
 

© 2017 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 9, No. 4 (2017) pp. 783-793 

Influences of Heterogeneities and Initial Stresses on the 
Propagation of Love-Type Waves in a Transversely 
Isotropic Layer Over an Inhomogeneous Half-Space 

P. Alam
 *
, S. Kundu  

Department of Applied Mathematics, Indian Institute of Technology (Indian School of Mines), Dhanbad Jharkhand-

826004, India 

Received 17 July 2017; accepted  20 September 2017 

 ABSTRACT 

 In the present paper, we are contemplating the influences of heterogeneities and 

pre-stresses on the propagation of Love-type waves in an initially stressed 

heterogeneous transversely isotropic layer of finite thickness lying over an 

inhomogeneous half space. The material constants and pre-stress have been taken 

as space dependent and arbitrary functions of depth in the respective media. To 

simplify the problem, we have used Whittaker’s function and separation of 

variables method. We present a general dispersion relation to describe the 

impacts on the propagation of Love-type waves in the structure. The present 

dispersion relation is analyzed case wise and also validated by comparison of the 

standard Love wave equation. Further, numerical computations are demonstrated 

graphically for the set of dimensionless parameters between dimensionless phase 

velocity and dimensionless wave number of the wave. 

                                                        © 2017 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

N this work, we are studying a theoretical problem of seismology, in which we analysed seismic wave 

propagation in two dissimilar types of characteristics media. Mainly two kinds of seismic waves are generated by 

Earthquakes or explosions, first one is body wave which propagates within the Earth and second one is surface wave 

that propagates along its surface. Love-type wave is a type of surface seismic waves and the existence of these 

waves were predicted by A.E.H. Love in 1911. They have a decreasing trend as the depth of the layer increases from 

the surface of the propagation. The present Earth’s model (Fig.1) of this work describes the Love-type wave 

propagation in the composite structure of two different types of media, which may help us to examine the behaviour 

and distinctiveness of seismic Love-type surface waves in the Earth’s interior. The basic information related to 

fundamental of seismic waves and elastic materials are well documented in the books of Love [1], Ewing et al. [2], 

Biot [3], Gubbins [4] and Ding et al. [5] etc.  

The Earth’s interior is the composition of dissimilar types of materials with different type of properties like 

isotropic, anisotropic, orthotropic, transversely isotropic, homogeneous and heterogeneous etc. The propagation of 

seismic waves is influenced by these materials. In this way the study of seismic wave propagation in the composite 

structure of these aforementioned layered media has their own importance. Transversely isotropic materials are the 

special class of orthotropic materials. Geophysically, the rock formations of crust are locally polar anisotropic that is 
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transversely isotropic. Recently, Singh et al. [6] developed a problem to find the effect of semi-infinite smooth 

moving punch in an initially stressed magnetoelastic transversely isotropic medium due to shear wave propagation. 
The effect of the transverse isotropy and magnetic field on the interface waves in a conducting medium was 

investigated by Acharya et al. [7]. Ahmad and Khan [8] studied rotational effects on the wave plane propagation in a 

transversely isotropic unbounded medium rotating about its axis. Baljeet [9] outlined the plane wave propagation in 

a rotating, two-temperature thermo-elastic transversely isotropic solid half-space. Kundu et al. [10], Zhu et al. [11] 

and Kakar [12] established  dispersion equations for different types of seismic surface wave propagation in the 

isotropic layered structure. 

There may exists varying stress inside the Earth because of atmospheric pressure, gravitational pull, slow creep 

process, manufacturing process and pressure due to overburden etc. (Dey and De, [13]). Thus, the Earth is 

considered to be initially stressed. Many authors and researchers have theoretically considered the seismic surface 

wave propagation in pre-stressed medium. Dhua and Chattopadhyay [14], Kundu et al.[15]  and Chattaraj et al. [16] 

developed dispersion relation to examine the surface waves propagation in various types of pre-stressed media. The 

propagation of seismic surface waves are also influenced by pre-stressed media through which they propagate. Dey 

and Addy [17], Mahmoud [18], Kepceler [19] and Biot [20] discussed how the elastic waves are influenced by 

initially stress medium. 

Geophysical studies have revealed the fact that the earth medium is heterogeneous throughout and different types 

of heterogeneities (e.g. linear, quadratic, exponential, etc.) may exist in the earth’s medium. According to Birch 

[21], as we move along the depth of the earth the rate of change in rigidity and density vary rapidly and also reported 

that for different layers of the Earth medium, rigidity varies at different rates. These variations may arise due to 

heterogeneity. Bullen [22] approximated density law inside the Earth as a quadratic polynomial in depth parameter 

for 413–984 km depth. In the recent years, sufficient interest has arisen in the problem connected with bodies whose 

mechanical properties are functions of space, i.e. heterogeneous bodies. Dey et al. [23] have shown the possibility of 

torsional surface wave propagation in different types of heterogeneous elastic media. Gupta et al. [24, 25] studied 

Love wave propagtion in heterogeneous layered media with rigid and free boundary surfaces. 

With the view of above, in the present study we have assumed quadratic variation of heterogeneities. This study 

visualizes the impacts on the propagation of Love-type waves in a heterogeneous half-space overloaded by a 

heterogeneous transversely isotropic layer under initial stress. The effect of heterogeneities, pre-stresses 

(compressive and tensile) on the non-dimensional phase velocity 1( / )c   of Love-type waves are demonstrated 

graphically with respect to the non-dimensional wave number ( )kH . All graphs are plotted by using MATLAB 

software. The graphical results of this problem are discussed in numerical computation and discussion section. 

2    FORMULATION OF THE PROBLEM 

Consider a composite structure consisting of an initially stressed heterogeneous transversely isotropic layer ( 1M ) of 

finite thickness H  lying over a heterogeneous half-space ( 2M ). The assumed model of the problem is shown in 

Fig.1. The Cartesian co-ordinate system has been considered such that the x-axis is in the direction of Love-type 

wave propagation and z-axis is vertically downwards. Therefore, the particle displacements of both medium take 

place along y-axis only i.e., displacements in the direction of x and z axes vanish. Also, the rate of change along y-

axis vanishes i.e. 0
y





. The rigidities, densities and pre-stress of the layer and half-space are taken as: 
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(1) 

 

where, A, N, G, F and C are material constants, 1  
is density and P is initial stress of the layer. 
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For half-space 
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(2) 

 

where, 2  is rigidity, 2 is density of the half-space and   . 

The arbitrary constants ,   and   have inverse dimension of length. 

 

 

 

 

 

 

 

 

 

Fig. 1 

Geometry of the problem. 

3    SOLUTION FOR THE HETEROGENEOUS TRANSVERSELY ISOTROPIC LAYER (M1) 

Let 1 1 1( , , )u v w  is the component set of displacement vectors of the layer. Therefore, the dynamical equations of 

equilibrium for initially stressed medium are given by Biot [3] 
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(3) 

 

where ( , 1,2,3)ij i j   are the component of stresses and given by 
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(4) 

 

and , ,x y z    are the rotational components given by 
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(5) 

 

But, for the Love-type waves propagation 

1 1 1( , , ) and 0v v x z t u w  
  

 (6) 
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By using of Eqs.(1), (4), (5) and (6) in Eq.(3), the only non-vanished dynamic equation of motion is 
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Assuming the solution of resulting Eq. (7) as 
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where, 0
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To simplify the previous Eq. (8), we use the following substitution:  1( )
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. Therefore Eq. (8) takes the 
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Solution of Eq. (9) is found as: 
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where, 1A  and 2A  are the unknown coefficients. 

Finally, the solution of component 1v  is 

 

( )
1 1 2

1
( cos sin ) .

(1 )

ik x ctv A z A z e
z

 


 
   

 
 

(11) 

4    SOLUTION FOR THE INHOMOGENEOUS HALF-SPACE (M2) 

Let us consider 2 2 2( , , )u v w  is the component set of displacement vectors of half-space and then the dynamics 

equation of motion for the half-space are (Biot, [3]) 
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(12) 

The components of stresses are 



787                            Influences of Heterogeneities and Initial Stresses on the Propagation … 

 
 

© 2017 IAU, Arak Branch 
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 are Lame’s constants. 

Now, for the love-type waves 
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Eqs.(12) together with the Eqs.(2), (13) and (14) gives only one non-vanish equation 
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Assuming the solution of previous Eq.(14) as 
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For the simplification of Eq. (16), we take the following substitution: 2 ( )
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To find the solution of Eq. (17), we introduce some dimensionless quantities 
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On using above quantities of Eq. (18) in Eq. (17), the Eq. (17) takes the form 

 

2
2

22
22 2

1
( ) 1 4 ( ) 0.

4

s
d r

k
d

 
 

 

 
 

     
  
 

  
 

 

 

(19) 

 

Eq. (18) is Whittaker’s equation (Whittaker and Watson, [26]) and its solution is given by 
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where, 1B  and 2B  are the unknown coefficients of Whittaker’s functions , ( )r sW  and , ( )r sW   . 

For lim ( ) 0
z

g z


 , i.e., 2lim ( ) 0
z
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 , the appropriate solution for the required displacement component of 

half-space is 
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5    CONDITIONS OF CONTINUITY 

At 0z  , 
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6    DISPERSION EQUATION 

On using of above boundary conditions with the help of Eqs.(11) and (21), we get a composite system of three 

homogeneous linear equations with three unknowns 1 2,A A  and 2B
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7    PARTICULAR CASES  

Several cases of dispersive Eq. (25) are given below 

 

Case I 

If the layer is free from initial stress i.e., 0,P 
 
therefore Eq. (25) reduces to 
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Case II 

If we consider the upper layer is homogeneous i.e., 0,   then Eq. (26) becomes 
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Case III 

 If the half-space is also homogeneous i.e., 0   and 0  , which implies that 
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Case IV 

When the layer is isotropic i.e., 0 0 1N G    (say). Then Eq. (28) takes the form of the classical form of Love 

waves (Love, [1]) 
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8    NUMERICAL COMPUTATIONS AND DISCUSSION 

With the purpose of showing influences of initial stress and heterogeneities on Love-type wave propagation, based 

on dispersion Eq. (25), we are using following data of material constants 

For the layer (Acharya et al. [7]) 
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10 2 10 2 3
0 0 014 10 / , 6.3 10 / and 7100 / .G N m N N m kg m       

 

For the half-space (Gubbins, [4]) 

 
9 2 3

02 0178.4 10 / and 3535 / ,N m kg m      

 

The above data are in good agreement with the condition 1 2c c c   of Love-type waves. By using of above 

numerical data, we have shown the impacts of dimensionless heterogeneous parameters ( / , / , /k k k   ), 

dimensionless initial compressive stress  0   and dimensionless initial tensile stress  0   on the propagation 

of Love-type wave in the following figures (Figs. 2-6). All graphs have been plotted for the dimensionless phase 

velocity  1/ cc  with respect to the dimensionless wave number  kH  on the Love-type wave propagation. The 

phase velocity curves in all figures follow same decreasing trend with respect to the kH. The numerical values of the 

dimensionless parameters for figures are given in Table 1. Moreover, we have shown some graphs for the 

appropriate cases. 

 
Table 1 

Values of parameters for figures. 

Parameters / k  / k  / k  0 01/ 2P   

Fig. 2 - 0.1 0.4 0.1 

Fig. 3 0.2 - 0.4 0.1 

Fig. 4 0.2 0.1 - 0.1 

Fig. 5 0.2 0.1 0.4 - 

Fig. 6 0.0 0.1 0.4 - 
- stands for the variation of parameter in the corresponding figure. 

 

Fig. 2 manifests the impact of dimensionless heterogeneity parameter / k . In this figure, the values of / k  

for curves 1, 2, 3, 4 and 5 have been taken as 0.10, 0.12, 0.14, 0.16 and 0.18 respectively. It has been observed that 

the curves accumulate at 1.5kH  , which shows that, at 1.5kH  , / k has no effect on the phase velocity of 

Love-type wave. It has also been revealed from the figure that as the value of / k  increases, the phase velocity of 

Love-type waves decreases for 1.5kH  and increases for 1.5kH .  

 

 

 

 

 

 

 

 

 

 

Fig. 2 

Variation of phase velocity  1/ cc  with wave number kH 

for different values of heterogeneity parameter / .k  

Impacts of dimensionless heterogeneity parameter / k have been elucidated in Fig. 3. In this figure, the values of 

/ k  have been taken as 0.10, 0.12, 0.14, 0.16 and 0.18 for curves 1, 2, 3, 4 and 5 respectively. It has been noticed 

from the figure that, the phase velocity  1/ cc  also increases as the value of / k  increases. The figure also 

suggests that / k has very significant effect on the phase velocity in lower frequency region as compare to the 

higher frequency region. 

The curves in Fig. 4 have been plotted to get a better understanding of the impact of dimensionless heterogeneity 

parameter / k . The values of / k  in this figure have been taken as 0.20, 0.22, 0.24, 0.26 and 0.28 for curves 1, 2, 
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3, 4 and 5 respectively. It has been seen from the figure that, the phase velocity  1/ cc  decreases as the value 

of / k  increases. Same as Fig. 3, / k has very significant effect on the phase velocity in lower frequency region 

as compare to the higher frequency region. 

 
  

 

 

 

 

 

 

Fig. 3 

Variation of phase velocity  1/ cc  with wave number kH 

for different values of heterogeneity parameter / .k  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Fig. 4 

Variation of phase velocity  1/ cc  with wave number kH 

for different values of heterogeneity parameter / .k  

 

In Fig. 5, the study has been made to know the effect of initial compressive stress  0  . In this figure the 

values of   for curves 1, 2, 3, 4 and 5 have been taken as 0.0, 0.1, 0.2, 0.3 and 0.4 respectively. It has been 

followed from this figure that, the compressive initial stress 
 
has decreasing effect on the phase velocity  1/ cc .  

The curve no. 1 of Fig. 5 represents the case I in the absence of compressive initial stress. 

 

 

 

 

 

 

 

 

 

 

Fig. 5 

Variation of phase velocity  1/ cc
 
with wave number kH 

for different values of initial compressive stress 
parameter .  

The impact of dimensionless initial tensile stress  0 
 
has been inferred in Fig. 6. The curves 1, 2, 3, 4 and 5 

have been plotted for the values 0.0, -0.1, -0.2, -0.3 and -0.4 of   respectively. Clearly, Fig. 6 shows that the phase 

velocity 1( / c )c  increases as the value of initial tensile initial stress   decreases. Also, the curve no. 1 of this figure 
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corresponds to the case I in the absence tensile initial stress. Both figures 5 and 6 have similar but opposite effect on 

the phase velocity of Love-type waves. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 

Variation profile of phase velocity  1/ cc  with wave 

number kH for different values of initial tensile stress 
parameter .  

9  CONCLUSIONS 

In the present study, we have conducted a theoretical analysis with some numerical examples of parameters to 

understand the effect of initial stresses and heterogeneities on the propagation of Love-type waves through a 

mathematical model. The study reveals that the presence of heterogeneities in both media and initial stress present in 

the layer affects the propagation of Love-type waves significantly. 

From the overall study we have following conclusions: 

1. It is well-known fact that the velocity of love-type waves decays with the increase of depth and here all 

figures also suggest that the phase velocity curves of Love-type waves follow same decreasing trend with 

respect to the kH, which is justifying the results of the study. The higher values of kH are ignored, as the 

velocity of Love-type wave decays with respect to depth and finally will be diminished. 

2. The initial tensile stress  0  and heterogeneity parameter  / k  have proportional impacts on the 

phase velocity of Love-type waves. 

3. The initial compressive stress  0  and heterogeneity parameter  / k  have inverse impacts on the 

phase velocity of Love-type waves. 

4. The heterogeneity parameter  / k   has inverse impact on the phase velocity of wave for 1.5kH , 

whereas it has proportional impact on the phase velocity for 1.5kH . 

The above conclusion indicates that the heterogeneities, initial stresses and isotropy of the proposed Earth model 

have remarkable effect on the Love-type surface wave propagation. Also we have shown the validation of this 

problem by comparison of standard wave equation of Love [1]. Hence, the results of the present theoretical study 

may helpful to seismologists in the analysis of Earth’s interior, and to know the cause and assessment of damage due 

to earthquakes. Also, the results can be used for the practical application of seismic waves in the heterogeneous 

layered earth structure. 
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