
 

© 2016 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 8, No. 4 (2016) pp. 840-858 

Thermomechanical Interactions Due to Hall Current in 
Transversely Isotropic Thermoelastic  with and Without 
Energy Dissipation with Two Temperatures and Rotation 

R. Kumar
 1
, N. Sharma

 2
, P. Lata

 3, * 
1
Department of Mathematics, Kurukshetra University , Kurukshetra, Haryana, India 

2
Department of Mathematics, MM University, Mullana, Ambala, Haryana, India

  

3
Department of  Basic and Applied Sciences, Punjabi University, Patiala, Punjab, India 

Received 30 July 2016; accepted 5 October 2016  

 ABSTRACT 

 The present paper is concerned with  the investigation of disturbances in a 

homogeneous  transversely isotropic thermoelastic rotating  medium with two 

temperatures, in the presence of the combined effects of   Hall currents and magnetic 

field due to thermomechanical sources. The formulation is applied to the 

thermoelasticity theories developed by Green-Naghdi Theories of Type-II and Type-III. 

Laplace and Fourier transform technique is applied to solve the problem. As an 

application, the bounding surface is subjected to concentrated and distributed sources    

(mechanical and thermal sources). The analytical expressions of displacement, stress 

components, temperature change and current density components are obtained in the 

transformed domain. Numerical inversion technique has been applied to obtain the 

results in the physical domain. Numerical simulated results are depicted graphically to 

show a comparison of effect of Hall current on the two theories GN-II and GN-III on 

resulting quantities. Some special cases are also deduced from the present investigation. 

     © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 URING the past few decades , widespread attention has been given to thermoelasticity  theories that admit a 

finite speed for the propagation of thermal signals. In contrast to the conventional theories based on parabolic-

type heat equation, these theories are referred to as generalized theories. Because of the experimental evidence in 

support of the finiteness of the speed of propagation of a heat wave, generalized thermoelasticity theories are more 

realistic than conventional thermoelasticity theories in dealing with practical problems involving very short time 

intervals and high heat fluxes such as those occurring in laser units, energy channels, nuclear reactors, etc. The 

phenomenon of  coupling between the thermomechanical behavior of materials and magnetic behavior of materials 

have been studied since the 19
th

 century. 

Chen and Gurtin [7], Chen et al. [8] and Chen et al. [9] have formulated a theory of heat conduction in 

deformable bodies which depends upon two distinct temperatures, the conductive temperature  and the thermo 

dynamical temperature T. For time independent situations, the difference between these two temperatures is 

proportional to the heat supply, and in absence of heat supply, the two temperatures are identical. For time 
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dependent problems, the two temperatures are different, regardless of the presence of heat supply. The two 

temperatures T,  and   the strain are found to have representations in the form of a travelling wave plus  a 

response, which occurs instantaneously throughout the body ( Boley and Tolins[5]).The wave propagation in two 

temperatures theory of thermoelasticity was investigated by Warren and Chen[36].  

Green and Naghdi [13] postulated a new concept in thermoelasticity theories and  proposed three models which 

are subsequently referred to as GN-I, II, and III models. The linearised version of model-I  corresponds to classical 

thermoelastic model (based on Fourier's law). The linearised version of model-II and III permit propagation of 

thermal waves at finite speed. Green-Naghdi's second model (GN-II), in particular exhibits a feature that is not 

present in other established thermoelastic models as it does not sustain dissipation of  thermal energy [15]. In this 

model the constitutive equations are derived by starting with the reduced energy equation and by including the 

thermal displacement gradient among other constitutive variables. Green-Naghdi's  third model (GN-III) admits 

dissipation of energy. In this model the constitutive equations are 
i
derived by starting with the reduced energy 

equation, where the thermal displacement gradient in addition to the temperature gradient, are among the 

constitutive variables. Green and Naghdi[14]  included the derivation of a complete set of governing equations of a 

linearised version of the theory for homogeneous and isotropic materials in terms of the displacement and 

temperature fields and a proof of the uniqueness of the solution for the corresponding initial boundary value 

problem. 

A comprehensive work has been done in thermoelasticity theory with and without energy dissipation and 

thermoelasticity with two temperatures. Youssef  [40], constructed a new theory of generalized thermoelasticity by 

taking into account  two-temperature generalized thermoelasticity theory for a homogeneous and isotropic body 

without energy dissipation .Youssef et al. [39]  investigated State space approach of  two temperatures generalized 

thermoelasticity of infinite body with a spherical cavity subjected to different types of thermal loading. Abbas[2] 

discussed two dimensional problem with energy dissipation. Quintanilla [26] investigated thermoelasticity without 

energy dissipation of materials with microstructure. Abbas, Kumar and Reen[1]  discussed response of thermal 

source in transversely isotropic thermoelastic materials without energy dissipation and with two temperatures. 

Several researchers studied various problems involving two temperatures e.g. (Youssef and AI-Lehaibi [38]; 

Youssef  [37]; Youssef  [41] ;Kumar, Sharma and Garg [23]; Kaushal et al[17];Kaushal Sharma and Kumar[18]; 

Kumar and Mukhopdhyay [21]; Ezzat and Awad [12];Sharma and Marin[30]; Sharma and Bhargav [29]; Sharma, 

Sharma and Bhargav [34]; Sharma and Kumar[31]; Sharma and Kumar[32]; Sharma, Kumar and Ram[33]). 

In view of the fact that most of the large bodies like the earth, the moon and other planets have an angular 

velocity , as well as earth itself behaves like a huge magnet, it is important to study the propagation of thermoelastic 

waves in a rotating medium under the influence of magnetic field. So, the attempts are being made to study the 

propagation of finite thermoelastic waves in an infinite elastic medium rotating with angular velocity. Several 

authors (Das and Kanoria[10]; Kumar and Kansal[20]; Kumar and Rupender[22]; Kumar and Devi [19]; Atwa and 

Jahangir[4], Mahmoud[24]) have studied various  problems  in  generalized thermoelasticity to study the effect of 

rotation. 

When the magnetic field is very strong, the conductivity will be a tensor and the effect of Hall current cannot be 

neglected. The conductivity normal to the magnetic field is reduced due to the free spiraling of electrons and ions 

about the magnetic lines of force before suffering collisions and a current is induced in a direction normal to both 

the electric and magnetic fields. This phenomenon is called the Hall effect. Authors like( Zakaria[42,43]; Salem[27]; 

Attia[3], Sarkar and Lahiri[28])   have considered the effect of Hall current for two dimensional problems ins 

micropolar thermoelasticity. 

Inspite of these, not much work has been done in thermoelastic solid with the combined effects of Hall current, 

rotation and two temperatures. Keeping these considerations in mind, we formulated a two dimensional problem in 

transversely isotropic thermoelastic solid with and without energy dissipation in the presence of magnetic field, two 

temperatures and rotation taking into consideration the effect of Hall current. The components of normal 

displacement, normal stress, tangential stress, conductive temperature and current density  are obtained by using  

Laplace and Fourier transforms. Numerical computation is performed by using a numerical inversion technique and 

the resulting quantities are shown graphically.  

2    BASIC EQUATIONS    

The constitutive relations for a transversely isotropic thermoelastic  medium are given by 
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ij ijkl kl ij
t C e T               (1) 

 

Equation of motion  for a transversely isotropic thermoelastic medium rotating uniformly with an angular 

velocity n  , where n is a unit vector representing the direction of axis of rotation and  taking into account 

Lorentz force 

 

 ,
( ( )) (2 )

ij j i i i i
t F u u u                    (2) 

 

Following Chandrasekharaiah [6] and Youssef [38], The heat conduction equation with two temperatures and 

with and without energy dissipation is given by  

 
*

, , 0ij ij IJ ij ij lJ E
K K T e C T          (3) 

 

The above equations are supplemented by generalized Ohm's law for media with finite conductivity and 

including the Hall current effect 

 

0
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          

 
    

(4) 

 

and the strain displacement relations are 

 

, ,

1
( ) , 1,2,3

2
ij i j j i

e u u i j    
 

(5) 

 

Here 
0 0
( )

i i
F J H  , are the components of Lorentz force. 

ij ijkl ij
C   and 

,
, ,

ij ij ij i ij
T a        

* *, ,
ij i ij ij i ij

K K K K i    is not summed. ( )
ijkl ijkl klij jikl ijlk

C C C C C    are elastic parameters, 
ij

  is the thermal 

tensor, T is the temperature, 
0

T  is the reference temperature, 
ij

t  are the components of stress tensor, 
kl

e  are the 

components of strain tensor, 
i

u  are the displacement components,   is the density, 
E

C  is the specific heat, 
ij

K  is 

the thermal conductivity,  *

IJ
K  is the materialistic constant, 

ij
a  are the two temperature parameters, 

ij
  is the 

coefficient of linear thermal expansion,   is the angular velocity of the solid, H is the magnetic strength,  u  is the 

velocity vector , E is the intensity vector of the electric field, J is the current density vector, 0 0 0

e e

e

H
m t

en

 


 
  
 

 

is the Hall parameter, 
e

t  is the electron collision time, 0 0

e

e

e H

m


   is the electronic frequency, e is the charge of an 

electron, 
e

m  is the mass  of the electron, 
2

0

e e

e

e t n

m
   , is the electrical conductivity and 

e
n  is the number of density 

of electrons.                                                                                                                                                 

3    FORMULATION AND SOLUTION OF THE PROBLEM  

We consider a homogeneous perfectly conducting transversely isotropic thermoelastic medium which is rotating 

uniformly with an angular velocity    initially at uniform temperature  
0
.T  The rectangular Cartesian co-ordinate 

system 
1 2 3

( , , )u u u having origin on the surface
3

( 0)x  with 
3

x -axis  pointing vertically downwards  into the 

medium is introduced. The surface of the half-space is subjected to thermomechanical  sources. For two dimensional 

problem in xz-plane, we take  
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1 3
( ,0, )u u  (6) 

 

We also assume that  

0, (0, ,0)E      (7) 

 

The generalized Ohm's law 

2
0J   (8) 

 

The current density components 
1

J  and 
3

J  using (4)  are  given as: 

 

0 0 0 31

1 21

H uu
J m

t tm

   
  

   
 

 

(9) 

 

0 0 0 31

3 21

H uu
J m

t tm

   
  

   
 

 

(10) 

 

Following Slaughter [35], using appropriate transformations, on the set of Eqs.(2) and (3) and with the aid of (6)-

(10), we obtain the  equations for transversely isotropic thermoelastic solid as: 

 
2 22 2 22 2

23 3 31 1 1
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2
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   
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(13) 

 

      And 

 

11 11 11 13 33 1
t c e c e T    (14) 

 

33 13 11 33 33 3
t c e c e T    (15) 

 

13 44 13
2t c e  (16) 

 

where 

 
2 2

1 32 2

1 3

1 11 12 1 13 3 3 13 1 33 3
( ) , 2
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  
   

  

    

 

 

 

In the above equations we use the contracting subscript notations (1 11,2 22,3 33,4 23,5 31,6 12)        

to relate 
ijkl

c  to 
mn

c . 
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We assume that medium is initially at rest. The undisturbed state is maintained at reference temperature. Then 

we have the initial and regularity conditions are given by 

 

1 1 3 1 1 3

3 1 3 3 1 3

1 3 3 1

( , ,0) 0 ( , ,0)

( , ,0) 0 ( , ,0)

0 ( , ,0) 0,

u x x u x x

u x x u x x

x x for x x

 

 

   

 

 

 

1 1 3 3 1 3 1 3
( , , ) ( , , ) ( , , ) 0 0u x x t u x x t x x t for t      when   

3
x   (17) 

 

To facilitate the solution , following dimensionless quantities are introduced: 
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(18) 

             

Making use of (18) in Eqs. (11)-(13) , after suppressing the primes, yield  
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Apply Laplace and Fourier transforms defined by 

  

1 3 1 3
0

( , , ) ( , , ) stf x x s f x x t e dt
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1
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i x
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On Eqs. (19)-(21), we obtain a system of homogeneous equations in terms of 
1 3
,u u  and   which yield a non 

trivial solution if determinant of  coefficient  1 3
, ,

T
u u  vanishes and we obtain the following characteristic equation 

 
6 4 2

1 3
( , , ) 0PD QD RD S u u         (24) 

 

where P, Q, R and S are given in appendix A.  
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The solution of the Eq. (24)  satisfying the radiation condition that 
1 3
, , 0u u   as 

3
x  , can be written as: 

1 3 2 3 3 3

1 1 2 3

x x x
u A e A e A e
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x x x
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     
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where ,( 1,2,3)
i

i  , are the roots of (24) and 
i

d  and 
i

l  are given in appendix B 

4    BOUNDARY CONDITIONS    

On the half-space surface
3

( 0)x  normal point force and thermal point source are applied. The appropriate 

boundary conditions  are 

 

33 1 1
( ) ( )t F x t       (28) 

 

31
0t      (29) 

 

2 2

3

( ) ( )F x t
x


 





            at  

3
0x   

 

(30) 

                                                   

where 
1

F  is the magnitude of the force applied, 
2

F  is the constant temperature applied on the boundary, 
1
( )x  

specifies the source distribution function along  x axis. Applying the Laplace and Fourier transform defined by (22)-

(23) on the boundary conditions (28)-(30) and with the help of Eqs. (14)-(16), (18), (25)-(27), we obtain the 

components of displacement, normal stress, tangential stress, conductive temperature and current density 

components as given in appendix C (C.1-C.7) 

4.1 Mechanical force on the surface of half-space 

Taking 
2

0F   in Eqs. (C.1)-(C.7), we obtain the components of displacement, normal stress, tangential stress, 

conductive temperature and current density components due to mechanical force. 

 4.2 Thermal source on the surface of half-space 

Taking 
1

0F   in Eqs. (C.1)-(C.7), we obtain the components of displacement, normal stress, tangential stress, 

conductive temperature and current density components due to thermal source. 

4.3 Green’s function 

To synthesize the Green’s function, i.e. the solution due to concentrated normal force and thermal point source on 

the half-space is obtained by setting 

 

1 2
( ) ( ), ( ) ( )x x x x                  (31) 

 

In Eqs. (28) and (30). Applying the Laplace and Fourier transform defined by (22)-(23) on the Eq. (31) gives 
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1 2
ˆ ˆ( ) 1, ( ) 1                  (32) 

 

Using (32) in (C.1)-(C.7) , we  obtain the components of displacement, stress and conductive temperature and 

current density components.  

4.4 Influence function 

The method to obtain the half-space influence function, i.e. the solution due to distributed force/source applied on 

the half space is obtained by setting 

 

1 2

1
( ), ( )
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if x m
x x

if x m
 

  
  
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(33) 

 

In Eqs. (28) and (30). The Laplace and Fourier transforms of 
1
( )x  and 

2
( )x  with respect to the pair ( , )x     

for the case of a uniform strip load of non dimensional width 2m applied at origin of co-ordinate system 
1 3

0x x     

in the dimensionless form after suppressing the primes becomes 

 

 1 2
ˆ ˆ( ), ( ) 2sin( ) / , 0m                     (34) 

 

The expressions for displacement, stresses and conductive temperature and current density components can be 

obtained for uniformly distributed normal force and thermal source by replacing 
1

ˆ ( )   and 
2

ˆ ( )   from (34) 

respectively in Eqs. (C.1)-(C.7)  

5    PARTICULAR CASES   

If * *

1 3
0k k  , then from  (C.1)-(C.7), we obtain the corresponding expressions for displacements, and stresses, 

conductive temperature and components of current density   for  transversely isotropic magnetothermoelastic solid 

without energy dissipation and with two temperature with Hall current effect and rotation. 

If 
1 3

0a a  , then from (C.1)-(C.7), we obtain the corresponding expressions for displacements,  stresses , 

conductive temperature and components of current density  for transversely isotropic magnetothermoelastic solid 

with and without energy dissipation alongwith with Hall current effect and rotation. 

If we take 
11 33 12 13 44 1 3 1 3 1 3

2 , , , , ,c c c c c K K K                     in Eqs. (C.1)-

(C.7), we obtain the corresponding expressions for displacements,  stresses, conductive temperature components of 

current density  in isotropic magnetothermoelastic solid with two temperatures and with and without energy 

dissipation alongwith combined effects of Hall current and rotation. 

If 0,m  in Eqs. (C.1)-(C.7), we obtain the components of displacements, stresses, conductive temperature and 

components of current density for transversely isotropic magnetothermoelastic solid and with and without energy 

dissipation  and with two temperatures alongwith rotation. 

6    INVERSION OF THE TRANSFORMATION   

To obtain the solution of the problem in physical domain, we must invert the transforms in Eqs. (C.1)-(C.7). Here 

the displacement components, normal and tangential  stresses and conductive temperature are functions of 
3

x , the 

parameters of Laplace and Fourier transforms  s  and   respectively  and hence are of the form 
3

( , , )f x s . To 

obtain the function 
1 3

( , , )f x x t  in the physical domain, we first invert the Fourier transform using 
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1

1 3 3 0

1 1ˆ( , , ) ( , , ) cos( ) sin( )
2 2

i x

e
f x x s e f x s d x f i x f d

     
 

 


 
                 

 

(35) 

  

where
e

f  and  
0

f are respectively the odd and even parts of 
3

ˆ( , , ).f x s  Thus the expression (35)gives the Laplace 

transform 
1 3

( , , )f x x s  of the function 
1 3

( , , )f x x t . Following Honig and Hirdes [16] , the Laplace transform function 

1 3
( , , )f x x s  can be inverted to 

1 3
( , , )f x x t .  

The last step is to calculate the integral in Eq. (35). The method for evaluating this integral is described in Press 

et al. [25]. It involves the use of Romberg’s integration with adaptive step size. This also uses the results from 

successive refinements of the extended trapezoidal rule followed by extrapolation of the results to the limit when the 

step size tends to zero. 

7    NUMERICAL RESULTS AND DISCUSSION   

For the purpose of numerical evaluation, cobalt material has been chosen following Dhaliwal and Singh[11], as: 

 
11 2 11 2 11 2 11 2 3 3

11 33 13 44

2 1 1 2 1 1 2 1 1 6 2 1

0 1 3 1

6

3

3.071 10 , 3.581 10 , 1.027 10 , 1.510 10 , 8.836 10 ,

298 , 4.27 10 deg , .690 10 deg , .690 10 deg , 7.04 10 deg ,

6.90 10

E

c Nm c Nm c Nm c Nm Kgm

T K C JKg K wm K wm Nm

Nm







    

       

         

        

  2 1 * 2 2 1 * 2 2 1 6 1

1 3 0

1 1 12 1

0 0

deg , 0.02 10 sec deg , 0.04 10 sec deg , 1.2571 10 ,

1 , 8.838 10

K N K N Hm

H Jm nb Fm





       

   

     

  

             

 

 

 

with non-dimensional parameter 1L  and 5 2

0 0
9.36 10 / . .sec, 3, 0.02, 3col Cal cm t M        and two temperature 

parameters is taken as 
1

0.03a   and 
3

0.06a  .Using the above values the graphical representation  of values of 

normal stress 
33

t , tangential stress 
31

t , conductive temperature ,  transverse conduction current density 
x

J  and 

normal conduction current density 
z

J  for a transversely isotropic magneto-thermoelastic have been investigated for 

normal force/thermal source and uniformly distributed force/source  to show a comparison of the effect of Hall 

current on the two theories of Green and Naghdi i.e. GN-II and GN-III and is presented in the Figs. 1-20. The 

computations are carried out in the range 0 10x  .  

The solid line, small dashed  line corresponds to GN-III with m=0.6  and 0m   respectively. 

The solid line with centre symbol circle , the small dashed line with centre symbol diamond corresponds  GN-II 

with 0.6m  and 0m   respectively. 

8    MECHANICAL FORCE ON THE SURFACE OF HALF-SPACE   

8.1 Concentrated normal force 

Fig.1 depicts variations of  normal stress 
33

t  with distance x. Here in all the cases, behaviour is oscillatory with 

amplitude decreasing as x increases. For 0,m  variations in GN-III are very high. For 0.6,m  variations in GN-II 

are comparatively small. There are more variations in GN-III than in GN-II. Fig. 2 presents the variations of 

tangential stress 
31

t  with distance x.  Here, an oscillatory pattern is observed with variations decreasing as x 

increases. Maximum variations are observed in the range 0 4x  . Fig.3 exhibits variations in conductive 

temperature   with distance x. Here, we observe that values corresponding to  GN-III with 0m  are greater than 

for 0.6m  and are varying most in the range 0 4. x  Behaviour is similar oscillatory in the rest for all the cases. 

Also an opposite oscillatory behaviour is observed corresponding to the two theories  with difference in magnitude. 

Figs. 4 and 5 describe the variations of current density components 
x

J  and 
z

J  respectively. In  
x

J  and ,
z

J  for 

0,m  variations are similar corresponding to GN-III but are purely opposite  in case of GN-II. For 0.6m  , totally 

opposite pattern is  observed in both the components for GN-III. whereas for 0.6m  , in case of GN-II, variations 

are small near the point of application of the source but behaviour is opposite in the rest.   
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Fig.1 

Variations of normal stress 
33

t  with distance x (concentrated 

normal force). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Variations of tangential stress 
31

t  with distance x (concentrated 

normal force). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Variations of conductive temperature   with distance x 

(concentrated normal force). 
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Fig.4 

Variations of transverse current density 
x

J with distance x 

(concentrated normal force). 

  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig.5 

Variations in normal current density component 
z

J  with 

distance x(concentrated normal force). 

8.2 Uniformly distributed force 

Fig.6 shows variations of  normal stress 
33

t  with distance x. Here small variations are observed in GN-II for both the 

values of Hall parameter whereas behaviour is ascending oscillatory in GN-III corresponding to both the cases i.e. 

presence and absence of Hall current. Fig.7 presents the variations of tangential stress 
31

t  with distance x. For GN-

III, there is a sharp increase in the range 0 2x   and variations are oscillatory afterwards. Here, an ascending 

pattern is observed with less variations in case of GN-II. Fig.8 exhibits variations in conductive temperature   with 

distance x. Here, we observe  that values in  GN-III with 0m   are greater than for 0.6m   in the range 1 7x   

and trend is  opposite in the rest. Variations in GN-II are descending with less variations and values in GN-II for 

0m  are greater than for 0.6m  in the whole range. Figs. 9 and 10 describe the variations of current density 

components 
x

J  and 
z

J  respectively. In Fig. 9, we observe a similar pattern in GN-III, corresponding to 0m   and 

0.6m  whereas  in GN-II,small variations are observed corresponding to both the cases. In Fig. 10, a similar 

oscillatory pattern is observed in all the cases with difference in magnitude except for the case 0.6m  in GN-III. 
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Fig.6 

Variations of normal stress 
33

t  with distance x (Uniformly 

distributed mechanical force). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Variations of tangential stress 
31

t  with distance x (Uniformly 

distributed mechanical force). 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Variations of conductive temperature   with distance x 

(Uniformly distributed mechanical force). 
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Fig.9 

Variations of transverse current density 
x

J  with distance x 

(Uniformly distributed mechanical force). 

  

 

 
 
 
 
 
 
 
 
 
 
Fig.10 

Variations in normal current density component 
z

J  with 

distance x (Uniformly distributed mechanical force). 

8.3 Thermal source on the Surface of Half-Space 

8.3.1 Concentrated thermal source 

Fig.11depicts variations of  normal stress 
33

t  with distance x. Here an opposite oscillatory pattern with difference in 

magnitude  is observed in both the theories GN-II and GN-III. Variations in GN-III are observed more as compared 

with GN-II. Fig. 12 presents the variations of tangential stress 
31

t  with distance x.  Here , a similar oscillatory 

pattern is observed for 0.6m  in GN-III and GN-II whereas for 0,m  trend is opposite oscillatory. Fig.13 exhibits 

variations in conductive temperature   with distance x. Here behaviour is similar oscillatory for all the cases. Figs. 

14 and 15 describe the variations of current density components 
x

J  and 
z

J  respectively. In Fig.14, variations are 

similar oscillatory corresponding to all the cases with difference in magnitude. But in Fig. 15 variations are opposite 

oscillatory for 0m  in GN-II and GN-III  and are similar for 0.6m  . 
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Fig.11 

Variations of normal stress 
33

t with distance x (concentrated 

normal  source). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12 

Variations of tangential stress 
31

t  with distance x (concentrated 

normal  source). 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13 

Variations of conductive  temperature   with  distance x   

(concentrated normal  source). 
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8.3.2 Uniformly distributed source 

Fig.16 shows variations of  normal stress 
33

t  with distance x. Here we observe that variations increase as x increases 

and are oscillatory in all the cases. Fig.17 presents the variations of tangential stress 
31

t  with distance x. Here for 

0.6m  , trend is similar oscillatory whereas for 0,m  trend is opposite oscillatory with difference in magnitude in 

GN-II and GN-III. Variations also increase as x increases. Fig.18 exhibits variations in conductive temperature   

with distance x. Here a similar oscillatory pattern is observed in all the cases with difference in magnitude. Figs. 19 

and 20 describe the variations of current density components 
x

J  and 
z

J  respectively. In Fig. 19, we observe that 

variations increase as x increases in all the cases. In Fig.20, we find that variations decrease as x increases. 

  

  

 

 

 

 

 

 

 

 

 

 

 

Fig.14 

Variations of transverse current density 
x

J  with distance x 

(concentrated normal  source). 

  

  
 
 
 
 
 
 
 
 
Fig.15 

Variations in normal current density component 
z

J  with 

distance x (concentrated normal  source). 

  
 
 
 
 
 
 
 
Fig.16 

Variations of normal stress 
33

t with distance x (Uniformly 

distributed thermal  source). 
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Fig.17 

Variations of tangential stress 
31

t  with distance x (Uniformly 

distributed thermal  source). 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.18 

Variations of conductive temperature   with distance x 

(Uniformly distributed thermal  source). 
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Fig.19 

Variations of transverse current density 
x

J  with distance x 

(Uniformly distributed thermal  source). 
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9    CONCLUSIONS 

From the graphs, it is clear that Hall parameter has different  impacts on the two theories of GN-II and GN-III.  In 

case of  concentrated normal force/ thermal point source , variations decrease as x increases whereas while applying 

uniformly distributed thermal source ,opposite trend is observed i.e. variations increase as x increases. Non uniform 

pattern of graphs is observed while applying uniformly distributed mechanical force. Opposite trends are observed 

in both the current density components. Presence of hall current leads to uniform  oscillatory trends in GN-II and 

GN-III. In presence of hall current, both the curves corresponding to GN-II and GN-III move in opposite oscillatory 

trend except in case of tangential stress as behaviour is similar oscillatory in that case. 
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Fig.20 

Variations in normal current density component 
z

J  with 

distance x (Uniformly distributed thermal  source). 0 2 4 6 8 10
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