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 ABSTRACT 

 In this study, the vibration behavior of functional graded (FG) circular and annular 

nanoplate embedded in a Visco-Pasternak foundation and coupled with temperature 

change is studied. The effect of in-plane pre-load and temperature change are 

investigated on the vibration frequencies of FG circular and annular nanoplate. To 

obtain the vibration frequencies of the FG circular and annular nanoplate, two 

different size dependent theories are utilized. The material properties of the FGM 

nanoplates are assumed to vary in the thickness direction and are estimated through 

the Mori–Tanaka homogenization technique. The FG circular and annular nanoplate 

is coupled by an enclosing viscoelastic medium which is simulated as a Visco- 

Pasternak foundation. By using the modified strain gradient theory (MSGT) and the 

modified couple stress theory (MCST), the governing equation is derived for FG 

circular and annular nanoplate. The differential quadrature method (DQM) and the 

Galerkin method (GM) are utilized to solve the governing equation to obtain the 

frequency vibration of FG circular and annular nanoplate. The results are 

subsequently compared with valid result reported in the literature. The effects of the 

size dependent, the in-plane pre-load, the temperature change, the power index 

parameter, the elastic medium and the boundary conditions on the natural 

frequencies are investigated. The results show that the size dependent parameter has 

an increasing effect on the vibration response of circular and annular nanoplate. The 

temperature change also play an important role in the mechanical behavior of the FG 

circular and annular nanoplate. The present analysis results can be used for the 

design of the next generation of nanodevices that make use of the thermal vibration 

properties of the nanoplate.                                                                                            

 © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 HE concept of FGMs was first considered in Japan in 1984 during a space plane project, thereafter FGMs, due 

to their specific changing in their material properties, were developed for a wide range of applications, such as 

automotive industries, space vehicles, biomedical materials, reactor vessels, military applications, semiconductor 

industry and general structural elements in high thermal environments [1-3], and wide research efforts in many 
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engineering fields during the recent years. Recently, FGMs are widely used in micro and nano-electromechanical 

systems (MEMS and NEMS) [4–8] and also atomic force microscopes (AFMs) [9]. So, analysis of the static and 

dynamic behavior of FGM structures under different actuation is very important. 

Continuum modeling of the nanostructure has also increasing deal of attention of many researchers due to 

experiments in nanoscale are difficult [10] and molecular dynamic simulations are highly computationally 

expensive. Because of difficulties encountered in the experimental methods to predict the responses of 

nanostructures under different loading conditions as the size of physical systems is scaled down into the nanoscale, 

theoretical analyses have been more noteworthy. There are various size-dependent continuum theories such as 

couple stress theory [11], strain gradient elasticity theory [12], modified couple stress theory [13] and nonlocal 

elasticity theory [14-29]. Among these theories, modified strain gradient theory is one of the most applied 

theoretical approaches for the investigation of nano-mechanics due to their computational efficiency and the 

capability to produce accurate results, which are comparable to the atomistic model ones.  

The pull-instability of hydrostaticaly and electrostatically actuated circular microplate is analyzed by 

Mohammadi et al. [12]. Wang et al. [30] presented Timoshenko nano-beams formulations based on the modified 

strain gradient theory. Ansari et al. [31,32] investigated the linear and nonlinear vibration characteristics of FGM 

microbeams based on the strain gradient and Timoshenko beam theories. They found that the value of material 

property gradient index plays a more important role in the vibrational response of the FGM microbeams with lower 

slenderness ratios. Recently, Sahmani and Ansari [33] studied the free vibration response of functionally graded 

higher-order shear deformable microplates based on strain gradient elasticity theory. The nonlinear forced vibrations 

of a microbeam employing strain gradient elasticity theory were investigated by Ghayesh et al. [34].  

Mohammadi et al. [35] investigated the buckling of rectangular nanoplate under shear in-plane load and in 

thermal environment. They showed that the critical shear buckling load of rectangular nanoplate is strongly 

dependent on the small scale coefficient. Civalek and Akgoz [36] analyzed the vibration behavior of micro-scaled 

sector shaped graphene surrounded by an elastic matrix. Murmu and Pradhan [37] employed the nonlocal elasticity 

theory for the vibration analysis of rectangular single layered graphene sheets (SLGSs) embedded in an elastic 

medium. They have used both Winkler-type and Pasternak-type models for simulate the interaction of the graphene 

sheets with a surrounding elastic medium. They reported that the natural frequencies of SLGSs are strongly 

dependent on the small scale coefficients. Pradhan and Phadikar [38] investigated the vibration of embedded 

multilayered graphene sheets (MLGS) based on nonlocal continuum models. In thier paper, they have shown that 

nonlocal effect is quite significant and needs to be included in the continuum model of graphene sheet. Yi-Ze Wang 

et al. [39] studied the vibration of double-layered nanoplate. In their research, it is concluded thermal effect and 

nanoplate with isotropic mechanical properties. It has been reported that graphene sheets have orthotropic properties 

[40]. Aksencer and Aydogdu [41] proposed levy type solution for vibration and buckling of nanoplate. In that paper, 

they considered rectangular nanoplate with isotropic property and without effect of elastic medium. Malekzadeh et 

al. [42] used the differential quadrature method (DQM) to study the thermal buckling of a quadrilateral nanoplates 

embedded in an elastic medium. Thermal vibration analysis of orthotropic nanoplates based on nonlocal continuum 

mechanics were studied by Satish et al. [43] who considerate two variable refined plate theory for thermal vibration 

of orthotropic nanoplate. In general, SLGSs are embedded in an elastic medium but they did not consider effect of 

elastic medium in that paper. On the other hand, they represented vibration frequency of rectangular nanoplate only 

for simply supported boundary conditions and they did not represent vibration frequency for other boundary 

conditions. Prasanna Kumar et al. [44] represented thermal vibration analysis of monolayer graphene sheet 

embedded in an elastic medium via nonlocal continuum theory. In their paper, they considered simply support 

boundary condition and they did not study other boundary condition. They investigated graphene sheet with 

isotropic property. Farajpour et al. [45] studied axisymmetric buckling of the circular graphene sheets with the 

nonlocal continuum plate model. In that paper, the buckling behavior of circular nanoplates under uniform radial 

compression is studied. Explicit expressions for the buckling loads are obtained for clamped and simply supported 

boundary conditions. It is shown that nonlocal effects play an important role in the buckling of circular nanoplates. 

In that paper, their results compared with the results obtained by molecular dynamic and it is observed that results 

predicted by nonlocal theory are in exactly match with MD results. Thus the reliability of nonlocal theory and 

presented solution is demonstrated. Mohammadi et al [46] employed the nonlocal plate theory to analyze vibration 

of circular and annular graphene sheet. They founded that scale effect is less prominent in lower vibration mode 

numbers and is highly prominent in higher mode numbers.  

It is cleared that the natural frequency is easily affected by the applied in-plane pre-load and temperature change. 

As a result, the effect of in-plane pre-load on the property of transverse vibration of functional graded circular and 

annular nanoplate is one of the practical interesting subjects. Researches that investigated on the FG circular and 

annular nanoplate are very limited in number with respect to the case of rectangular nanoplate. To the best 
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knowledge of the authors, it is the first time that the modified couple stress theory has been successfully applied to 

investigate the vibration frequency of the FG circular and annular nanoplate embedded in a Visco-Pasternak elastic 

medium under thermal environment. The influence of the surrounding elastic medium on the frequency vibration of 

the FG circular and annular nanoplate is investigated. In the present paper, the effect of the in-plane pre-load and 

temperature change on the vibration frequency of FG circular and annular nanoplate is investigated. The governing 

equation of motion is derived using the modified couple stress theory. The DQM is utilized to solve the governing 

equations of FG circular and annular nanoplate with simply supported, clamped boundary conditions and mix of 

them. From the results, some new and absorbing phenomena can be observed. The present results would be useful to 

suitably design nano electro-mechanical system and micro electro-mechanical systems (NEMS/MEMS) devices 

using FG circular and annular nanoplate. 

2    DIFFERENTIAL EQUATIONS FOR NANOPLATES    

A mono-layered circular and annular nanoplate embedded in a Visco-Pasternak foundation is shown in Fig. 1, in 

which geometrical parameters of outer radius a, inner radius b and thickness h is also indicated. The FGM profile 

across the thickness direction of the plate, made of ceramic and metal constituent materials, may be assumed to 

follow a function form as P-FGM plates as: 
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where, the ( ),  (z) and (z)E z   are the Young's module, the thermal expansion and the Poisson's ratio, respectively.  

Here, the Kirchhoff plate theory is considered to study the mechanical behavior of FG annular and circular 

nanoplate in the thermal environment, because it is adequate in providing accurate bending results for the thin plate 

due to small thickness in comparison with radius. On the basis of the Kirchhoff plate theory, the displacement field 

can be expressed as: 
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where w(r,t)  is the displacement of the middle surface of the nanoplate at the point ( , ,0)r  . Due to lacking material 

length scales, the conventional continuum mechanics has not the capability to predict the size-dependent response of 

the nanostructures. So, the MSGT is used to interpret the size effect into the vibration analysis of a FG circular 

nanoplate. In comparison with the MCST, the MSGT contains two additional gradient tensors of the dilatation and 

the deviatoric stretch in addition to the symmetric rotation gradient tensor. Three independent material length scale 

parameters and two classical material constants for isotropic linear elastic materials are utilized to specify these 

tensors. For a continuum constructed by a linear elastic material occupying region   with infinitesimal 

deformations, the stored strain energy 
m

U  can be defined as: 
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In which the components of the strain tensor ,
ij
 the dilatation gradient tensor 

i
 , the deviatoric stretch gradient 

tensor 
(1)

ijk
 , and the symmetric rotation gradient tensor 

(1)

ij
x are given as: [47] 
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(4) 

 

Based on the components of the kinematic parameters, which are effective on the strain energy density of the 

structure, the constitutive equation for a linear isotropic elastic material can be expressed by [47] as: 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

FG circular and annular nanoplate embedded on a Visco-

Pasternak foundation. 
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The parameters λ and μ appeared in the constitutive equation of the classical stress σ, denote the Lame constants, 

respectively which are given as: [48] 
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The corresponding components of the classical and nonclassical stresses can be evaluated by substituting the 

components of the strain tensor, the dilatation gradient tensor, the deviatoric stretch gradient tensor, and the 

symmetric rotation gradient tensor in Eq. (5). So, the strain energy 
s

  based on Eq. (3) and kinetic energy of 

microplate 
T

  can be written as: 
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where A denotes the area occupied by the mid-plane of the circular FG nanoplate. Moreover, I1 and I2 are 

represented as the following form: 
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In Eq. (7), bending moments, couple moments, other higher-order resultants force and higher-order moments caused 

by higher-order stresses effective on the section are expressed as follows: 
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The value of the work done by the external forces applied on the plate can be expressed as: 
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Here q and f are the distributed external force and the reaction force of elastic foundation, respectively. The 

reaction force of elastic foundation are expressed as: 
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Also, the boundary conditions are obtained as the following form: 
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By inserting the Eq. (8), the Eq. (9) and the Eq. (11) into the Eq. (12), the governing equation is obtained as the 

following form 
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where the ,  and CA B   are represented as the following: 
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(15) 

 

A FG circular and annular is considered to be embedded in a Visco-Pasternak elastic medium. The geometric 

properties of the nanoplate are denoted by outer radius a, inner radius b, thickness h. For convenience and generality 

we introduce the following non-dimensional parameters: 
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(16) 

 

Using the above expressions, a non-dimensional differential equation for vibration of FG circular and annular 

nanoplate in the thermal environment can be obtained 
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(17) 

 

In order to obtain the governing equation of the classical FG circular and annular plate, one can insert the size 

dependent parameters set equal to zero (
0 1 2

0l l l   ). Also, with the assumption 
0 1

0l l   in the Eq. (17) the 

governing equation of the circular and annular plate will be obtained by the MCST. The Eq. (17) is rewritten as the 

following form: 

 

         0M d C d K d    (18) 

 

In the above equation, the matrices    ,M C  and  K are the mass, damper and stiffness matrix, respectively. By 

defining the new freedom vector and general solution of the Eq. (17) as the following form: 
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By using the Eq. (19), we can rewrite the Eq. (18) as: 
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(20) 

 

In the above equation, the is a complex number and the vibration frequency of the FG circular and annular 

nanoplate is the imaginary part of the .The elements of the stiffness, mass and damper matrix are given in the Eq. 

(21), respectively. 
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(21) 

3    SOLUTION PROCEDURE    

3.1 Solution FG circular nanoplate by Galerkin method 

Eq. (17) is a sixth-order ordinary differential equation in  . If it is not impossible to solve the governing equation 

analytically, it is very difficult to obtain such a solution. Hence, approximate numerical method should be used. In 

the present study, Galerkin method is employed for the solution of the governing equation. The Galerkin method is a 

powerful and efficient numerical technique to solve the differential equations. Since this numerical method provides 

simple formulation and low computational cost, it has been widely used for the analysis of mechanical behavior of 

the structural elements at large and small scales, such as static, dynamic and stability problems [49, 50]. 

Furthermore, Galerkin’s method is more general than the Rayleigh–Ritz method because no quadratic functional or 

virtual work principle is necessary. 

On the hands and to the best of authors’ knowledge, no satisfactory variational principle has been reported for 

the axisymmetric vibration of FG circular nanoplates yet. Using the general procedure of the method yields the 

following: 
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(22) 

 

where ( ) ( 1,2,..., )
j

f j n   are the basic functions which must satisfy all boundary conditions but not necessarily 

satisfy the governing equation. ( 1,2,..., )
j

A j n  are unknown coefficients to be determined. The integration extends 
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over the entire domain of the plate .  The symbol Q  indicates a differential operator and is the right-hand side of 

Eq. (22). 

Here, the boundary conditions (BC) for the FG circular of constant thickness along the edge 1   are assumed 

to be clamped. The boundary conditions are mathematically written as 0W dW d   at 1  . In the Galerkin 

method, the lateral deflection can be described by a linear combination of the basic functions for the numerical 

solutions of the problem under investigation. The basic functions must satisfy all the above-mentioned boundary 

conditions. The chosen basic function for ( )W   are 
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Using Eq. (22), Eq. (23) and (20), one can obtain the following system of linear algebraic equations 
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(24) 

 

Here M,C and  I are differential operators and are given in the Eq. (21). 

 The Galerkin method transforms the vibration problem into a standard eigenvalue problem. The vibration 

frequency parameter is the eigenvalue of Eq. (24) that can be found by using standard eigenvalue extraction 

techniques.  

3.2 DQM solution  

In this section, for the solution of Eq. (18) the differential quadrature method (DQM) [51] is employed. DQM is an 

efficient numerical method for the solution of partial and ordinary differential equations. DQ technique can be used 

to deal with complicated problems reasonably well because its implementation is very simple. In comparison with 

other approximate numerical methods such as the finite elements method (FEM), the finite difference method, the 

boundary element method and the meshless methods, in this approach, the problem formulation becomes simpler 

and also low computational efforts are required to obtain acceptable solutions. In addition, since the strong form of 

the governing equations and the related boundary conditions are discretized in this method, they are free of the shear 

locking phenomenon that occurs in the FEM. In the review paper of Bert and Malik [52], some other advantages and 

disadvantages of the DQ technique are also reported. In recent years, many researchers used DQ approach for the 

global behavior analysis of the nanostructural elements, such as elastic buckling of single-layered graphene sheets 

[53, 54]. 

The DQM is based on a simple mathematical concept that a partial derivative of a function with respect to a 

space variable at a discrete mesh point (grid point) in domain can be approximated by taking a weighted linear sum 

of the functional values at all grid points in the whole domain. According to DQ method, the partial derivatives of a 

function ( )f r
 
as an example, at the point ( )

i
r  are expressed as: [51,52] 
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(25) 

where n  is the number of grid points in the r  direction. 
s

ij
C  represents the respective weighting coefficient related 

to the Sth-order derivative. According to Shu and Richard rule [51], the weighting coefficients in r direction are 

determined as, If 1S   namely, for the first order derivative, 
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where 
(1) ( )M r  is the first order derivative of ( )M r

 
and they can be expressed as: 
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(28) 

 

If 1,s   namely, for the second derivatives, the weighting coefficients are obtained by using the following 

simple recursion relationship 
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(29) 

 

One key point in the successful application of the differential quadrature method is how to select the grid points. 

It has been shown that the grid point distribution which is based on well accepted Gauss-Chebyshev–Lobatto points 

[52], gives sufficiently accurate results. According to this grid point’s distribution, the grid point distribution in the 

  direction for annular and circular FG nanoplate are given as the following form [51] 
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(30) 

 

The non-dimensional computational domain of the nanoplate is 0 1  . Using the DQ method, Eq. (21) can 

be discretized as: 
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(31) 

 

where j
W is the functional value at the grid point .

j
   It should be noted that Eq. (31) is solved for inner grid 

points. The inner grid points are calculated by considering the boundary conditions in the Eq. (13). The boundary 

conditions are incorporated in the analysis by direct substitution of them into the discrete governing equation [51]. 
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The derivatives in the boundary conditions are also discretized by the DQ procedure. After implementation of the 

boundary conditions, the Eq. (31) can be written in the following form: 

 
22 21 1

2 6 501 1

0

2 2

2 1
41

2 0 12
2

2 2 1
30 1

2 0 13 3
2

22 2

64 12ˆ ˆ[ ] 2
5 5

2 8 ˆ1 2 K
1515

12 42 2 4 16 ˆ
15 15

1 1

n n

ij j ij j

j j

n

Wij j i

j

n

ij j

j

K C W C W

C W W

C W

 


 


  



 
  

    


 

 

 









    
      

    

 
      
 

  
      
  

 

 





2 1
* 20

0 14 2 2
2

2 2 * 1
10 1

2 0 13 3 5 3 3 4
2

2 41
22 1

2

18 2 8 ˆP P K
15

18 121 1 2 8 P P K ˆ
15 15

[ ]

ˆ[ ]

n

G ij j

j

n
G

ij j

j

i

n

ij j i

j

C W

C W

C CW

I a I a
M C W W

C C


 

  

 
  

       













  
      

  

  
          
  

 

  
 







 

 

 

 

 

 

 

 

 

(32) 

 

where 

 
1

1 1

1 1

2

ˆ ˆ,      for  1,2,...,   and  1,2,...,6
n

s s s s s

i ij j ij ij i nj n

j

C W C C C C C i n s




       
 

(33) 

 

After employing the aforementioned solution procedure, one obtains the following system of linear algebraic 

equations 

 

      0A B Q    (34) 

 

where  A  and  B  are
 
   2 2n n    square matrices. The elements of these matrices are easily obtained from 

the Eq. (20).  Again, it is observed that non-dimensional buckling load   can be determined from the eigenvalues of 

a system of algebraic equations and this parameter is a complex number that the imaginary part is the vibration 

frequency of the FG circular and annular nanoplate. 

4    NUMERICAL RESULTS AND COMPARISONS   

The combination of materials consists of aluminum and ceramic SiC. The Young’s modulus, coefficient of thermal 

expansion, the density and Poison ratio for aluminum are 6 370 GPa, 23 10 ,  2702 
m m m

E kg m      and 0.3
m

  , 

respectively. These parameters for the ceramic are 6 3427 GPa, 7.4 10 , 3100 
c c c

E kg m     and 0.17
c

  , respectively. 

These material parameters are reported by Ke et al. [55]. The method of this paper can deal with all kinds of 

combinations of clamped and simply supported boundary conditions. Natural frequency parameters are listed in 

tables. The existing local plate model solutions are used for verification of the accuracy of circular and annular 

results. Following four boundary conditions have been investigated in the vibration analysis of the annular graphene 

sheets. 

SS: Annular graphene sheet with simply supported outer and inner radius.  

CS: Annular graphene sheet with clamped outer and simply supported inner radius. 

SC: Annular graphene sheet with simply supported outer and clamped inner radius. 

CC: Annular graphene sheet with clamped outer and inner radius. 
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4.1 Validation of present computed results 

The present size dependent model can easily reduce to the classical circular and annular plate model with the size 

effect being neglected in the constitutive relations. To confirm the reliability of the present formulation and results, 

comparison studies are conducted for the natural frequencies of the circular plate without considering size dependent 

parameters. Table 1. tabulates the comparison of the vibration frequency parameters for circular plates. It is seen that 

the present results for all the two boundary conditions are in excellent agreement with the classical results. 

  
Table 1 

Comparison of the present results with natural frequency parameters of classical plate theory 2.h C a    

 References 

Boundary condition 
Leissa and Narita 

[56] 

Kim and 

Dickinson [57] 

Li and Li 

[58] 

Zhou et al. 

[59] 
Present 

simply supported 

boundary condition 
13.898 13.898 13.898 13.898 13.8981 

clamped boundary 

condition 

Carrington [60] 
Kim and 

Dickinson [57] 
Leissa [61] 

Zhou et al. 

[59] 

Present 

(DQM) 

Present 

(Galerkin) 

21.260 21.260 21.26 21.260 21.2604 21.2602 

 

Table 2. presents the comparison of the vibration frequency parameters for the annular plates. The annular plate 

solutions in Table 2. were found to be in good agreement with those non-dimensional natural frequency values 

obtained by previous researchers [62, 59] who have used other techniques. All the results are presented for the four 

boundary conditions. 

 
Table 2 

Comparison of the present results with classical plate theory for the lowest six natural frequency parameters 

 2 ,  = 0.4 .a h C b a      

 References 

Boundary condition Chakraverty et al. [62] Zhou et al. [59] Present 

CC 63.04 62.996 62.996 

SS 30.09 30.079 30.124 

SC 42.63 42.548 42.5858 

CS 46.74 46.735 46.5558 

 

For further validation, the present results are compared with the first three natural frequencies of the FG annular 

microplate in Table 3. Since there are no published results available for annular nanoplates in open literature, the 

results of annular microplate are used for comparison. To obtain these results, the modified couple stress theory is 

utilized. From this table, one can see that the present results are in good agreement with the reported results in the 

literature.  To obtain the natural frequencies of the FG annular plate, the boundary condition of annular microplate 

are assumed SS and CC. The other material properties of the annular microplate are reported by Ke et al. [55]. 

 
Table 3 

 Comparison of the present results with MCST for the natural frequency parameters of annular FG microplate 

 = 0.5,  =0.5, k=2 .b a   

Boundary 

condition 

References 

First Mode Second Mode Third Mode 

Ke et al. [55] Present Ke et al. [55] Present Ke et al. [55] Present 

CC 5.5364 5.53639 8.3238 8.32377 12.5300 12.5301 

SS 3.2665 3.2662 7.9057 7.90568 10.1756 10.17564 

 

A computer code is developed in MATLAB based on Eq. (20). As DQ results are sensitive to lower grid points, 

a convergence test is performed to determine the minimum number of grid points required to obtain stable and 

accurate results for Eq. (20). The analysis is carried out by radius of nanoplate 10 nm, the size dependent parameter 

0.5 nm, the shear, Winkler and damping coefficients are assumed 10, 100 and 10, respectively. According to the Fig. 
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2, present solution is convergent. From the figure it is clearly seen that eleventh number of grid points ( 11N  ) are 

sufficient to obtain the accurate solutions for the present analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Convergence study and minimum number of grid points 

( N
) required to obtain accurate results. 

4.2 The results of present study 

Variation of vibration frequency versus compressive in-plane pre-load is shown for FG circular nanoplate in the Fig. 

3. The non-dimensional parameter of elastic medium such as shear modulus parameter GK , Winkler modulus 

parameter WK  and damping modulus of damper C  for the surrounding polymer matrix is gotten 10, 100 and 10 

respectively. The curves show that the vibration frequency is sensitive to the modulus of the surrounding elastic 

medium. It is also clearly shown that the vibration frequency decreases by increasing the in-plane pre-load. Further, 

it is illustrated that the damping modulus decreases the vibration frequency; thus, the greatest and the smallest 

vibration frequency are belong to the FG nanoplate based on the Pasternak medium and Visco-Winkler medium, 

respectively.  

To determine the effect of the aspect ratio on the vibration frequency of the FG nanoplate, the vibration 

frequencies of the FG annular nanoplate against the aspect ratio are plotted in the Fig. 4 for four different boundary 

conditions. To obtain the results, the vibration frequencies are presented by considering the power index parameter 

10 and the inner radius 40 nm. Also, the size dependent parameter is assumed 0.5h in the MSGT.  From this figure, 

it is clearly shown that the non-dimensional frequency increases with the increase of the aspect ratio. Also, the 

results show that the non-dimensional frequency increases monotonically by increasing the rigidity of the boundary 

conditions. In Fig. 4, the gap between the curves increases with increasing the aspect ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Variation of vibration frequency with the compressive pre-

load for various kind of elastic medium. 
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Fig.4 

Variation of vibration frequency with the aspect ratio for 

various boundary conditions. 

 

 

The first vibration frequencies of the circular FG nanoplate are plotted in the Fig. 5. In these figures, the 

dependency of the vibration frequency versus the radius of the circular FG nanoplate is shown for different 

temperature changes. To obtain these results, it is assumed that the FG nanoplate embedded on a visco-Pasternak 

foundation and the shear elastic, the Winkler elastic and the external damping coefficient are assumed 10, 100 and 

100, respectively. Also, the power index of FG material and the size dependent length of the circular nanoplate are 

considered 10, and 0.5h, respectively. The vibration frequencies are obtained by considering the modified strain 

gradient theory. From this figure, it is clear that the vibration frequency of the circular nanoplate is strongly depend 

on the radius of the circular nanoplate and this dependency is more for the larger temperature change. Also, the 

effect of the temperature change decreases with decreasing the radius of the nanoplate. Furthermore, this figure 

shows that the temperature change has a decreasing effect on the vibration frequency of the circular nanoplate. 

According to this figure, one can easily find that the natural frequency is strongly depended to the radius of the 

nanoplate and this parameter has a decreasing effect on the natural frequency of the FG nanoplate. Moreover, this 

figure indicates that there is critically temperature and radius for the FG nanoplate because the vibration frequency 

becomes zero in a specific radius and temperature change; thus, this specific radius and temperature change is called 

the critically parameters.  

Influence of the size dependent on the frequencies of nanoplate under the temperature change by considering the 

modified couple stress and the modified strain gradient theory is studied. Fig. 6 shows the variation in vibration 

frequency with size dependent parameter under various power index parameters. The nanoplate is assumed to be 

subjected to a temperature change of 50. T  It can be observed that as the size dependent parameter increases, the 

non-dimensional frequency increases for all values of the power index parameter. The results of figure indicate that, 

by increasing the values of size dependent parameter, the difference between the MCST and the MSGT is increased 

for all values of power index parameters. It is also observed that as the power index parameter increases the 

vibration frequency decreases. Furthermore, as can be seen from Fig. 6, the non-dimensional frequency is sensitive 

to the size dependent parameter for small values of power index parameter. In the other words, it is seen that the 

non-dimensional frequency for FG nanoplates with higher size dependent parameter are strongly affected by the 

used elasticity theory (MSGT and MCST). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Variation of vibration frequency with the radius of circular 

FG nanoplate for various temperature changes. 
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To see the effect of temperature change in different power index parameter from the solution for non-

dimensional frequency FG annular nanoplate with different length are shown in Fig. 7. The variation of non-

dimensional natural frequency for FG annular nanoplate with CC and SS boundary condition is plotted in Fig. 7. 

The aspect ratio of nanoplate is considered 0.4. It is found that the non-dimensional frequency increases with 

increase of the rigidity of the boundary condition for all lengths. Similar vibration response as this trend is observed 

for other boundary conditions. The results are shown that the vibration frequency of the FG annular nanoplate by 

high power index parameter is lower than that the vibration frequency of the FG nanoplate by low power index 

parameter. It is also observed that the effect of the temperature change on the non-dimensional frequency is 

important for SS annular nanoplate with high power index parameter in comparison with the annular nanoplate with 

rigidity boundary condition and small power index parameter.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Variation of vibration frequency with the size dependent 

parameters of the FG nanoplate for various power index 

parameter and two different elasticity theories. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Variation of vibration frequency with the temperature 

change of the FG annular nanoplate for various power 

index parameter, radius and boundary conditions. 

 

In order to show the dependency of the higher vibration frequency mode of the viscoelastic nanoplate on the 

foundation type and size dependent parameter, the size dependent difference percentage is introduced as follows: 

 

0 0

0

Vibration  Vibration 
Size dependent difference p  = 100

Vibration 

frequency frequency
ercentage

frequency

 



 




  

 

 

To this end, the size dependent difference percentage versus size dependent parameter is plotted in the Fig. 8 for 

various kind of elastic foundation and three different vibration frequency modes. The aspect ratio of the circular 

annular nanoplate is assumed 0.4; also, the outer and inner boundary condition of the annular nanoplate are 

considered clamp.  From this figure, it is clear that the vibration frequency of the nanoplate is strongly depend on the 

size dependent and the kind of the elastic foundation and this dependency is more for the higher mode vibration 

frequency. Also, the effect of the size dependent on the first vibration frequency mode is more than that the third 

vibration frequency mode. On the other hand, the effect of the elastic foundation on the vibration frequency is more 

important for the first vibration frequency mode in comparison with the third vibration frequency mode. Further, one 

can easily see that the effect of the size dependent on the vibration frequency mode for the nanoplate with the 

Winkler foundation is more important than the nanoplate with Visco-Pasternak foundation. 
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Fig.8 

Variation of size dependent difference percentage with the 

size dependent parameter for various kind of elastic 

foundation and three different frequency mode. 

 

5   CONCLUSIONS 

This study illustrates the significance of size dependent effects on the vibration behavior of FG circular and annular 

nanoplate in the thermal environment. Two different size dependent continuum theories (MSGT and MCST) are 

utilized to obtain the vibration frequencies of the FG annular and circular nanoplate. To calculate the natural 

frequencies, the differential quadrature method and the Galerkin method are used. The results are presented for 

clamp and simply supported FG circular nanoplate. The vibration frequencies of the annular nanoplate with four 

different boundary conditions are also obtained. From the results following conclusions are noticeable: 

 The vibration frequency of the FG circular and annular nanoplate is strongly depended on the radius of the 

circular nanoplate and this dependency is more for the larger temperature change. 

 The influence of temperature change reduces, by decreasing of radius. 

 The non-dimensional natural frequency decreases at high temperature case with increasing the temperature 

change. 

 The effect of temperature change on the non-dimensional frequency vibration becomes the opposite at low 

temperature case in compression with the high temperature case. 

 The power index effect for the MSGT is much more than that for the MCST.  

 The power index effect has a decreasing effect on the vibration frequency of the FG circular and annular 

effect.  

 The size dependent parameter has an increasing effect and this parameter play an important role in the case 

of FG circular and annular nanoplate with smaller power index parameter.   

 The differences between the vibration responses of the FG nanoplate increase by increasing the size 

dependent parameter.  

 The effect of temperature on the frequency vibration increases with increasing the radius of annular 

nanoplate. 

 The effect of temperature change is significant to predict the mechanical behavior of FG circular and 

annular nanoplate with high power index parameter and cannot be ignored. 

 In the first mode, the effect of the elastic foundation on the vibration frequency is more important in 

comparison with the third vibration frequency mode. 

 The effect of the size dependent on the first vibration frequency mode is more than that the third vibration 

frequency mode. 
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