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 ABSTRACT 

 In present study, thermo-elastic buckling analysis of multi-layer orthotropic 

annular/circular graphene sheets is investigated based on Eringen’s theory. The 

moderately thick and also thick nano-plates are considered. Using the non-local first 

and third order shear deformation theories, the governing equations are derived. The 

van der Waals interaction between the layers is simulated for multi-layer sheets. The 

stability governing equations are obtained according to the adjacent equilibrium estate 

method. The constitutive equations are solved by applying the differential quadrature 

method (DQM). Applying the differential quadrature method, the ordinary differential 

equations are transformed to algebraic equations. Then, the critical temperature is 

obtained. Since there is not any research in thermo-elastic buckling analysis of multi-

layer graphene sheets, the results are validated with available single layer articles. The 

effects of non-local parameter, the values of van der Waals interaction between the 

layers, third to first order shear deformation theory analyses, non-local to local 

analyses, different values of Winkler and Pasternak elastic foundation and analysis of 

bi-layer and triple layer sheets are investigated. It is concluded that the critical 

temperature increases and tends to a constant value along the rise of van der Waals 

interaction between the layers.                                                                                                

     © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 OR the first time Bohem et al [1] introduced the graphene as a net of carbon atoms which is formed in 

hexagonal shape frequently and regularly with covalent bonds between the carbon atoms. Many scientists 

believed that this special shape with thickness of one carbon atom cannot be stable, so the investigations were 

delayed until Novoselov and Geim [2] are succeeded to produce a stable single layer graphene sheet. The special 

shape of graphene sheet leads to unusual mechanical, thermal and electrical properties and the high stiffness to 
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inertia ratio. These significant properties persuade researchers to engage them within other substances. So, analysis 

of mechanical properties of nanostructures is significant. 

Extraordinary mechanical behavior of graphene convinced many researchers to study the mechanical behavior of 

nano-structures. The stability analysis is one of the challenging and complicated aspects in mechanical engineering. 

Buckling analysis is one of the stability issues that many researchers tried to predict the critical load for structures. 

Graphene sheet can be simulated as a classical plate to study its mechanical behavior. However, in nano sizes the 

interactions between the atoms cannot be neglected and must be considered in calculations. The obtained results 

from classical theories in elasticity and experimental tasks show that using of the classical elasticity theory leads to 

significant differences between the results. According to the vast computational expenses of nano-structures 

analyses when applying atomic lattice dynamics and molecular dynamic simulations, there is a great interest in 

applying continuum mechanics for analysis of such structures. In recent years, various size dependent continuum 

theories have been introduced such as couple stress theory [3], strain gradient elasticity theory [4-6], modified 

couple stress theory [7-10] and non-local elasticity theory [11-13]. These theories are comprised of information 

about the inter-atomic forces and internal lengths that is introduced as small scale effect in non-local elasticity 

theory [14]. Through these methods, the Eringen’s non-local elasticity theory [12] has been used much more than 

the others. In this theory, the stress at a reference point is a function of the strain field at every point in the body. An 

experimental work was presented by Wen et al [15] to examine the buckling mechanism of graphene nanosheets. 

They found that when the sheets buckled the graphene layers undergo sharp kinking. However, the graphene layers 

can survive kinking without fracture due to their exceptional flexibility. Ghorbanpour Arani et al [16] applied non-

local DQM for large amplitude vibration of annular boron nitride sheets on non-linear elastic medium. They 

concluded that with increasing non-local parameter, the frequency of the coupled system becomes lower. 

Mohammadi et al [17] studied the small scale effect on the vibration of orthotropic plates embedded in an elastic 

medium and under biaxial in-plane pre-load via non-local elasticity theory. Their results show that with the decrease 

of in-plane pre-loads the curves isotropic and orthotropic non-dimensional frequency approaches close to each other. 

Dastjerdi et al [18] applied the non-local elasticity theory of Eringen to find the deformation response of a single 

layer sector embedded in elastic matrix under uniform transverse loading. They found that the maximum deflection 

reduces with increase of the non-local parameter. Anjomshoa et al [19] investigated Frequency analysis of 

embedded orthotropic circular and elliptical micro/nano-plates using non-local variational principle. They proved 

that the natural frequencies depend on the non-locality of the micro/nano-plate, especially at small dimensions. 

Pradhan [20] investigated the buckling analysis of rectangular graphene sheets based on non-local TSDT elasticity 

theory. He improved the Navier solution for all simply supported edges and obtained the buckling temperature. His 

results show that the non-local to local critical temperature is always equal or less than unit and the TSDT analysis 

gives more accurate results. He et al. [21] described van der Waals interaction between the layers of multi-layered 

graphene sheets by an explicit formula based on the continuum mechanics and a multiple-elastic beam model. 

Scarpa et al. [22] studied both circular and rectangular graphene sheets subjected to point loading based on a special 

equivalent atomistic-continuum model. They found that the rectangular SLGSs show a different distribution of the 

geometrical and mechanical properties, compared to the circular configuration. Samaei et al [23] studied buckling of 

graphene sheets based on FSDT non-local elasticity theory. They investigated the small scale effects on buckling 

load. Zenkour et al [24] considered the thermo-elastic buckling of graphene sheets embedded in Winkler-Pasternak 

elastic matrix. They used non-linear CPLT. Their results declare that the critical temperature in clamped-free 

boundary conditions is more than the other boundary conditions. Wang et al [25] developed the non-local theory for 

thermo-elastic buckling analysis of nano plates considering the linear strain field in absence of elastic foundation. 

They calculated the critical temperature only for simply supported boundary conditions. 

In this paper, the non-linear thermo-elastic buckling of multi-layer graphene sheets embedded in Winkler-

Pasternak elastic matrix is investigated based on non-local first and third order shear deformation theories. The 

governing equations are obtained for multi-layer annular/circular graphene sheets. The critical temperature is 

calculated for various types of boundary conditions, different values of the van der Waals interactions between the 

layers and the values of elastic foundation. The effect of non-local parameter is studied on critical temperature. 

2    GOVERNING EQUATIONS     

2.1 TSDT Formulation 

A multi-layer annular/circular graphene sheet with thickness h, inner radius 
i

r , outer radius 
0

r , is shown in Fig. 1. 

The classical plate theory (CLPT) neglects the effects of shear stress through the thickness of the plate. CLPT 
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usually is being used for thin plates, because, the effect of shear stress through the thickness is inconsiderable. So, 

the obtained results of CLPT analysis are accurate for thin plates. However, the first order shear deformation theory 

(FSDT) should be used instead of CLPT for moderately thick plates. The shear stress is considered linear through 

the thickness and the FSDT requires the shear correction factor. Also in the FSDT shear stress is not satisfied at the 

top and bottom of the plate. The TSDT can be used to obtain the most accurate results, specially for thick plates. In 

this theory, the shear correction factor is not required and the shear stress can be satisfied at the top and bottom of 

the plate. In this paper, it is aimed to obtain the most accurate results, so the first and third order shear deformation 

theories (FSDT, TSDT) are used to derive the governing equations. As it is mentioned, the TSDT analysis gives the 

more accurate results in comparison with CLPT (Classical Plate Theory) and FSDT. The TSDT analysis does not 

have the weaknesses of the other theories by considering the shear stress effects through the thickness of the plate 

(weakness of the CLPT) and satisfying the boundaries for shear stress at the surfaces of the plate (weakness of 

FSDT) Whatever the higher theory of the plates is exerted, the number of governing equations increases. 

Consequently, the computational process will be more complex and time consuming. So, choosing the theory 

depends on the initial conditions of the issue and the expected accuracy. According to the third-order shear 

deformation theory, the displacement field can be expressed as follow. The index i represents the layer number, for 

example i l  refers to the upper layer under transverse load and i n  the bottom layer rested on the elastic 

foundation (i=1, 2, 3… n). 

  
3
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Fig.1 

Triple layer annular nano plate. 

  

 

 

 

 

 

 

 

Fig.2 

Bi-layer graphene sheet rested on Winkler-Pasternak 

elastic foundation considering the van der Waals 

interaction between the layers. 

 

 

The van der Waals interaction and elastic matrix are pictured in Fig. 2. 
w

k  and 
p

k  are the Winkler and Pasternak 

stiffness coefficients of elastic foundation respectively. The term 
0 2 1
( )k w w  refers to the van der Waals interaction 

bonds between the layers in Fig. 2. and 
0

k  is the van der Waals stiffness. 
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In Eqs. (1-3), ui  and wi are the displacement components of the mid-plane along the r and z directions, 

respectively. 
1
i  explains the rotation functions of the transverse normal about circumferential and radial directions. 

2
i  is only a mathematical parameter. Considering the von-Karman assumptions, the strain field are expressed as 

follows: 
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The effects of atomic forces are significant in nano scales and it must be entered into the fundamental relations 

as material parameters [12,18]. In non-local theory, the stress at reference point X is a function of strain field in 

every point on the sheet. Eringen presented a differential form of the non-local relations as follow [12]: 
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(7) 

 

In Eq. (7), a is internal characteristic length, and 
0

e  is material constant which is determined by experiment. The 

parameter 
0

e a  is the nan-local parameter exposing the small-scale effect on the nano-size structures. C is the 

material properties tensor which is considered orthotropic as shown in Eq. (7). The value of the non-local parameter 

(  ) depends on boundary conditions, chirality, number of walls, and the nature of motions and often is taken 

between 0 to 2 nm [26]. By applying Eq. (7), the non-local stress components can be expressed in cylindrical 

coordinates system below [12]: 
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Also, 2  is the Laplacian operator in Cylindrical coordinates system as follow: 
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Considering Eqs. (8-10) into Eq. (7) leads to: 
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T   is thermal strain, in which   is thermal diffusivity and T  is the temperature difference. The non-local 

stress resultant components , , ( , )NL NL NL

j j j
Ni Mi Hi j r   and ,NL NL

r r
Q Y  can be formulated as follows: 
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Substituting Eq. (12) into Eqs. (13-16), the local and non-local force, moment and shear force components can 

be developed as follows: 
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r r
Qi Yi  are the local form of stress resultants which are defined for orthotropic 

material below: 
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In this study, the governing equations and also the boundary conditions are derived based on the principle of 

minimum total potential energy respectively. The basic relations are presented as follow: 
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U and   are the internal strain energy and potential of external applied forces, respectively. T
rN  is radial in-

plane load. By using the variation principals, the governing equations of multi-layer annular/circular graphene sheets 

are obtained in Cylindrical coordinates system in terms of local force, moment and the shear force resultants by 

substituting Eqs. (16-18) into the non-local form of the governing equations as follows: 
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2.1.1 The adjacent equilibrium estate method 

In this paper, the adjacent equilibrium estate method is applied to calculate the critical temperature leading to 

unstable statement. The equilibrium equation can be obtained from the very small variations near equilibrium estate. 

Consequently, the displacement, force and moment resultants are defined as follows: 
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The superscript (0) sets for the pre-buckling state and superscript (1) for very small changes in buckling state. 

Since there is not any deflection in pre-buckling conditions, so, 0 0 0
1 2, , 0wi i i   . By solving pre-buckling 

equations it can be concluded: 
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By using the mentioned definitions, the buckling governing equations for multi-layer annular/circular graphene 

sheets are obtained below: 
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Since, the numbers are extremely small in nano scales, due to convenience and avoiding the digits error in 

processing, the non-dimensional terms are introduced as follow. After substituting these terms into the resultant 

components and then into the governing equations (Eqs. (40-45)), the dimensionless form of equations would be 

obtained in terms of displacements and rotations. 
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2.1.2 Boundary conditions 

The boundary conditions are derived from Eqs. (28-33) in the category of the simply supported (S), clamped (C) and 

free edges (F). The definition for the boundary conditions is shown in Fig. 3. 
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Fig.3 

Definition of the boundary conditions. 
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2.2 FSDT formulation 

The FSDT displacement field can be expressed by neglecting 3z  in Eq. (1) as follow: 
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The procedure which is explained for TSDT analysis, is repeated to obtain the governing equations for FSDT 

analysis. The governing equations can be expressed as follow: 
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The stress resultants are obtained as follow: 
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sk  is the transverse shear correction coefficient which is taken 5/6 [18]. By the same mentioned explanations for 

TSDT analysis in section 2.1, the stability governing equations can be derived for FSDT analysis, again. 

2.2.1 Boundary conditions (FSDT) 

In this paper, the boundary conditions are assumed the simply supported (S), clamped (C) and free edges (F) like 

TSDT analysis, the boundary conditions are given for each boundaries as follow: 

 

1

: 0             ,

: 0             ,

: 0       ,

r i o

i o

r r r i o

S ui wi Mi r r r

C ui wi i r r r

F Ni Qi Mi r r r



   

   

   

 

 

 

3    SOLUTION (DIFFERENTIAL QUADRATURE METHOD (DQM)) 

In this study, the differential quadrature method (DQM) is used to solve the equilibrium equations for different types 

of boundary conditions. The DQM was proposed by Bellman and coworkers for solving differential equations [27, 

28]. This method is highly accurate, convenient and capable to solve the partial differential equations, so, many 

researchers have used the DQM to analyze the sets of ordinary and partial differential equations system. In this 

method, the derivatives of a function at any grid points is approximated using weighted sum of all the functional 

values at certain points in the whole computational domain. 

By using the DQ Method, derivatives of a function ( )f r  at point r can be defined as following linear sum of the 

function values: 
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In which, N is the number of grid points along r direction. It is more offered to use the grid point distribution 

which is based on Gauss-Chebyshev-Lobatto points to gain more accurate results [18]. 

By use of DQM, the set of differential equations is transformed to the non-linear algebraic equations system 

instead of non-linear ordinary differential equations system. 

4    NUMERICAL RESULTS AND DISCUSSION    

First, it is considered a single layer annular graphene sheet to check the convergence of DQM for TSDT analysis. 

Fig. 4 shows that the converged results are obtained by only nine nodes along the r direction for different types of 

boundary conditions. There is not any difference in the rate of convergence for different types of boundary 

conditions. 
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Fig. 4 

Variation of critical temperature versus the number of 

nodes for DQM domain. 

 

Table 1. shows the comparison between the obtained results of this paper and the other references for different 

values of the thickness and /i or r  ratio. The results of this paper are inconsiderably less than the Ref [29, 30] 

because of applying TSDT analysis. However, the accuracy and agreement of the results can be observed. 

Consequently, applying TSDT analysis and DQM method gives appropriate and accurate results. 
 
Table 1 

Comparison of critical temperature with the other references for circular plate. 

/ oh r  
/ 0.2i or r   / 0.4i or r   / 0.6i or r   

[29] [30] 
Present 
paper 

[29] [30] 
Present 
paper 

[29] [30] 
Present 
paper 

SS 

  0.05 18.5471 18.5471 18.3059 28.6417 28.6332 28.3266 60.1986 60.1865 59.77721 

0.1 17.7252 17.7241 17.4947 26.9211 26.9153 26.6249 53.2518 53.2462 52.87903 

  0.15 16.5100 16.5079 16.2953 24.4721 24.4629 24.2029 44.6630 44.6624 44.35035 

0.2 15.0695 15.0699 14.8735 21.7093 21.7062 21.4704 36.4367 36.4332 36.18164 

SC 

  0.05 40.7178 40.1322 40.1884 61.1677 61.1680 60.4948 122.3041 122.1025 121.4479 

0.1 37.4454 36.7599 36.9586 53.9609 53.9490 53.3673 95.9334 95.9224 95.26186 

  0.15 33.0228 32.2851 32.5935 45.1082 45.1046 44.6120 70.6129 70.5936 70.11861 

0.2 28.3376 27.6045 27.9692 36.6890 36.5904 36.2854 51.6063 51.5236 51.24505 

CS 

  0.05 27.9670 27.8256 27.6034 49.9565 49.9566 49.4069 109.5716 109.4116 108.8046 

0.1 25.9118 25.6137 25.5749 44.2265 44.2225 43.7400 86.1880 86.1740 85.58468 

  0.15 23.0852 22.7338 22.7850 37.1368 37.1246 36.7282 63.6357 63.6325 63.19025 

0.2 20.0331 19.7580 19.7726 30.3496 30.3490 30.0157 46.6745 46.6625 46.34777 

 

As it is mentioned before, in this study in addition to TSDT, the FSDT analysis is considered too. Comparison 

between the FSDT and TSDT analyses is shown in Table 2. by considering a single layer annular graphene sheet 

with clamped-clamped (CC) edges with the conditions below: 
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According to Table 2. , it is concluded that the buckling temperature decreases with the increase of non-local 

parameter for both FSDT and TSDT analyses. TSDT analysis gives the smaller results in comparison with FSDT in 

this problem. However, it is observed that two theories distance with increase of the small scale effects. 

Consequently, it can be possible to use FSDT analysis instead of TSDT for smaller values of non-local parameters 

which is caused inconsiderable differences between the obtained results of two theories. 

The comparison between TSDT and FSDT analyses is illustrated for different types of boundary conditions and 

thicknesses in Table 3. The critical temperature increases with increase of thickness. The rate of increasing of the 

critical temperature for FSDT analysis is more than TSDT. It is also seen that the difference between two theories 
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are more significant for the higher values of thickness. For example, there is about 5 percent difference between the 

results of FSDT and TSDT analyses for * 4h  . Applying TSDT analysis gives more accurate results in comparison 

with FSDT in any circumstances. Also, the differences between FSDT and TSDT analyses for CC boundary 

conditions is more than SS along the rise of * *.( / (0.34 )).h h h nm  

 

Table 2 
Comparison between TSDT and FSDT analysis for different non-local parameter. 

0 ( )e a nm  
( )crT C  

tR  TSDT/FSDT 
FSDT TSDT 

   0 8341.03 8341.02 1               

0.5 5166.23 5165.86 0.999928381 

   1 2430.93 2420.20 0.995586051 

1.5 1222.85 1068.96 0.874154639 

   2  719.07  607.57 0.844938601 

 
 

Table 3 

Comparison between TSDT and FSDT analyses for different types of boundary conditions and thicknesses ( 21nm  ). 

( )crT C  

CC 

*h  TSDT FSDT tR  TSDT/FSDT 

1   2420.20   2430.93 0.995586051 

2   7749.75   7867.30 0.985058406 

3 13405.23 13813.65 0.970433593 

4 18339.55 19118.09 0.959277313 

SS 

1   1507.63   1509.41 0.998820731 

2   5581.47   5587.84 0.998860025 

3 11244.72 11335.07 0.992029163 

4 18438.17 18124.95 0.983012333 

4.1 Sample 1: Single layer annular graphene sheet 

A single layer annular/circular graphene sheet is assumed with the material properties below. The variation of 

critical temperature versus the non-local parameter is demonstrated in Fig.5 in different types of boundary 

conditions. The buckling temperature decreases along the increase of small scale effects for all types of boundary 

conditions. If the non-local parameter is considered to be zero, the critical temperature for CC boundary conditions 

is more than the other boundaries. It is concluded that whatever the boundary conditions is more flexible, the 

buckling load is smaller. SS and FS results are closer in comparison with CC and FC. However, the buckling 

temperature for all boundary conditions approach with growing the non-local parameter. 
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Fig. 5 

Variation of critical temperature versus the non-local 

parameter for different types of boundary conditions. 

 



                                                                               Non-Local Thermo-Elastic Buckling Analysis of Multi-Layer….                   871 

© 2016 IAU, Arak Branch 

Fig. 6 is drawn to study the effect of plate’s size on the results. The thickness is a constant value and the outer 

radius or  varies in /or h  ratio. It is observed that crT  increases and tends to a constant value during the increase 

of /or h . The buckling temperature decreases for the bigger value of non-local parameter (conclusion in Fig. 4). The 

rate of convergence of crT  to a constant value for smaller values of non-local parameter, is more than the larger 

ones. It is also seen that for the same non-local parameter and the large enough value of /or h  the results of CC and 

SS boundary conditions are so close to each other. 

 

     

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 

Variation of the critical temperature versus the /or h  ratio. 

 

The parameter mT  is defined as /Nonlocal Local
m cr crT T T    to study the effect of non-local investigation on the 

results. Fig. 7 describes the effect of non-local analysis. For small sizes of the plate (small values of /or h  ratio), the 

local and non-local analyses are distanced too far. On the other hand, the small scales effects increases remarkably 

in small sizes and the importance of applying the non-local analysis increases. Then, the small scale effects decrease 

along the rise of /or h  and the local and non-local analyses approach. Also, the effect of applying the non-local 

analysis for CC boundary conditions is more than SS as it is observed the local and non-local analyses are closer for 

SS boundary conditions. It can be concluded that the small scale effects is lesser for more flexible boundary 

conditions. 

 

    

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 

Variation of mT  parameter versus the /or h  ratio. 

 

The effect of Winkler and Pasternak elastic foundations is investigated for CC boundary conditions, Fig. 8 (a) 

the Winkler and (b) the Pasternak elastic matrixes. The variations are linear for both Winkler and Pasternak 

foundations. According to Fig. 8 (a) and (b), the buckling temperature increases along the increase of the Winkler 

and Pasternak elastic foundations. However, the effect of Pasternak elastic foundation is more significant on the 

results as it is observed its slope is steeper in comparison with the Winkler foundation. In addition, crT  is distanced 

more for the Winkler foundation in comparison with the Pasternak foundation along the rise of small scale effects. 
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(a) 

 
(b) 

Fig. 8 

Variation of crT  versus (a) the Winkler and (b) the Pasternak elastic foundations. 

4.2 Sample 2: Bilayer annular graphene sheet 

A bi-layer graphene sheet is considered. The variations of buckling temperature versus the van der Waals interaction 

between the layers are shown in Fig. 9 (a) for CC and (b) for SS boundary conditions. crT  grows and tends to a 

constant value with increase of the van der Waals interaction between two layers for both boundary conditions and 

the value of non-local parameter. The variations are more considerable for smaller value of the non-local 

parameters. On the other hand, whatever the non-local parameter rises the critical temperature enlarges gently, 

whereas the curve slope is steeper for small values of the non-local parameters. 

 

    
(a) 

 
(b) 

Fig. 9 

Variations of crT  versus the van der Waals interaction between two layers (a) CC (b) SS boundary conditions.  

4.3 Sample 3: Triple and multi-layer plate 

The previous graphs that are pictured for bi-layer sheets are repeated for triple layers. The results are illustrated in 

Fig. 10 all the mentioned conclusions which are explained for bi-layer plate are true for triple layers. However, 

according to Fig. 10 (a,b) there is slight difference between the results of CC and SS boundary conditions, whereas it 

is obvious for bi-layer sheets. It can be concluded that whatever the number of layers increases, the effect of 

boundary conditions would be decreased on the results. Also, as it was expected, the critical temperature for triple 

layer sheet is more than the same bi-layer plate by comparing Figs. 9 and 10. The procedure for calculating the 

critical temperature for multi-layer sheets is the same as bi-layer and triple layer sheets. However, whatever the 
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number of the layers increases, the computational process increases. In addition, it can be possible to calculate the 

differences between the results of bi-layer and single layer, triple layer and bi-layer sheets, afterwards, generalize it 

to predict a logical procedure for the results of multi-layer sheets. 

 

    
(a) 

 
(b) 

Fig. 10 

Variations of crT  versus the van der Waals interaction between three layers (a) CC (b) SS boundary conditions. 

5    CONCLUSIONS 

In this article, the solution for thermo-elastic buckling of multi-layer graphene sheets is investigated based on FSDT 

and TSDT non-local theory of Eringen. The generalized stability equations are obtained in terms of displacements 

and rotations considering the van der Waals interaction between the layers. The DQM, which is an accurate 

numerical method, is applied to solve the governing equations. Different types of boundary conditions including 

clamped, simply supported and free edges are considered. The critical temperature is obtained for various types of 

boundary conditions, the non-local parameters, the non-local to local analyses and FSDT to TSDT analyses. The 

buckling temperature is calculated for bi-layer and triple layer sheets. The main conclusions of this paper can be 

summarized as follow: 

- The TSDT analysis gives the more accurate results in comparison with the FSDT analysis especially for 

high values of thickness. 

- The results of FSDT and TSDT analyses distance with increase of non-local parameter. 

- The buckling temperature decreases with increase of the small scale effect. 

- Whatever the plate is more flexible, the effects of non-local parameter decreases. 

- With increase of the plate’s size, the local and non-local analyses approach. 

- The effect of Pasternak elastic foundation on the buckling temperature is more significant than the Winkler. 

- The critical temperature increases and tends to a constant value along the increase of the van der Waals 

interaction between the layers for bi-layer and triple layer graphene sheets. 

- Whatever the number of the layers increases, the effect of boundary conditions decreases on the results. 
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