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 ABSTRACT 

 The present study aims at investigating stress and deformation behavior of rotating 

thick truncated conical shells subjected to variable internal pressure. Material 

prpperties of the shells are graded along the axial direction by Mori-tanaka scheme, 

which is achieved by elemental gradation of the properties.Governing equations 

are derived using principle of stsionary total potential (PSTP) and shells are 

subjected to clamped- clamped boundary conditions. Aluminum-zirconia, metal-

ceramic and ceramic-metal FGM is considered and effects of grading index of 

material properties and pressure distribution are analyzed. Distribution of Radial 

displacement and circumferential stress in both radial and axial direction is 

presented. Further a comparison of behaviors of different FGM shells and 

homogeneous shells are made which shows, a significant reduction in stresses and 

deformations of FGM shells as compared to homogeneous shell. FGM shell having 

value of grading parameter n = 2 is most suitable for the purpose of rotating 

conical shells having variable pressure distribution as compared to homogeneous 

shell and shell having other values of grading parameter n.   

                                                            ©2017 IAU, Arak Branch.All rights reserved. 

 Keywords : Rotating thick truncated conical shell; Functionally graded material; 
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1    INTRODUCTION 

 UNCTIONALLY graded materials (FGMs) are multi phase composite materials that have continuous and 

smooth spatial variations of physical and mechanical properties. The gradation of material properties in FGMs is 

achieved by continuously varying the volume fractions of the constituents. Functionally graded conical shells are 

widely used in space vehicles, aircrafts, nuclear power plants and many other engineering applications. Asemi et al. 

[1] have applied Rayleigh–Ritz energy formulation to obtain the elastic behavior of functionally graded thick 

truncated cone by finite element method. Civalek [3] developed the discrete singular convolution (DSC) algorithm 

for determining the frequencies of the free vibration of laminated conical shells by using a numerical solution of the 

governing differential equations of motion based on Love’s first approximation thin shell theory. Civalek et al. [4] 

proposed discrete singular convolution (DSC) method for numerical solution of vibration problem based on Love's 
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first approximation shell theory considering the effects of initial hoop tension and centrifugal and Coriolis 

accelerations due to rotation. Heydarpour et al. [5] employed The generalized coupled thermoelasticity based on the 

Lord–Shulman (L-S) theory to study the transient thermoelastic behavior of rotating functionally graded (FG) 

truncated conical shells subjected to thermal shock with different boundary conditions. Hua [6] made a study of the 

influences of orthotropic properties and boundary conditions on the free vibrations of a rotating, truncated, circular 

orthotropic conical shell considering the effects of the Coriolis and centrifugal accelerations and the initial hoop 

tension based on the Love first-approximation theory and Galerkin procedure. Ma et al. [7] presented a free and 

forced vibration analysis of coupled conical–cylindrical shells with arbitrary boundary conditions using a modified 

Fourier–Ritz method. Malekzadeh et al. [8] studied the dynamic behavior of functionally graded (FG) truncated 

conical shells subjected to asymmetric internal ring-shaped moving loads. The material properties are assumed to 

have continuous variations in the shell thickness direction and the equations of motion are derived based on the first-
order shear deformation theory (FSDT) using Hamilton׳s principle. Nejad et al.[9-11] have performed a semi 

analytical approach using first-order shear deformation theory (FSDT), Matched asymptotic method (MAM) and 

multilayer method (MLM), for the purpose of elastic analysis of rotating thick truncated conical shells made of 

functionally graded materials (FGMs). Qinkai et al.[12] studied the effects of rotation upon frequency characteristics 

of rotating truncated conical shell and derived accurate expressions of centrifugal and coriolis accelerations and 

initial hoop tension and presented a modified dynamic model for the rotating truncated conical shell. Seidi et al. [13] 

presented an improved high-order theory for temperature-dependent buckling analysis of sandwich conical shell 

with thin functionally graded (FG) facesheets and homogenous soft core. Sofiyev [15] studied the buckling of 

freely-supported functionally graded (FG) truncated and complete conical shells under external pressures in the 

framework of the shear deformation theory (SDT). Sofiyev et al. [16] investigated the stability behavior of 

functionally graded (FG) truncated conical shell interacting with two-parameter elastic foundations within the shear 

deformation theory (SDT) according to the framework of the Donnell's shell theory. Zeighampour et al. [17] have 

developed the thin conical shell model by using the modified couple stress theory and derived the equations of 

motion with partial differentials and classical and non-classical boundary conditions by using Hamilton’s principle.  

Literature review, although points towards the popularity of the area of elastic analysis of FGM shells, however, to 

the best of the researcher’s knowledge, no study has been carried out to date on FGM rotating conical shell modelled 

by Mori-Tanaka scheme, using elemental gradation of material properties. In the present study, rotating truncated 

conical shells, made up of axially varying FGM whose properties vary according to Mori-Tanaka scheme are 

analyzed using element based material gradation. The shells are subjected to variable internal pressure having 

clamped-clamped boundary condition. Aluminum as a metal and zirconia as ceramic is used and both metal-ceramic 

and ceramic-metal FGM shells are analyzed.  

2    MATHEMATICAL FORMULATION   

In shear deformation theory (SDT), the elements may have rotation, and the shear strain may not be zero means the 

straight lines perpendicular to the central axis of the truncated cone may rotate after loading and deformation (Nejad 

et al., [9]). Multilayer modeling is adopted for the shell geometry along with principle of stationary total potential 

for finite element formulation. 

Fig.1 shows the geometric parameters for the modeling of axisymmetric cross section of the truncated conical 

shell. L and h are length and thickness and a and b are the inner radius at bottom and top surfaces of the shell. z is 

the distance of any point within the cross section from central plane, along the radial direction and x is height from 

the bottom edge, along axial direction. R is the distance of the central plane of the cross section, along the radial 

direction from the central axis of the shell, which is given by (Nejad et al., [9]): 

 

 tan
2

h
R a x    

 

(1) 

 

where   is half of the tapering angle, given as: 

 

1
 tan

a b

L
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 
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Young’s modulus and density of the shell are assumed to vary according to the Mori-Tanaka scheme (Bayat et 

al., [2]) (Eqs. (3)-(9)). The effective bulk modulus and shear modulus of the FGM shell are given by: 

 

     
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Fig.1 

Geometric parameters of the shell.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Boundary conditions applied. 
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(5) 

 

Here, V is the volume fraction of the phase material. The subscripts i and o refer to x = 0 and x = L respectively. 

The volume fraction of the inner and outer phases are related by 

 

1i oV V   (6) 
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x
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(7) 

 

where n (n ≥  0) is the volume fraction exponent. The elastic modulus E(x) can be found as: 

 

 
   

   

9

3

B x G x
E x

B x G x



 

 

(8) 



                                                                                                                                                        A.K.Thawait et.al.                    868 

 

© 2017 IAU, Arak Branch 

 

The mass density   can be given by the rule of mixtures as: 

   
n

o i i

x
x

L
     

 
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 

 
 

(9) 

 

In FEM, the functional grading is popularly carried out by assigning the average material properties over a given 

geometry followed by adhering the geometries thus resulting into layered functional grading of material properties. 

The downside of this approach is that it yields singular field variable values at the boundaries of the glued 

geometries, means a jump of the values of the material properties can be observed at the element boundaries. To get 

better results, instead of assigning average material properties to each element, material properties are varied inside 

the element boundaries, using same shape functions used to interpolate the displacement fields [18].  

 
8

1

e
i i

i

N 
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(10) 

 

where e  
is element material property, i is material property at node i and iN is the Shape function.  

Fig. 2 shows the boundary conditions applied on the shells. Variable pressure field at the inner surface is given 

by (Nejad et al., [9]): 

 

   
m

i o i

x
P x P P P

L
  

 
 
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(11) 

 

Axial component xP  and radial component zP of  P x is given by  

 

sin , cosx zP P P P    (12) 

 

The rotating shell is modeled as a axisymmetric problem. Using linear quadrilateral element, the displacement 

vector    can be obtained as (Seshu [14]): 

 

      
T e

u v N    (13) 

 

where u and v are the components of displacement in radial and axial direction respectively,  N  is the matrix of 

linear shape functions and    is the nodal displacement vector, given as:  
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(14) 
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Te
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By transforming the global co-ordinates into natural co-ordinates ( )  , the shape functions are obtained as: 
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The strain components are related to elemental displacement components as: 
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(21) 

 

where , ,r z   and rz  are radial, tangential, axial and  shear strain respectively. By transforming the global co-

ordinates into natural co-ordinates ( )  , 
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The above elemental strain-displacement relationships can be written as: 
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where  B  is strain-displacement relationship matrix, which contains derivatives of shape functions. For a linear 

quadrilateral element it is calculated as: 
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where J is the Jacobian matrix, used to transform the global co-ordinates into natural co-ordinates. It is given as: 
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(29) 

 

From generalized hooks law, components of stresses in radial, circumferential and axial direction 

( , ,r z   and rz ) are related to components of total strain as: 
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In generalized matrix notation, stress-strain relation can be written as: 
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where  D x  is stress-strain relationship matrix and is a function of x. 
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   
T

r z rz      

 

(36) 

when the shell rotates and is subjected to internal pressure, it experiences a distributed force over its volume and 

surface. Under these forces when shell is properly supported (so as to prevent rigid body motion), it undergoes 

deformation and stores internal strain energy U, which is given by: 

 

   
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(37) 

 

Also the potential of external body and surface force is given by 
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The element level equation can be written as: 
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The total potential of the element can be written as: 
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(41) 

 

Defining element stiffness matrix  
e

K and element load vector  
e

f  as: 
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Taking axisymmetric element, thickness of the element will be 2 ( )R z  , therefore: 
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Transforming global co-ordinates into natural co-ordinates 
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             2  ( )
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(47) 

Total potential energy of the shell is given by 

 
e

p p   (48) 

 

Using the Principle of stationary total potential (PSTP) the total potential is set to be stationary with respect to 

small variation in the nodal degree of freedom that is: 
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which gives system level equation for shell as: 
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3    RESULTS  

3.1 Validation of the work 

To validate the current work, a similar problem of conical Shell, previously analyzed is reconsidered. The shell has 

geometric parameters as (Nejad et al., [9]): 400 , 20 , 40L mm h mm a mm   and 30b mm . Material gradation 

is done by power law, and shell has clamped-clamped boundary condition. Circumferential stresses for 

0,1000  and 2000 rad/s are evaluated taking 1m n   and a comparison with reference is presented in Fig 3. 

Both the results are in good agreement. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Validation of the work. 

3.2 Numerical results 

In this section a conical FGM shell is analyzed. Aluminum as metal and zirconia as ceramic is taken and Ceramic-
metal and Metal-ceramic both the FGM are considered. The Young’s modulus (E), density (ρ), bulk modulus (B), 
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shear modulus (G) and Poisson’s ratio (υ) of aluminum and zirconia are given as (Bayat et al., [2]): 70AlE GPa , 

3 3151 , 2700 / ,  5700 / ,  58.3333 ,  128.8333 ,  26.9231 ,cer Al cer Al cer AlE GPa kg m kg m B GPa B GPa G GPa      

  58.0769 ,  0.3.cerG GPa   The shell has geometric parameters as 400 , 20 , 40L mm h mm a mm    and 

30b mm . Shell has clamped-clamped boundary condition and iP  and 0P  are taken as 120 MPa and 40 MPa. 

Stress and deformation is presented in non dimensional form. To normalize stress, it is divided by average pressure 

and to normalize displacement, it is divided by inner radius a. 

 

1000
2

i oP P u
P u

aP





     

 

(53) 

                     

where    

 

, Pr ,Normalized Stress P Average essure u Normalized Displacement      

 

 

Fig 4. to Fig 7. shows the distributions of normalized radial displacement, radial stress, circumferential stress and 

shear stress respectively. All the distributions are along the axial direction and evaluated at 2000 rad/s, for metal-

ceramic FGM shells. Pressure grading and material grading both the parameters are taken as 1 i.e. 1m n  . 

It is observed that deformation in radial direction is minimum that is zero, at bottom and top surface, which 

confirms the clamped-clamped boundary condition applied to the shell. Deformations are maximum at the inner 

layer i.e. at z = -h/2, near the bottom surfae and decreases gradually till the outer layer (z = h/2), top surface. Radial 

stresses are tensile and compressive both in nature. Compressive radial stress is more as compared to tensile radial 

stress. Tensile radial stress occurs only in a small zone near top and bottom surface and rest of the intermediate 

height zone has compressive radial stress. Circumferential stresses are only tensile. It is maximum at the inner layer, 

near the bottom surface, and decreases gradually upto the top surface and outer layer. Shear stress varies only in a 

small zone near the top and bottom surface and remains same in all the layers at intermediate heights. It is maximum 

at the bottom surface (at x = 0) and inner layer (at z = -h/2). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Normalized radial displacement ( 1, 1, 2000m n    ). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Normalized radial stress ( 1, 1, 2000m n    ). 
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Fig.6 

Normalized circumferential stress  ( 1, 1, 2000m n    ). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Normalized shear stress ( 1, 1, 2000m n    ). 

 

It can be seen from Fig 8. and Fig 9. that there is a significant increase in deformation and stress as pressure 

gradient index m increases upto 1.5 and above 1.5 there is a slight increase in deformation and stress.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Normalized radial displacement ( 1, 2, 2000n z h     ). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Normalized circumferential stress  ( 1, 2, 2000n z h     ). 

 



875                         An Investigation of Stress and Deformation States of Rotating …. 

 
 

© 2017 IAU, Arak Branch 

Fig 10. to Fig 13. shows the distribution of radial displacement and circumferential stress for different material 

grading index n in ceramic-metal and metal-ceramic FGM respectively. It can be seen that in ceramic-metal FGM 

shell deformation is maximum and stress is minimum for 0n  , which is completely metallic shell. Deformation 

decreases and stress increases with increasing n.  In metal-ceramic shell deformation is maximum and stress is 

minimum for 0n   that is completely ceramic shell, and deformation increases and stress decreases with increasing 

n. By comparing both metal-ceramic and ceramic-metal FGM shells (Fig 14. and Fig 15.), it is observed that 

complete ceramic shell has lowest deformation and highest stress while complete metallic shell has highest 

deformation and lowest stress. Both material are not economical as compared to FGMs. Because ceramic has high 

density, therefore complete ceramic shell will be of highest weight and complete metallic shell has very high 

deformation. Therefore to optimize weight to strength and deformation to strength ratio according to requirement 

(allowable deformation or allowable stress), using FGM, having grading index 2 is more economical than 

homogeneous shells. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10 

Normalized radial displacement, ceramic-metal shell ( 1,m   

( 2, 2000z h    ). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11 

Normalized circumferential stress, ceramic-metal shell ( 1,m   

( 2, 2000z h    ). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12 

Normalized radial displacement, metal-ceramic shell ( 1,m   

( 2, 2000z h    ). 
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Fig.13 

Normalized circumferential stress, metal- ceramic shell 

1,m  2, 2000z h    ). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Fig.14 

Comparison of Normalized radial displacement ( 1,m   

( 2, 2000z h    ). 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Fig.15 

Comparison of Normalized circumferential stress ( 1,m   

( 2, 2000z h    ). 

4    CONCLUSIONS 

In the present study stress and deformation analysis of rotating thick truncated conical shells made up of functionally 

graded material is done. Material properties are modeled by Mori-Tanaka scheme, which is achieved by element 

based material grading. The shells are subjected to clamped-clamped boundary condition and variable internal 

pressure. Shear deformation theory and multilayer modeling is used and the governing equations are modeled using 

principle of stationary total potential. The element based grading of material property yields an appropriate approach 

of functional grading as the shape functions in the elemental formulations being coordinate functions make it easier 

to implement the same. Layered functional grading over discrete area instead of elements, offer singularities in the 

field variables at adjoining lines or surfaces.  Numerical results are obtained for metal-ceramic and ceramic-metal 

FGM of aluminum and zirconia. On the basis of results obtained it can be concluded that deformation and stresses 

are more in the inner layer, near the bottom surface and increases with increasing pressure gradient m. Further to 
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optimize weight to strength and deformation to strength ratio according to requirement (allowable deformation or 

allowable stress), using FGM having grading index 2 is more suitable than homogeneous shells. 
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