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 ABSTRACT 

 In the following paper, free vibration analysis of two directional FGM 

circular nano-plate on the elastic medium is investigated. The elastic 

modulus of plate varies in both radial and thickness directions. 

Eringen’s theory was employed to the analysis of circular nano-plate 

with variation in material properties. Simultaneous variations of the 

material properties in the radial and transverse directions are described 

by a general function. Ritz functions were utilized to obtain the 

frequency equations for simply supported and clamped boundary. 

Differential transform method also used to develop a semi-analytical 

solution the size-dependent natural frequencies of non-homogenous 

nano-plates. Both methods reported good results. The validity of 

solutions was performed by comparing present results with themselves 

and those of the literature for both classical plate and nano-plate. Effect 

of non-homogeneity on the nonlocal parameter, geometries, boundary 

conditions and elastic foundation parameters is examined the paper 

treats some interesting problems, for the first time.                       

                       © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE micro and nano-sized structures have engrossed widespread attention in modern technology fields as 

components in micro/nano electro mechanical systems (MEMS and NEMS) [1,2]. Due to small scale effects, 

these structures have outstanding mechanical, thermal and electrical properties in comparison with ordinary scale 

structures [3]. Thus, they can be employed in sensitive devices and high performance application such as gas 

detection graphene sensor, ultra capacitors and ultra-strength composite material [3-5]. The continuum mechanic 

based approaches offer the benefits of less computational cost in comparison with atomistic modeling and hybrid 

modeling methods [5]. However, there is a need for modifying classical continuum mechanic models to take into 

account micro/nanoscale effects. Various higher mode continuum or micro-continuum theories have received great 

attention to capturing size effects through continuum mechanics models such as strain gradient theory [6-10], couple 

stress theory [11-14], and nonlocal elasticity theory [10,15,16]. Among these theories, the theory of nonlocal 

elasticity presented by Eringen [15] assumes that stress at an individual point is a function of all other points in body 
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domain. Many researchers have utilized the nonlocal elasticity theory for buckling and free vibration analysis of 

nano-sized structures. As a pioneer, Peddieson [16,17] showed this theory could be employed in the analysis of nano 

structures. recently, this theory has incorporated in Functionally graded material (FGM) isotropic beams [18,19] and 

plate models [20,21]. Şimşek and Yurtcu [22] studied static and buckling behaviour of nonlocal functionally graded 

(FG) Timoshenko and Euler–Bernoulli beam. Murmu and Pradhan [23] investigated stability response of single-

walled carbon nanotubes using Timoshenko beam theoryAksencer and Aydogdu [24] studied vibration and buckling 

of nano-plates for clamped and simply supported boundary condition. Narenda [25] presented buckling analysis of 

isotropic nano-plate using two-variable refined plate theory. Farajpour et al. [26] investigated buckling behavior of 

nano-scale circular plate subjected to in-plane forces using nonlocal elasticity. Hashemi-Hosseini et al. [20] studied 

free vibration behaviour of thick circular disks for various boundary conditions. Variable thickness is utilized to 

redistribute stress and reduce weight [27]. Various works related to variable thickness structures are found in several 

references ([28-31]). Danesh et al. [30] explored axial vibration behavior of variable thickness nano-rod using 

nonlocal elasticity theory. They reported result for various boundary conditions obtained by Differential Quadrature 

Method (DQM). Efraim and Eisenberger [32] provided an analytical solution for vibration analysis of variable thick 

annular FG plates employing first order shear deformation. 

As can be observed in the literature, most studies presented solutions for problems with simple geometries. The 

Differential Transform Method (DTM) and Ritz methods can be used to model nano-sized structures with general 

boundary conditions. The Differential Transform Method (DTM) is utilized truncated Taylor series to solve 

mathematical models [33]. This approach offers highly accurate closed form solution for boundary value problems 

[34]. Furthermore, Plates resting on the elastic medium has great of the interest in versatile engineering applications 

such as in non-rigid boundary conditions modeling. Mohammadi et al. [35] investigated free vibration behavior of 

rectangular graphene sheet under in-plane shear load. The influence of boundary conditions and elastic medium 

parameters were studied using DQM and Galerkin methods. Pradhan et al. [36] studied nonlocal characteristic 

length’s impact on the vibration of graphene sheet layer. The result showed the nonlocal effect is significant for 

graphene sheet. Behfar et al and Pradhan et al. [37] explored nano-scale vibration behavior of multilayered graphene 

on elastic foundation Mirzabeigy [38] considered free vibration of variable thickness beam under axial tensile forces 

on elastic foundation. Mohammadi et al. [39] free vibration of the circular graphene sheet studied under in-plane 

forces using nonlocal Kirchhoff plate theory. There many articles that investigated vibrational behavior variable 

thickness one directional and two-directional-functionally graded plates [40-48]. Zarei et al. [49] investigated the 

vibrational behavior of non-uniform circular nano-plate embedded in the elastic medium and resulted that varying 

thickness has a prominent effect on vibration of nano-plate. The Despite widespread use of variable thickness 

circular plate in all fields, buckling and free vibration of nonlocal variable thickness plates subjected to in-plane 

forces has not reported up to our knowledge.  

In this study, free vibration and buckling analysis of variable thickness plate is conducted based on nonlocal 

elasticity theory to study size effect phenomena. The appropriate governing equations are obtained using energy 

methods based on nonlocal Eringen constitutive equation. Those are solved by applying Ritz method and DTM to 

acquire natural frequencies and buckling loads to study the impact of significant parameters. 

2    THEORETICAL BACKGROUND  

2.1 Nonlocal elasticity theory  

Nonlocal elasticity theory assumes strain of every individual point as a function of all near particles. Therefore, size 

effect and atomic forces can be taken into account via a characteristic length 0e a [15]. The constitutive law, a 

differential equation, is as follows: 
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where 0e  is an experimentally obtained material constant; is an internal characteristic length which depends on 

granular size or molecular diameter; parameter l defines an external characteristic length. Also, nl is stress induced 

in a nano-scaled medium due to nonlocal effects. 

2.2 Differential transform method  
2.2.1 Deriving governing equations 

A nano-sized plate assumed in polar coordinate are studied as can be seen in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Two directional FGM nano-plate embedded in elastic medium. 

 

According to classical plate theory, the strain-displacement relations neglecting nonlinear terms are as follow: 
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Using Eq. (1), for a single layer nano-plate the strain-stress relationships are obtained as: 
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where 
11 22 12 21, , ,E E v v  are longitudinal elastic modulus, transverse elastic modulus, and in-plane Poisson’s ratio in 1 

and 2 directions, and 
0 ie l   is nonlocal parameter respectively. The plane stress condition is considered due to 

high radius to thickness ratio, therefore nonlocal stresses of ,nl nl

rr    and are only stresses induced in nano-plate. 

Stress resultant are defined as: 
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Integrating Eq. (4) from / 2z h   to / 2z h , we get nonlocal moments as: 
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Multiplying Eq. (4) in z and integrating from / 2z h  to / 2z h , nonlocal moments are obtained as: 
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where nano-plate stiffnesses  A, D  is defined as: 
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By applying the principle of virtual work, we can gain following equations: 
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Inserting moment resultants in Eq. (12), the governing equation for isotropic type is given as: 
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Eq. (14) can be rewritten as follows by defining some non-dimensional parameter, 
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Eq. (20) may be written as following by assuming linear variation through the thickness. 
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Boundary conditions equations, which are needed to find unique solution to governing equation, are given as: 

Simply-supported  
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Also, satisfying following equations is needed to avoid infinite value at 0r  [54] 
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2.2.2 Differential transform method (DTM) procedure  

This method is utilized to find a semi-analytic solution for differential equations by transforming them to algebraic 

equations based on Taylor series. The Taylor series a real valued function ( )f r that is infinitely differentiable at 

0r r are calculated as following 
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where 
0r , n!, k  are domain center, factorial of n and k th derivative of ( )f r obtained at 0r r , respectively. From 

above Taylor series, Eq. (27), differential transform of the K th derivative ( )pf f r is introduced as: 
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The differential inverse transform of the kF is given as: 
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The number of terms i.e. value of n depends on the convergence of natural frequencies and will be studied in 

next section. Some useful relations which are frequently used in the applying DTM are given in Table 1. Using this 

basic property of DTM (Table 1), we obtain transformed form of the Eq. (22) as: 
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The recursive relation of Eq. (30) is used repetitively to obtain the coefficients iF . It can be noted all 

coefficients are obtained in term of 0F  and 2F  after simplifying. Using above mentioned rules, transformed 

boundary conditions is obtained as follows:  

Simply –supported 
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Using boundary conditions above, Eqs. (31) -(33), a homogenous system of linear equations is obtained 

 
       
       

11 0 12 2

21 0 22 2
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Ω Ω 0

m m

m m

F F

F F

 

 

 

 
 

 

(34) 

 

For non-trivial solution, determinant of coefficient matrix must vanish and thus 

 
       
       

11 12

21 22

Ω Ω
0

Ω Ω

m m

m m

 

 
  

 

(35) 

 

It is can be observed
 

 m

ij coefficients are a function of frequency  , therefore solving above nonlinear 

algebraic equations, Eq.(35), gives us natural frequencies for nano-plate varying thickness. 

 
Table 1 

Some basic theorems frequently used in the practical problems. 

Original functions Transformed functions 

( ) ( ) ( )f r g r h r   k k kF G H   

( ) ( )f r g r  k kF G  

( ) ( ) ( )f r g r h r  

0

k

k l k l

l

F G H 



  

( )
( )

n

n

d g r
f r

dr
  

( )!

!
k k n

k n
F G

k



  

( ) nf r r  1
( )

0
k

k n
F k n

k n



   


 

2.3 Ritz method formulation 

The linear elastic strain energy sU  for an orthotropic circular nano-plates may be written as follows [50] 
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(36) 

 

where D is flexural stiffness of plate. Also, wk , Gk  are winker modulus and shear modulus parameters of the elastic 

foundation. The kinetic energy of nano-plate T  is given by [50] 
22
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(37) 

 

By substituting  ( , ) 1( ) i tw r t w r e   into Eqs.(2)-(4), form of Rayleigh quotient for nonlocal ,an explicit equation 

for natural frequency can be expressed as: 
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(38) 

 

where   is vibration frequency and ( )W   denotes  non-dimensional transverse deflection of nano-plate. Also non-

dimensional parameters are defined  
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(39) 

 

As for classical macro-sized plate, Eq. (38) is utilized for free vibration analysis of nonlocal nano-plates varying 

thickness. An approximate solution is assumed a linear combination of N known basis functions based on Ritz 

method 
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k k

k

W C  
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(40) 

 

where the
 kC  are unknown coefficient and the k  are approperiate basis functions satisfying geometric boundary 

conditions [51]. Here, the selected basis functions are 
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Inserting Eq. (40)-(41) in Eq. (38) and minimizing   as a function of coefficients iC gives us following 

algebraic equations 
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(45) 

 

  1f     (46) 

 

In Eq.(43), mna  and mnb  denote stiffness and mass matrixes, respectively. The Eigen value problem, Eq.(43), is 

solved to obtain the natural frequency of non-uniform nano-plate using MATLAB procedures. 

3    NUMERICAL RESULTS AND DISCUSSIONS    

In the present circular nano-plate, the upper and lower layers are considered ceramic and metal [54]. The Poisson 

coefficient is equal to a constant value of 0.3. Table 2. shows convergence study of both the Ritz and DTM methods 

for the values 2, 0.5, 2, 2, 100, 10w Gb g K K        and number of three modes. As can be seen, the 

table reveals 8, 52 terms need for attaining convergence for Ritz and DTM. 

 
Table 2 

Convergence of frequency parameter for Clamp and Simply FGM nano plates for 2, 2, 2, 0.5, 100, 10w Gg K K        . 

  Clamp   Simply  

  mode   mode  

N        
1         

2         
3        

1         
2         

3  

   DTM    

20 17.2180 35.2442 - 14.3648 28.5300 - 

25 17.2181 33.7127 - 14.3649 27.9965 - 

30 17.2181 33.7543 - 14.3649 28.0078 - 

35 17.2181 33.7586 51.6161 14.3649 28.0089 45.1664 

40 17.2181 33.7585 51.9253 14.3649 28.0089 45.2544 

45 17.2181 33.7585 51.9681 14.3649 28.0089 45.2654 

50 17.2181 33.7585 51.9667 14.3649 28.0089 45.2651 

51 17.2181 33.7585 51.9668 14.3649 28.0089 45.2651 

52 17.2181 33.7585 51.9668 14.3649 28.0089 45.2651 

   Ritz    

4 17.2181 33.7677 53.9976 14.3054 27.9574 49.3000 

5 17.2181 33.7587 52.1677 14.3054 27.9335 45.6288 

6 17.2181 33.7585 51.9780 14.3054 27.9331 45.2301 

7 17.2181 33.7585 51.9672 14.3054 27.9330 45.2060 

8 17.2181 33.7585 51.9668 14.3054 27.9330 45.2052 

9 17.2181 33.7585 51.9668 14.3054 27.9330 45.2052 
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Figs. 2 and 3 show the effect of the radial variations of the modulus of elasticity according to the nonlocal 

parameter. It can be observed that by increasing the nonlocal parameter, the natural frequency always decreases. The 

Fig. 4 shows the effect of the parameter of g (power law index) on the natural frequency for different values of the 

nonlocal parameter.it can be seen, the difference between the graphs, increases by increasing the parameter of g for 

the classic plate and the nano-plate. In addition, for larger values of the nonlocal parameter, the difference between 

the graphs increases. Fig. 5 shows the natural frequency versus power law parameter of FGM for different values of 

the radial parameter of FGM  and different values of the nonlocal parameter, the figure reveals that the frequency 

difference for larger values of   is greatest. Fig. 6 shows that with increasing the radius of the nano-plate non-

dimensional frequency increases , and if   is greater than 0, the speed of the increasing of the frequency is higher 

and also for higher values of  , great non-dimensional frequencies achieve, but when the value of   is less than 0, 

for smaller values of  , a higher non-dimensional frequencies obtain. Fig. 7 shows the variation of the natural 

frequency versus radius for different power law parameters and for the two classic plate and nano-plate. It can be 

seen, for more values of g, the frequency difference between the classical and the nano-plate decreases. Fig. 8, 

depicts the natural frequency variations with   for the two radii and the first three modes. It can be observed, the 

most speed of frequency occurs in the higher modes and larger radii, and frequency difference between two different 

radii increases with increasing in number of modes. Fig. 9 depicts the frequency variation versus parameter of  . It 

can be seen that with increasing parameter of  , for values of α lower than zero, the natural frequency decreases 

and for values of   greater than 0, the natural frequency increases. Also, the most rate of increasing or decreasing 

of the frequency occurs in higher modes. Fig. 10 shows that with increasing parameter of  , higher frequencies 

obtain, also for minus values of   higher frequency achieve for lower values of   and for positive values of the 

most frequency obtain for lower values of  . The effect of the radial parameters of   and   on the shape of the 

classical and nano-plate  are shown in Figs. 11 and 12. According to the figures, it is clear that the with increasing in 

nonlocal parameter, non-dimensional  defection increases. For values of   larger than 0, the variation of deflection 

parameter is larger, and the greater value of deflection parameter achieves for higher of  . A two-dimensional and 

three-dimensional graph of the dimensionless deflection for clamp boundary conditions presented in Figs. 13-16.  

 

 

 

 

 

 
Fig.2 

Effect of the radial change of the modulus of elasticity for 

different values of b. 

  

 

 

 

 

 
Fig.3 

The effect of the radial change of the modulus of elasticity 

for different values of b. 

  

 

 

 

 

 

 

 

Fig.4 

The effect of the parameter power g (power law index) on the 

natural frequency for different values of the nanlocal 

parameter. 
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Fig.5 

The natural frequency charts in terms of the parameter g for a 

classic and nano plate. 

 

 

 

 

 

 
 

Fig.6 

The effects of the FGM parameters on the dimensionless 

frequency. 

 

 

 

 

 

 
Fig.7 

The variation of the natural frequency with radius this time 

for the g parameter and for the two classic plates and the 

nano plate. 

  

 

 

 

 
 

Fig.8 

The natural frequency variations with   are given for the 

two radii and the first three modes. 

  

 
 

 

 

 

 

 

Fig.9 

The natural frequency variations with   are given for the 

two radii and the first three modes. 

 

 

 

 

 

 

 
Fig.10 

The effect of the FGM parameter on the dimensionless 

frequency for different modes. 
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Fig.11 

Effect of the FGM parameter on the deflection for classic and 

nano plate. 

  

 

 

 

 
 

Fig.12 

Effect of the FGM parameters on the deflection for classic 

and nano plate. 

  

 

 

 

 

 

 

Fig.13 

Two-dimensional graph of the dimensionless deflection for a 

clamp boundary conditions of the nano plate for 2g  and 

2  . 

  

 

 

 

 
Fig.14 

Two-dimensional graph of the dimensionless deflection for a 

clamp boundary conditions of the classic plate for 2g  and 

2  . 
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Fig.15 

Three-dimensional graph of the dimensionless deflection for 

a clamp boundary conditions of the nano plate for 2g  , 

2  and 0.5   . 
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Fig.16 

Three-dimensional graph of the dimensionless deflection for 

a clamp boundary conditions of the nano plate for 2g  , 

2  and 0.5  . 

 

Table 3. shows a comparison for a circular nano-plate. As can be seen, the results are good agreement with those 

of various references. Table 4. also shows a comparison for a classic plate with two-directional FGM, which, as can 

be seen, results of both methods are in agreement with the reference results.  
 

 

Table 3 

Comparison of non-dimensional frequencies for square and circular nano-plate with constant thickness and zero in-plane forces. 
      ( )nm      Results 

 
2 1.8 1.6 1.4 1.2 1 .8 .6 .4 .2 0 

1.827 1.857 1.884 1.909 1.932 1.952 1.969 1.982 1.992 1.998 2.000 Square nano-

plate [52]          

1.802 1.835 1.866 1.895 1.921 1.944 1.964 1.974 1.990 1.997 2.000 Circle nano-
plate [53] 

1.802 1.835 1.866 1.895 1.921 1.944 1.964 1.974 1.990 1.997 2.000 Mohammadi et 

al. [39] 

1.8020 1.8351 1.8664 1.8953 1.9215 1.9445 1.9640 1.9796 1.9909 1.9978 2.0001 DTM 

 

 

Table 4 

Comparison of non-dimensional frequencies for classic plate with different FGM parameter. 
BC   2     4     

   [54] DTM Ritz [54] DTM Ritz 

simply 0.5   1  7.2994 7.2994 7.2995 7.2143 7.2144 7.2143 

  
2  29.8048 29.8048 29.8048 28.9789 28.9792 28.9789 

  
3  69.6276 69.6276 69.6278 67.6622 67.6691 67.6622 

 0.5    1  6.9328 6.9328 6.9328 7.02565 7.0257 7.02565 

  
2  26.0317 26.0317 26.0317 27.0248 27.0237 27.0248 

  
3  59.5052 59.5052 59.5053 61.8419 61.9380 61.8419 

clamped 0.5   1  11.4543 11.4543 11.4543 11.25689 11.2569 11.25689 

  
2  38.6604 38.6604 38.6604 37.7438 37.7441 37.7438 

  
3  83.0237 83.0237 83.0237 80.8935 80.9057 80.8935 

 0.5    1  9.5109 9.5109 9.5109 9.7237 9.7237 9.7237 

  
2  32.3670 32.3670 32.3670 33.4495 33.4490 33.4495 

  
3  69.6425 69.6425 69.6425 72.1518 72.2070 72.1518 



887                        M. Zarei and Gh. Rahimi 

© 2018 IAU, Arak Branch.  

Tables 5-8. show The effect of the Winkler medium for the simply support and clamped boundary conditions 

using both the Ritz method and DTM. It can be seen, with increasing Winkler coefficient, the frequency parameter 

increased, and special for low nonlocal parameters. The effect of the Winkler parameter is more for minus values of 

  .with increasing the Pasternak parameter, the natural frequency will increase and the effect of the Pasternak 

parameter is more when values of   are negative. 

 

 

Table 5  

Frequency parameter for Clamped FGM nano plates for different values of Pasternak parameter 10GK  . 

 

 

 

 

 

 

 

 

clamped           

 1 2 

           

 1 3 1 3 

   g      

 1 5 1 5 1 5 1 5 

      DTM     
  

wK  
1  7.5074 6.9749 7.9297 7.3367 7.0201 6.5595 7.4046 6.8870 

 `10 
2  24.3872 21.8222 26.3155 23.5342 18.6357 16.7241 20.1081 18.0278 

-0.5  
3  47.1702 42.0826 51.0484 45.5351 31.1099 27.7940 33.6888 30.0869 

 100 
1  12.7106 12.9303 12.9645 13.1290 12.4290 12.7111 12.6501 12.8831 

  
2  26.4562 24.3875 28.2437 25.9307 21.2717 19.9559 22.5729 21.0605 

  
3  48.2724 43.4682 52.0685 46.8187 32.7571 29.8505 35.2155 31.9963 

0.5 10 
1  10.0241 9.1482 9.6444 8.8181 9.2565 8.4815 8.9080 8.1798 

  
2  32.3436 28.8908 30.7191 27.4467 24.4850 21.9090 23.2483 20.8116 

  v 61.8455 55.1497 58.6355 52.2910 40.6242 36.2564 38.4997 34.3661 

 100 
1  14.3416 14.2209 14.0788 14.0108 13.8160 13.8014 13.5850 13.6181 

  
2  33.9309 30.8743 32.3862 29.5273 26.5464 24.4653 25.4103 23.4876 

  
3  62.6902 56.2141 59.5258 53.4125 41.8990 37.8559 39.8425 36.0496 

      Ritz     
   

1  7.5074 6.9749 7.9297 7.3367 7.0201 6.5595 7.4046 6.8870 

 `10 
2  24.3872 21.8222 26.3155 23.5342 18.6357 16.7241 20.1081 18.0278 

-0.5  
3  47.1702 42.0826 51.0484 45.5351 31.1099 27.7940 33.6888 30.0869 

 100 
1  12.7106 12.9303 12.9645 13.1290 12.4290 12.7111 12.6501 12.8831 

  
2  26.4562 24.3875 28.2437 25.9307 21.2717 19.9559 22.5729 21.0605 

  
3  48.2724 43.4682 52.0685 46.8187 32.7571 29.8505 35.2155 31.9963 

0.5 10 
1  10.0241 9.1482 9.6444 8.8181 9.2565 8.4815 8.9080 8.1798 

  
2  32.3436 28.8908 30.7191 27.4467 24.4850 21.9090 23.2483 20.8116 

  
3  61.8455 55.1497 58.6355 52.2910 40.6242 36.2564 38.4997 34.3661 

 100 
1  14.3416 14.2209 14.0788 14.0108 13.8160 13.8014 13.5850 13.6181 

  
2  33.9309 30.8743 32.3862 29.5273 26.5464 24.4653 25.4103 23.4876 

  
3  62.6902 56.2141 59.5258 53.4125 41.8990 37.8559 39.8425 36.0496 
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Table 6 

 Frequency parameter for Clamped FGM nano plates for different values of Winkler parameter 100wK  . 

clamped          

1 2 

          

1 3 1 3 

  g      

1 5 1 5 1 5 1 5 
  

GK  9.3228 9.1110 9.6565 9.3808 9.3831 9.3113 9.6735 9.5444 

 5 35.0474 26.5592 29.9259 27.9767 24.0750 23.2631 25.2359 24.2213 

-0.5  52.2986 48.4307 55.8165 51.4531 38.9935 37.3380 41.0807 39.0751 

 15 13.0671 13.3147 13.3003 13.4950 13.7444 14.1548 13.9441 14.3090 

  35.0474 34.4991 36.4050 35.5959 32.6330 32.9766 33.5009 33.6612 

  61.4505 59.3088 64.4646 61.7954 51.3723 51.5012 52.9742 52.7743 

0.5 5 11.5308 10.9607 11.2161 10.7018 11.2003 10.7997 10.9252 10.5759 

  35.3912 32.6683 33.9226 31.4096 28.8269 27.2162 27.7898 26.3470 

  65.8330 60.1258 62.8332 57.5222 46.8807 43.9449 45.0544 42.4011 

 15 14.8226 14.7397 14.5915 14.5593 15.0773 15.2035 14.8812 15.0511 

  41.0828 39.4608 39.8374 38.4384 36.2781 27.2162 35.4644 35.2238 

  73.3117 69.1896 70.6390 66.9489 57.5600 56.4542 56.0845 55.2627 

     Ritz     
   9.3228 9.1110 9.6565 9.3808 9.3831 9.3113 9.6735 9.5444 

 5 35.0474 26.5592 29.9259 27.9767 24.0750 23.2631 25.2359 24.2213 

-0.5  52.2986 48.4307 55.8165 51.4531 38.9935 37.3380 41.0807 39.0751 

 15 13.0671 13.3147 13.3003 13.4950 13.7444 14.1548 13.9441 14.3090 

  35.0474 34.4991 36.4050 35.5959 32.6330 32.9766 33.5009 33.6612 

  61.4505 59.3088 64.4646 61.7954 51.3723 51.5012 52.9742 52.7743 

0.5 5 11.5308 10.9607 11.2161 10.7018 11.2003 10.7997 10.9252 10.5759 

  35.3912 32.6683 33.9226 31.4096 28.8269 27.2162 27.7898 26.3470 

  65.8330 60.1258 62.8332 57.5222 46.8807 43.9449 45.0544 42.4011 

 15 14.8226 14.7397 14.5915 14.5593 15.0773 15.2035 14.8812 15.0511 

  41.0828 39.4608 39.8374 38.4384 36.2781 27.2162 35.4644 35.2238 

  73.3117 69.1896 70.6390 66.9489 57.5600 56.4542 56.0845 55.2627 
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Table7 

Frequency parameter for simply supported FGM Nano plates for different values of Pasternak parameter  10GK  . 

 

 

 

 

 

 

 

 

 

 

 

 

simply           

 1 2 

           

 1 3 1 3 

   g      

 1 5 1 5 1 5 1 5 

      DTM     

  
wK  

1  4.8397 4.7424 5.0783 4.9366 4.6646 4.6009 4.8777 4.7732 

 `10 
2  18.7073 16.7875 20.4376 18.3197 14.4952 13.0672 15.8090 14.2257 

-0.5  
3  39.8547 35.5717 43.3900 38.7178 26.4660 23.6678 28.7943 25.7361 

 100 
1  11.3411 11.8758 11.4450 11.9547 11.2675 11.8200 11.3574 11.8881 

  
2  21.3345 20.0091 22.8669 21.3109 17.7569 17.0087 18.8447 17.9141 

  
3  41.1534 37.2007 44.5858 40.2196 28.3839 26.0520 30.5665 27.9444 

0.5 10 
1  5.6227 5.3849 5.4148 5.2129 5.3670 5.1734 5.1801 5.0198 

  
2  24.4890 21.9126 23.0851 20.6668 18.9045 16.9620 17.8367 16.0173 

  
3  52.2095 46.5689 49.3447 44.0183 34.6244 30.9189 32.7361 29.2397 

 100 
1  11.6967 12.1466 11.5982 12.0714 11.5760 12.0544 11.4905 11.9893 

  
2  26.5501 24.4685 25.2610 23.3594 21.5076 20.1557 20.5754 19.3674 

  
3  53.2074 47.8247 50.3994 45.3449 36.1116 32.7799 34.3052 31.2011 

      Ritz     

  
1  4.8397 4.7424 5.0783 4.9366 4.6646 4.6009 4.8777 4.7732 

 `10 
2  18.7073 16.7875 20.4376 18.3197 14.4952 13.0672 15.8090 14.2257 

-0.5  
3  39.8547 35.5717 43.3900 38.7178 26.4660 23.6678 28.7943 25.7361 

 100 
1  11.3411 11.8758 11.4450 11.9547 11.2675 11.8200 11.3574 11.8881 

  
2  21.3345 20.0091 22.8669 21.3109 17.7569 17.0087 18.8447 17.9141 

  
3  41.1534 37.2007 44.5858 40.2196 28.3839 26.0520 30.5665 27.9444 

0.5 10 
1  5.6227 5.3849 5.4148 5.2129 5.3670 5.1734 5.1801 5.0198 

  
2  24.4890 21.9126 23.0851 20.6668 18.9045 16.9620 17.8367 16.0173 

  
3  52.2095 46.5689 49.3447 44.0183 34.6244 30.9189 32.7361 29.2397 

 100 
1  11.6967 12.1466 11.5982 12.0714 11.5760 12.0544 11.4905 11.9893 

  
2  26.5501 24.4685 25.2610 23.3594 21.5076 20.1557 20.5754 19.3674 

  
3  53.2074 47.8247 50.3994 45.3449 36.1116 32.7799 34.3052 31.2011 
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Table 8 

Frequency parameter for Clamped FGM nano plates for different values of Winkler parameter 100wK  . 

4    CONCLUSIONS 

In this study, the free vibration of circular nano-plate was studied on the Winkler and Pasternak foundation. The 

appropriate governing equations were obtained for Ritz method and DTM. In both methods, the convergence study 

was carried out and the number of series for convergence was discovered. A parametric study including the effect of 

nonlocal and radial parameters and FGM thickness, nano-plate radius and elastic foundation on a non-dimensional 

natural frequency was carried out, and following results obtained: 

-     By increasing the parameter of the nonlocal, the natural frequency always decreases 

-     With increasing parameter of g for conventional plates and nano- plates, natural frequency decreases 

-      For values of   greater than 0, the rate of increase of frequency is higher and for higher values of   the 

higher frequencies obtained 

-     The frequency parameter is greater in higher modes and larger radii 

simply           

 1 2 

           

 1 3 1 3 

   g      

 1 5 1 5 1 5 1 5 

      DTM     
  

GK  
1  6.7058 6.8376 6.8777 6.9715 6.4363 6.5819 6.5903 6.7015 

 `5 
2  22.6853 21.6167 24.1272 22.8218 19.2561 18.7522 20.2572 19.5707 

-0.5  
3  44.8750 41.7662 48.0360 44.4691 33.5082 32.1767 35.3673 33.7183 

 15 
1  10.5493 11.0204 10.6586 11.1035 10.2006 10.6713 10.2977 10.7450 

  
2  29.4353 29.3837 30.5564 30.2779 26.7208 27.1670 27.4478 27.7360 

  
3  53.7128 52.2025 56.3738 54.3829 44.5453 44.7728 45.9554 45.8896 

0.5 5 
1  7.2827 7.2894 7.1233 7.1633 6.9593 6.9914 6.8161 6.8784 

  
2  27.6325 25.7832 26.3961 24.7330 22.7506 21.6372 21.8721 20.9054 

  
3  56.1111 51.4279 53.4561 49.1306 40.2282 37.7942 38.6156 36.4340 

 15 
1  10.9204 11.3027 10.8147 11.2217 10.5376 10.9282 10.4435 10.8562 

  
2  33.3829 32.5586 32.3668 31.7332 29.3367 29.2321 28.6610 28.6949 

  
3  63.3743 60.1864 61.0363 58.2358 49.7813 48.9550 48.4879 47.9131 

      Ritz     

  
GK  

1  6.7058 6.8376 6.8777 6.9715 6.4363 6.5819 6.5903 6.7015 

 `5 
2  22.6853 21.6167 24.1272 22.8218 19.2561 18.7522 20.2572 19.5707 

-0.5  
3  44.8750 41.7662 48.0360 44.4691 33.5082 32.1767 35.3673 33.7183 

 15 
1  10.5493 11.0204 10.6586 11.1035 10.2006 10.6713 10.2977 10.7450 

  
2  29.4353 29.3837 30.5564 30.2779 26.7208 27.1670 27.4478 27.7360 

  
3  53.7128 52.2025 56.3738 54.3829 44.5453 44.7728 45.9554 45.8896 

0.5 5 
1  7.2827 7.2894 7.1233 7.1633 6.9593 6.9914 6.8161 6.8784 

  
2  27.6325 25.7832 26.3961 24.7330 22.7506 21.6372 21.8721 20.9054 

  
3  56.1111 51.4279 53.4561 49.1306 40.2282 37.7942 38.6156 36.4340 

 15 
1  10.9204 11.3027 10.8147 11.2217 10.5376 10.9282 10.4435 10.8562 

  
2  33.3829 32.5586 32.3668 31.7332 29.3367 29.2321 28.6610 28.6949 

  
3  63.3743 60.1864 61.0363 58.2358 49.7813 48.9550 48.4879 47.9131 
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-      For values of   greater than 0, the deflection parameter is larger, and also for more large values   higher 

deflection obtained. 

-      By increasing the elastic factor, the natural frequency parameter increases, this increase is higher for lower 

values of the nonlocal parameters. 
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