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 ABSTRACT 

 In this paper, semi-analytical method for asymmetrical eccentrically 

stiffened FGM cylindrical shells under external pressure and surrounded 

by a linear and non-linear elastic foundation is presented. The proposed 

linear model is based on two parameter elastic foundation Winkler and 

Pasternak. According to the von Karman nonlinear equations and the 

classical plate theory of shells, strain-displacement relations are obtained. 

The smeared stiffeners technique and Galerkin method, used for solving 

nonlinear problem. To finding the nonlinear dynamic response of fourth 

order Runge-Kutta method is used. The effect of parameters 

asymmetrical eccentrically stiffened on the nonlinear dynamic buckling 

response of FGM cylindrical shells have been investigated.                       

                                      © 2017 IAU, Arak Branch.All rights reserved. 

 Keywords : FGM cylindrical shells; Non-linear dynamic analysis; 

Asymmetrical stiffened; Non-linear elastic foundation. 

1    INTRODUCTION 

 HE eccentrically stiffened FGM cylindrical shells have more application in modern Engineering. Study on 

nonlinear behavior of these structures is important of the practical. Research on nonlinear stability of these 

structures has been of interest to scientists. By searching on nonlinear dynamic analysis can be said that study on 

analytical methods is very limited. Dung and Nam [1] studied the non-linear dynamic analysis of eccentrically 

stiffened FGM cylindrical shells under external pressure with an elastic foundation that material of stiffeners is 

metal. Darabi et al. [2] analyzed the linear and non-linear parametric resonance analysis of FGM cylindrical shell. 

Sofiyev and Schnack [3] continued to investigate the critical parameters for the cylindrical thin shell under a linear 

increase of dynamic torsional loading, and cyclic axial loading by using Galerkin and Ritz methods. The thermo-

mechanical vibration analysis of FGM shell by flow was presented by Sheng and Wang [4]. Sofiyev [5] studied the 

non-linear dynamic buckling of FGM truncated conical shell. Thermal vibration of magnetostrictive FGM shell was 

presented by Hong [6]. Huang and Han [7] studied the nonlinear dynamic buckling of FGM cylindrical shells under 

axial load time dependent based on Budiansky-Roth criterion [8].  

Dynamic stability of circular cylindrical shells with combined effect of compressive static and periodic axial 

loads was presented by Pellicano [9]. The Sanders-Koiter theory was applied to model the nonlinear dynamics of the 
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system in the case of finite amplitude of vibration. Duc and Thang [10] continued to investigate the nonlinear 

dynamic response of the eccentrically stiffened FGM cylindrical shells by using the first-order shear deformation 

theory and the stress function with the full equations of motion. 

A review of studies shows that very few studies on the analytical solution non-linear dynamic of asymmetrical 

eccentrically stiffened FGM cylindrical shells with linear and non-linear elastic foundation have been done. In this 

paper, the non-linear dynamic analysis of asymmetrical eccentrically stiffened FGM cylindrical shells with non-

linear elastic foundation under uniform external pressure studied. The nonlinear equations is based on the classical 

theory and large deflection hypothesis using the smeared stiffeners technique and Galerkin method for nonlinear 

dynamic response of fourth order Runge-Kutta method is used. 

2    FORMULATION    
2.1 FGM power law properties 

In this paper, FGM made of metal and ceramic. The volume-fraction to be given by a power law 
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which h is the thickness of shell, 0k   is the volume-fraction index, z is the thickness coordinate, footnotes c and m 

show ceramic and metal, respectively. 

Effective properties (Pr )eff
of FGM shell by linear combination law is as follows [11] 

 

       Pr Pr Preff ou ou in inz V z z V z   (2) 

 

According to the mentioned law, The Young's modulus of the shell and stiffeners can be expressed in the 

following form 
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(3) 

 

which ,m cE E  and ,m c   are the Young's modulus and mass density of the metal and ceramic, respectively, sE
 

and 
s  is the Young's modulus and mass density of stiffeners, respectively,

 2 0k   is the volume-fraction index of 

stiffeners. 

FGM cylindrical thin shell is assumed with length L, radius R, which is surrounded by an elastic foundation. 

Material properties of stiffeners are assumed FGM (Fig.1). Original coordinates, , ,x y z  are in the axial, 

circumferential, and inward radial directions respectively.  
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Fig.1 

Configuration of an asymmetrical stiffened cylindrical shell 

surrounded with foundation. 

 

The strains across the shell thickness at a distance z from the mid-surface are represented by 

 
0 0 0, , 2x x x y y y xy xy xyz z z                 (4) 

 

where 0 0,x y   are normal strains, 0

xy is the shear strain at the mid-surface, , ,x y xy    are the change of curvatures 

and twist of shell. 

2.2 Displacement-strain-stress relations 

According to the von Karman nonlinear strain-displacement relations [12] the strain components at the mid-surface 

of cylindrical shells as: 
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(5) 

 

where      , , , , , , , ,u u x y t x y t w w x y t      are displacements along , ,x y z  axes, respectively. 

According to Eq. (5), compatibility equation be expressed in the following form 
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The stress-strain relationship for FGM cylindrical shells can be written as follows 
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(7) 

 

The Poisson's ratio (v) is assumed to be constant, ,sh sh

x y   normal stress in ,x y  coordinates, respectively, 
sh

xy
 
is 
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shear stress on the un-stiffened shell. By rotation of the strain tensor, the stress-strain relations of the asymmetrical 

stiffeners are obtained. With transformation of strains from the xy -axis to the 1 2  -axis and 1 2  -axis (Fig. 2), 

Eqs. (8) and (9) can be made [13] 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Rectangular coordinates rotation. 
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(9) 

 

According to the uniaxial Hooke’s law 
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where d is the width of stiffeners, ,p p   are stiffener loads in the 1 2  -axis and 1 2  -axis, respectively and ,   

are the angle of the stiffeners. 

According to Fig. 3, the length of the stiffener grid 

 

 

 

 

 

 

 

 

 

Fig.3 

View a rhombic stiffener grid. 
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where s is the stiffener spacing. 

The stress-strain relations for FGM asymmetrical stiffeners are 
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where 
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,s s

x y   is the normal stress of stiffeners.
 

,s

xy sh 
 
are shear stress and thickness of the stiffeners, respectively. 

,   are the asymmetrical angle of stiffeners. To consider the effect of stiffeners on the shell used the smeared 

stiffeners technique. By integrating the stress-strain equations and calculating the resultant forces and moments for 

stiffened FGM cylindrical shells will be [14, 15] 
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(17) 

 

ijB are components of the extensional, bending and coupling stiffeners of FGM cylindrical shells that can be 
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found in Appendix A. , ,x y xyN N N   are in-plane normal force and shearing force intensities, respectively. 

, ,x y xyM M M   are bending moment and twisting moment intensities, respectively. Sort by Eq. (16) in terms of the 

strain as follows 
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Substituting Eq. (18) in Eq. (17) can be written 
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Non-linear equations thin circular cylindrical shell based on the classical shell theory follow as [2, 3 and 16] 
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In Eq. (20) 
wk  is Winkler foundation modulus, sk  is shear stiffness layer based on Pasternak, 

nlk  is nonlinear 

foundation modulus, 0q
 
is external pressure, t is time (s),   is damping coefficient and 
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According to the first two of Eq. (20), a stress function   may be defined as: 
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Substituting Eq. (18) in to Eq. (6) and Eq. (19) in to the third of Eq. (20) and according to the Eq. (5) and (22) 
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Eqs. (23) and (24) are a non-linear equation system in terms of two unknown parameter   and w. 

3    DYNAMIC GALERKIN APPROACH    

Suppose the asymmetrical stiffened FGM cylindrical shell is simply supported. The deflection of cylindrical shells 

consider the three-term as follows [17,18] 
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respectively. Also 
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 are linear and nonlinear buckling shape and m, n are the number of 

half wave and full wave in the axial and circumferential direction, respectively. 

Substituting Eq. (25) in Eq. (23) and solving it, obtained the equation for the unknown function   as follows 

 
2

1 2 3 4 0

2 2 3
cos cos sin sin sin sin

2
y

m x ny m x ny m x ny x
h

L R L R L R
     

  
      

 

(26) 

 

0y is the average circumferential stress and the coefficients 
i  

as follows 
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      In addition, cylindrical shell must be satisfy the circumferential close conditions as:     
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Substituting Eq. (25) and (26) in to Eq. (24) and by applying the Galerkin method in the ranges 0 x L  and 

0 2y R   and doing mathematic, we have  
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If 
maxf W , then according to Eq. (19), with replacing / 2x iL m and / 2y j R n  (i, j are odd integer 

numbers), the maximal deflection of the shells as follow 
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3.1 Nonlinear vibration analysis 

To study the nonlinear vibration of asymmetrical eccentrically stiffened FGM cylindrical shells under external 

pressure with the intensity
0 sinq Q t  , Eqs. (29a-c) is as follows 
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Q is amplitude of excitation and   is excitation frequency. By using Eqs. (31a-c), the fundamental frequencies 

of natural vibration and nonlinear response of system can be calculated. To finding the nonlinear dynamic response 

of fourth order Runge-Kutta method is used. Ignoring the uniform buckling shape and nonlinear buckling shape and 

assuming free vibration without the linear damping and regardless of the higher-order terms, we have 
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The fundamental frequencies of natural vibration of asymmetrical eccentrically stiffened FGM cylindrical shells 

as follow 
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4    NUMERICAL RESULTS    

In this section, the asymmetrical stiffened FGM cylindrical shells by an elastic foundation are considered with 

0.5 , 0.75R m L m  . The combination of materials consists of Aluminum 
370 , 2702m mE GPa kg m  and 

Alumina 
3380 , 3800c cE GPa kg m  . The Poisson’s ratio is chosen to be 0.3. The height of stiffeners is 0.01

 
m 

and width is 0.0025 m. Each of the stiffener system includes 25 stiffeners distributed regular.  

In order to verify the formulation, in Fig. 4 natural frequencies of perfect stiffened isotropic cylindrical shells 

without elastic foundation compared with the results of the analysis Sewall and Naumann [19] and Sewall et al. [20]. 

In Table 1. the natural frequencies of isotropic cylindrical shells with elastic foundation to compared with the results 

given by Paliwal et al. [21] and Sofiyev et al. [22]. As can be seen, good agreement is obtained in this comparison. 

The calculated based on data of Table 2. is considered. 
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Fig.4 

Comparison of natural frequency of isotropic stiffened shells. 

 
 

Table 1 

 Comparison of natural frequency of un-stiffened shells with elastic foundation. 

n               Present                Sofiyev et al. [22]                                             Paliwal et al. [21]            . 

                                                                    Errors (%)                                                        Errors (%) 

1                0.675                    0.679              0.65                                          0.678               0.60 

2                0.362                    0.364              0.66                                          0.363               0.47 

3                0.206                    0.208              0.65                                          0.205               0.70 

4                0.137                    0.138              0.56                                          0.127               7.29 
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Table 2 

Data required. 

           3( / )sk N m            ( / )wk N m              5( / )nlk N m         k            
2k         /R h       ( )sh m       ( )sd m          m 

              55 10                   42.5 10                   101 10              1             1           250           0.01         0.0025           1 

 

Fig. 5 show effects of stiffeners with different angles on the non-linear responses of cylindrical shells with elastic 

foundation and 5n  . In previous works, only stringer and ring stiffeners are investigated that amplitude of 

vibrations ring stiffeners is lower than stringer stiffeners and this subject in the present work is confirmed. 

According to Fig. 5 for the mid-states have been chosen the stiffeners with various angle that can be observed the 

effects of them on the non-linear responses of cylindrical shells. As can be seen of Fig. 6 minimum amplitude of 

vibrations related to the shells with ring stiffeners and maximum of the amplitude of vibrations when the angle of 
both series stiffeners together is 30

ο
. 

Fig. 6 shows effects of stiffeners with different angles on the natural frequencies of cylindrical shells with elastic 

foundation. Fig. 6 also shows in the high modes, by increasing angles of stiffeners, natural frequencies of shell is 
increases. (So in the higher modes, maximum natural frequencies for the state to know that angle of stiffener is 90

ο
 

and minimum natural frequencies for the state to know that angle of stiffener is 0
ο
.) 

Fig. 7 shows effects of stiffeners with different angles on the dynamic responses of cylindrical shells with elastic 

foundation for loading speed (5×10
6
 N/m

2
s). In this section, the height of stiffeners is 0.005

 
m and width is 0.002 m 

and 8n  . Fig. 7 shows by increasing angles of stiffeners, critical dynamic buckling load (q) is increases. So 

maximum critical dynamic buckling load (q) and maximal amplitude response for the state to know that angle of 
stiffener is 90

ο
 and minimum critical dynamic buckling load (q) for the state to know that angle of stiffener is 0

ο
. 
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Fig.5 

Non-linear responses of cylindrical shells with various angle of stiffeners. 
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Fig.6 

Natural frequencies of cylindrical shells with various angle of stiffeners. 

 

 

2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

q

f/h

 

 









 
(a) 0   

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 30   

  

 

 

 

 

 

 

(c) 60   

2 3 4 5 6
0

5

10

15

20

q

f/h

 

 



 

(d) 90   

Fig.7 

Dynamic responses of cylindrical shells with various angle of stiffeners. 
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Figs. 8 show effects non-linear elastic foundation on the dynamic responses of cylindrical shell with for two 

values of loading speed (5×10
6
 N/m

2
s) and 8n  .  As can be observed the maximal amplitude response increases 

and reduces, when the coefficient of non-linear elastic foundation is positive and negative, respectively. Figs. 8 

show the critical dynamic buckling load and maximal amplitude response increases when the loading speed 

increases. 
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Fig.8 

Effect of non-linear elastic foundation on the dynamic responses of cylindrical shells. a) Negative non-linear elastic foundation 

b) Positive non-linear elastic foundation.  

5    CONCLUSIONS 

The semi-analytical method for asymmetrical eccentrically stiffened FGM cylindrical shells with linear and non-

linear elastic foundation under uniform external pressure is presented. The proposed linear model is based on 

Winkler and Pasternak elastic foundation parameters. According to the Von Karman nonlinear equations and the 

classical plate theory (CPT) of shells, strain displacement relations are obtained. The smeared stiffeners technique 

and Galerkin method, used for solving nonlinear problem. With considering three terms approximation for the 

deflection shape, the relation for frequency-amplitude of non-linear vibration is obtained and the non-linear dynamic 

responses are analyzed by using fourth order Runge-Kutta method.  

Some conclusions are obtained from this study: 

a) The amplitude of vibration for shell with asymmetric stiffeners, it be concluded that maximum amplitude, 
both of the stiffeners have angle of both series stiffeners together is 30

ο
. 

b) In the high modes, the maximum natural frequencies for the state to know that angle of stiffener is 90
ο
 and 

minimum natural frequencies for the state to know that angle of stiffener is 0
ο
. 

c) By increasing angles of stiffeners, critical dynamic buckling load is increases. 

d) Maximum critical dynamic buckling load and maximal amplitude response for the state to know that angle 
of stiffener is 90

ο
 and minimum critical dynamic buckling load for the state to know that angle of stiffener 

is 0
ο
. 

e) The maximal amplitude response increases and reduces, when the coefficient of non-linear elastic 

foundation is positive and negative, respectively 

f) The critical dynamic buckling load and maximal amplitude response increases when the loading speed 

increases. 

 

 

c=5×106 N/m2s without NEF 

c=5×106 N/m2s with NEF 

c=5×106 N/m2s without NEF 

c=5×106 N/m2s with NEF 
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