analyses of two-dimensional cracked isotropic beams were investigated. The 

XFEM was employed to study the effects of different crack depths and positions on the statics and vibration 

characteristics. The derivation of XFEM equation for cracked bars and beams was explicitly expressed by 

developing FEM equations of perfect bars and beams. Two techniques for modifying the numerical integration were 

applied for diminishing the influence of discontinuity and singularity of the crack zone. One of them was introduced 

as the increase of the number of Gauss points and the other one was called as the sub-grid technique that its 

relationships were essentially derived for the perfect and the cracked bars and beams. The results of these two 

techniques and the normally Gauss integration technique were compared to distinguish their advantages and 

disadvantages in the analysis of the cracked beam. An eigenvalue equation was developed by extending the stiffness 

and the mass matrices to determine the natural frequencies and mode shapes. The results of the analysis are reported 

as follows: 

    It is clearly seen that a crack reduces the structure stiffness and the natural frequency. 

    A direct proportion between the crack depth and the results of structure deflection can be observed.  

    The results show an inverse proportion between the crack depth and the natural frequencies.  

     The effects of discontinuity along the crack and the singularity at the crack tip can be reduced by using two 

techniques for the integration in the enriched and the blended elements.   

    The rectangular sub-grid technique is more efficient than the others.  

     In determination of the deflection, the SS-SS B.C. possess the most sensitivity to change of the crack depth, 

while the least sensitivity appears in C-F boundary conditions. 
    The crack changes the classical mode shapes in beams. 
     If a crack is located near clamped supports, maximum and minimum effects on the deflection can be 

revealed in C-F and C-C B.C., respectively. 
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     If a crack is located at the middle of the beam, the influence of the crack on the deflection in SS-SS B.C. 

will be more than the others. If a crack sits at cx
L

 =0.22 or 0.78, the influence of the crack on the first 

natural frequency for C-C B.C. can be approximately ignored. 

     The maximum decrease in the first (second) natural frequency due to crack is seen in C-F, SS-SS and C-C 

(SS-SS, C-F and C-C) B.C., respectively. 

 

APPENDIX A 

 

 Gauss   p   pw  Position of points 

2 
- 0.5773 

+ 0.5773 

1 

1 

 

APPENDIX B 

 Gauss   p   p   pw  Position of points 

4 

- 0.5773 

  0.5773 

- 0.5773 

  0.5773 

 

- 0.5773 

- 0.5773 

 0.5773 

 0.5773 

 

 

 

1 

1 

1 

1 

 

16 

-0.8611 

-0.3400 

 0.3400 

 0.8611 

-0.8611 

-0.3400 

 0.3400 

 0.8611 

-0.8611 

-0.3400 

 0.3400 

 0.8611 

-0.8611 

-0.3400 

 0.3400 

 0.8611 

-0.8611 

-0.8611 

-0.8611 

-0.8611 

-0.3400 

-0.3400 

-0.3400 

-0.3400 

 0.3400 

 0.3400 

 0.3400 

 0.3400 

 0.8611 

 0.8611 

 0.8611 

 0.8611 

0.1210 

0.2269 

0.2269 

0.1210 

0.2269 

0.4253 

0.4253 

0.2269 

0.2269 

0.4253 

0.4253 

0.2269 

0.1210 

0.2269 

0.2269 

0.1210 

 

APPENDIX C 

Nomenclature 
 a vector of additional degrees of 

freedom for modeling crack face 
 

tip
N  crack tip shape function matrix 

 t width 
 A area  u axial displacement 
 b vector of additional degrees of 

freedom for modeling crack tip 
  u x  displacement field  

  u  displacement vector 
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 B derivative of shape function    e
u  enriched displacement vector 

 std
B  derivative of standard shape function    k

u  sub-grid displacement vector 

 hev
B  derivation of Heaviside shape function    std

u x  standard displacement field 

 
tip  

B   derivation of crack tip shape function    enr
u x  enriched displacement field 

 c crack depth  U strain energy 

 LC  left sub-grid conversion matrix  v transverse displacement 

 RC  right sub-grid conversion matrix  V Volume 

 
tds

C  standard conversion matrix  pw  Gauss weighting factor 

 
hev

C  Heaviside conversion matrix  cx  crack position 

 
tip   

C  crack tip conversion matrix  x arbitrary position 

 D plane stress stiffness  x  position of near crack 

 E elasticity  young modulus  
*

x  closest point to x   on the crack 

 b
f  crack tip external force vector  ix  nodal position 

 u
f  standard external force vector  k

ix  nodal position of sub-grid 

 a
f  Heaviside external force vector  

k
x  arbitrary position of sub-grid 

 F external force vector    x  crack tip function 

 h height  σ  stress vector 

  H x  Heaviside function  x  axial stress 

 I moment of inertia in the beam    x  Dirac delta function 
 J Jacobian matrix  ε  strain vector 

 Lk  left sub-grid stiffness matrix  xε  axial strain 

 Rk  right sub-grid stiffness matrix   yε  transverse strain 

 subk  stiffness matrix for sub-grid   enr
ε x  enriched strain field 

 K stiffness matrix    angel of crack coordinate and global 

coordinate 

 LK  improved left sub-grid stiffness matrix    loaded region 

 RK  improved right sub-grid stiffness 

matrix 
 xy  shear strain 

 subK  improved stiffness matrix for sub-grid  
std

 set of standard nodal points 

 L length  
hev

 set of Heaviside nodal points 

 M mass matrix  
tip

 set of crack tip nodal points 

 n the unit outward normal to the crack at  
*

x  

 
Gauss

 number of  integration points within an 

element 

 iN  shape function  
sub

 number of  sub-grid 

 N shape function matrix    density 

 std
N  standard shape function matrix  ft  traction force 

       hev
N  Heaviside shape function matrix    Poisson ratio 

           frequency 
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