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 ABSTRACT 

 The object of the present paper is to study temperature distribution and 

thermal stresses of a functionally graded thick hollow cylinder with 

temperature dependent material properties. All the material properties except 

Poisson’s ratio are assumed to be dependent on temperature. The nonlinear 

heat conduction with temperature dependent thermal conductivity and specific 

heat capacity is reduced to linear form by applying Kirchhoff’s variable 

transformation. Solution for the two dimensional heat conduction equation 

with internal heat source is obtained in the transient state. The influence of 

thermo-sensitivity on the thermal and mechanical behavior is examined. For 

theoretical treatment all physical and mechanical quantities are taken as 

dimensional, whereas for numerical computations we have considered non-

dimensional parameters. A mathematical model is constructed for both 

homogeneous and nonhomogeneous case. Numerical computations are carried 

out for ceramic-metal-based functionally graded material (FGM), in which 

alumina is selected as ceramic and nickel as metal. The results are illustrated 

graphically.                               © 2018 IAU, Arak Branch. All rights reserved. 

 Keywords : Functionally graded hollow cylinder; Temperature distribution; 

Thermal stresses; Thermo-sensitivity. 

1    INTRODUCTION 

 URING the past three decades, Functionally graded materials (FGMs) have drawn considerable attention in 

the field of structural engineering applications at extremely high temperature. FGMs are generally composed of 

different materials such as ceramics and metals with continuous and gradual variation across thickness, which 

reduces the thermal stresses, thereby improving the mechanical durability of the material. Al-Hajri and Kalla [1] 

developed a new integral transform and its inversion involving combination of Bessel’s function as a kernel and 

used it to solve mixed boundary value problems. Awaji et al. [2] presented a numerical technique for analyzing one-

dimensional transient temperature and stress distributions in a stress-relief-type plate of functionally graded ceramic-

metal based materials (FGMs), in relation to both the temperature-dependent thermal properties and continuous and 

gradual variation of the thermo-mechanical properties of the FGM. Ching and Chen [3] investigated the 

thermomechanical deformation of a functionally graded composite (FGC) in elevated temperature environments by 
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the meshless local Petrov–Galerkin method. Farid et al. [4] studied free vibration analysis of initially stressed thick 

simply supported functionally graded curved panel resting on two-parameter elastic foundation, subjected in thermal 

environment using three-dimensional elasticity formulation. Hata [5] studied thermal stresses in a nonhomogeneous 

medium whose shear modulus and coefficient of thermal expansion are assumed to vary axially. Hosseini and 

Akhlaghi [6] studied transient thermal stresses in a thick hollow cylinder made of FGM by assuming the material 

properties to be nonlinear with a power law distribution through the thickness. Kassir [7] investigated thermal stress 

problems in a thick plate and a semi-infinite body in nonhomogeneous solids. Kumar et al. [8, 9] studied the two 

dimensional axisymmetric problem of thick circular plate in modified couple stress theory with heat and mass 

diffusive sources. Kushnir and Protsyuk [10] presented thermal stressed state of a multilayered thermally sensitive 

cylinders and spheres under the conditions of convective-radiation heat transfer. Kushnir and Popovych [11] 

analyzed heat conduction problems of thermo-sensitive solids under complex heat exchange. Lamba et al. [12] 

analyzed the thermoelastic behavior of a hollow cylinder under heating and cooling process. Liew et al. [13] 

presented an analysis of the thermomechanical behavior of hollow circular cylinders of FGMs. Manthena et al. [14-

18] studied temperature effect, bending moments, thermal stresses in FG and nonhomogeneous solids under 

unsteady temperature distribution. Moosaie [19] presented an exact analytical solution to the axisymmetric heat 

conduction equation for hollow spherical objects with temperature-dependent thermal conductivity. Moosaie [20] 

presented an approximate analytical solution to the axisymmetric heat conduction equation for a hollow cylinder 

made of functionally graded material with temperature-dependent heat conductivity by considering general linear 

boundary conditions. Noda [21] presented a brief review on thermal stresses in materials with temperature-

dependent properties. Peng and Li [22] presented a novel method for analyzing steady thermal stresses in a 

functionally graded hollow cylinder. The thermal and thermoelastic parameters are assumed to arbitrarily vary along 

the radial direction of the hollow cylinder. Popovych [23] studied the modeling of heat fields in thermally sensitive 

plates. Popovych and Garmatii [24] developed analytic-numerical methods of heat-conduction problems for thermo-

sensitive bodies with convective heat transfer.  Popovych et al. [25-29] proposed a method of solving stationary 

heat-conduction problems of contacting bodies with coefficient of thermal conductivity that are linear functions of 

the temperature and the corresponding problems of thermo-elasticity and a hollow cylinder from whose surfaces a 

convective heat exchange with the external environment occurs. Popovych and Kalynyak [30] proposed a procedure 

of getting analytic expressions for the description of axisymmetric stationary thermal fields, axisymmetric static or 

quasi static stress and strain fields in long hollow multilayer cylinders made of thermally sensitive materials with 

constant normal loads and arbitrary classical conditions of heat exchange specified on the bounding surfaces. 

Rakocha and Popovych [31] determined stationary temperature distribution in a three-layer infinite hollow cylinder 

based on the thermo-sensitive body model. Tang [32] presented a simple thermal stress analysis for thin plates 

which includes temperature dependent thermal mechanical properties and given derivations for the bending of 

isotropic elastic plates in the presence of a temperature field. Thawait et al. [33] studied the elastic analysis of 

concave thickness rotating disks made of functionally graded materials.  Tripathi et al. [34] discussed a two 

dimensional generalized thermoelastic problem of a thick circular plate of finite thickness and infinite extent 

subjected to continuous axisymmetric heat supply and an internal heat generation within the context of generalized 

thermo-elasticity.       

In the present article, we  have considered a two-dimensional transient thermoelastic problem of a thick hollow 

cylinder occupying the space , 0a r b z h    , subjected to sectional heating on the upper surface. The material 

properties except Poisson’s ratio and density are assumed to be temperature dependent. The solutions are obtained in 

the transient state in the form of Bessel’s and trigonometric functions. 

2    THERMOELASTIC EQUATIONS 

The strain displacement relations and equilibrium conditions are given by [3]  
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The stress-strain relations with temperature dependent material properties are formulated as: 
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where , ,rr zze e e are the strain components ( )rr zze e e e   , ( ), ( ), ( )G T T T   are shear modulus, Lame’s 

constants and ( )
T

T  is the coefficient of thermal expansion. We assume ( )G T , ( )
T

T , ( )T  and ( )T  as: 
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where 
0 0 0 0, , ,G     are the reference values of  shear modulus, coefficient of thermal expansion, Lame’s constant 

respectively. 

Using Eqs. (1), (3) and (4) in (2), the displacement equations of equilibrium are obtained as: 
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where             
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The solution of Eq. (5) without body forces can be expressed by the Goodier's thermoelastic displacement 

potential  and the Boussinesq harmonic functions  and  as: 
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In which the three functions must satisfy the conditions 
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 is the restraint coefficient and 

0T T   , in which 
0T  is the surrounding temperature. If 

we take  

 

( )z dz M          (9) 

 

In the above Eq. (7), Michell’s function M may be used instead of Boussinesq harmonic functions  and  . 

Hence Eq. (7) reduces to 
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In which Michell’s function M must satisfy the condition 
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Now by using Eq. (10) in Eq. (4), the results for stresses are obtained as: 

 
2

2 2

0 0 0 0 0

2
2 2

0 0 0 0 0

0

exp( ) 2 (1 2 ) ( ) (3 2 ) exp( )

1
exp( ) 2 (1 2 ) ( ) (3 2 ) exp( )

exp( ) 2

rr

zz

M
T G M T T

r r r z z

M
T G M T T

r r r z z

T G
z




        


        

 

       
                    

      
                   






2
2 2 2

02

0 0 0

2 2
2

0 2

2(1 ) (1 2 ) ( )

(3 2 ) exp( )exp( )

exp( ) 2(1 )r z

M
M M

z zz

T T T

M M
T G M

z r r z r z z


   

    

 
  

      
                  

 

         
          

          

            (12) 

 

The boundary conditions on the traction free surface stress functions are 
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3    HEAT CONDUCTION EQUATION AND ITS SOLUTION 

We consider the temperature dependent transient heat conduction equation with initial and boundary conditions in a 

hollow cylinder given by 
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where ( , )k z T  and ( , )C z T
 
are the thermal conductivity and calorific capacity, ( , , )g r z t  is the internal heat 

source, 0T  is the temperature of the surrounding medium, 1 2,e e  are the heat transfer coefficients. 

Introducing the Kirchhoff’s variable [12, 15, 22, 23] 
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and taking into account that the material with simple thermal nonlinearity ( ( , ) / ( , ) 1)C z T k z T   is considered, we 

obtain Eq. (14) with variable   as: 

 
2 2

2 2

1
( , , )g r z t

r r tr z

      
    

   
            (18) 

 

The initial and boundary conditions are expressed as: 
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where c  is the temperature determined in terms of the Kirchhoff variable from relation (17). 

To complete the linearization of the conditions of convective heat transfer (19), we carry out the change of 

variable (1 )c      , where   is an unknown constant. Following [6], for 0,   the conditions (19) becomes 
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For the sake of brevity, we take
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the transform given in [11] to solve Eq. (18) with the aid of boundary conditions given by Eq. (20), we obtain  
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The initial and boundary conditions are 
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where 
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Here 
0J  and 

0Y  are Bessel’s function of first kind and second kind respectively and 
iq  are the positive roots of 

the transcendental equation 
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Now applying finite Fourier Cosine transform on Eq. (21) and using the conditions from Eq. (22), we obtain 
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The initial condition is 
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Applying inverse Fourier Cosine transform on Eq. (25), we obtain  
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Taking inverse transform defined in [11] on the above equation, we obtain  
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Applying variable inverse transformation from   to T (See Appendix A), the temperature distribution in Eq. 

(26) becomes 
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4    THERMOELASTIC ANALYSIS 

Referring to the heat conduction Eq. (14) and its solution given by Eq. (27), the solution for the Goodier’s 

thermoelastic displacement potential   governed by Eq. (8) is obtained as: 
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Similarly, the solution for Michell’s function M assumed so as to satisfy the governed condition of Eq. (12) is 

obtained as: 
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where 
nC  and 

nD  are constants. Now, in order to obtain the displacement components, we substitute the values of 

  and M in Eq. (10), and obtain 
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where a comma denotes differentiation with respect to the following variable.  

Using the displacement components given by Eqs. (30) and (31) in Eq. (12), the components of stresses in the 

homogeneous (by taking 0   ) as well as nonhomogeneous case (by taking 0   ) may be obtained. 

Also by using the traction free conditions given by Eq. (13) the constants nC and nD may be determined.  
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5    NUMERICAL RESULTS AND DISCUSSION 

Following [11], we consider a model of a ceramic-metal-based FGM, in which alumina is selected as the ceramic 

and nickel as the metal. 
 

Table 1 

Thermo-mechanical properties of alumina and nickel at room temperature. 

Property Alumina (Ceramic) Nickel (Metal) 

Thermal conductivity k        [ / ]W cmK      0.282 0.901 

Thermal diffusivity   k       6 2[ 10 / ]cm s  0.083 0.223 

Thermal expansion coefficient       6[ 10 / ]K  5.4     14.0      

Young’s modulus  E         2[ / ]N cm  636 10  621.8 10  

Poisson’s ratio   v         0.23    0.31   

 

For numerical computations, we introduce the following non-dimensional parameters. 
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with parameters 1 , 2 , 2 ,a cm b cm h cm  
 

2 sect  , Surrounding Temperature 0 320oT K . 

The Figs. (1 to 7) on the left are plotted along radial direction, whereas the figures on the right are plotted along 

axial direction. Fig. 1 shows the variation of dimensionless temperature along radial and axial directions for 

different values of 0.25,0.5,1   and 0.5,0.75,1   respectively. Along radial direction, it is seen that, there is 

some heat initially due to surrounding temperature and the absolute value of temperature is decreasing as the heat is 

transferred from the curved surface towards the inner radius. Thermal energy is accumulated near the point 0.8   

and hence all the points of  are coinciding. Also since sectional heating is given at the upper surface, the 

magnitude of temperature is high and is slowly decreasing towards the lower surface. Along axial direction, it is 

seen that the absolute value of temperature is high at the upper surface and is slowly decreasing till 0.4.   The 

accumulation of thermal energy at 0.7   is causing the temperature to raise a little towards the lower surface. 

     

       
Fig.1 

Variation of dimensionless temperature along radial and axial directions. 

 

Fig. 2 shows the variation of dimensionless displacement u  along radial and axial directions for different values 

of   and   respectively. Along radial direction, it is seen that the nature of the graph is sinusoidal. The magnitude 

of displacement is slowly and steadily increasing from the outer curved surface till 0.78  , and suddenly 

decreasing towards the central part of the cylinder and is becoming zero at the inner radius. Along axial direction, it 

is seen that the absolute value of displacement nearly zero at the upper surface and is suddenly increasing towards 

the lower surface in the region 0.6 1  . 
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Fig.2 

Variation of dimensionless displacement u  along radial and axial directions. 

 

Fig. 3 shows the variation of dimensionless displacement w  along radial and axial directions for different values 

of   and   respectively. Along radial direction, it is seen that the displacement is increasing from the curved 

surface till 0.82  , and suddenly decreasing towards the inner radius. Along axial direction, it is seen that 

displacement is more in the region 0.5 0.7  , due to energy accumulation. 

     

  
Fig.3 

Variation of dimensionless displacement w  along radial and axial directions. 

     

Fig. 4 shows the variation of dimensionless stresses along radial and axial directions for different values of   

and   respectively in the homogeneous case. Along radial direction, it is seen that the axial stress is tensile 

throughout the cylinder, whereas radial and tangential stresses are compressive in the region 0.8 1   and tensile 

in 0.5 0.8  . The magnitude of stresses is near the inner radius is high due to heat transfer from the curved 

surface to inner radius. Along axial direction, the axial stress is tensile in the region 0.6 1  , whereas 

compressive for the rest of the region. The radial and tangential stresses are compressive in the region 0 0.7  , 

whereas tensile towards the lower surface. 

         

 
 

Fig.4 

Variation of dimensionless stresses along radial and axial directions in the homogeneous case. 

 

Fig. 5 shows the variation of dimensionless stresses along radial and axial directions for different values of   

and   respectively in the nonhomogeneous case. Along radial direction, it is seen that all the stresses are 
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compressive throughout the cylinder. The absolute value of radial and axial stresses in slowly increasing from the 

curved surface towards the inner radius, whereas for tangential stress it is more or less same. Along axial direction, 

it is seen that all the stresses are compressive throughout the cylinder. The absolute value of all the stresses is nearly 

steady near the upper surface, while suddenly declining towards the lower surface.   

         

  
Fig.5 

Variation of dimensionless stresses along radial and axial directions in the nonhomogeneous case. 

 

Fig. 6 shows the variation of dimensionless shear stress along radial and axial directions for different values of 

  and   respectively in the homogeneous case.  Along radial direction, it is observed that the shear stress is 

compressive throughout the cylinder. Along axial direction, it is compressive in the region 0 0.6  , whereas 

tensile towards the lower surface.  

         

  
Fig.6 

Variation of dimensionless shear stress along radial and axial directions in the homogeneous case. 

 

Fig. 7 shows the variation of dimensionless shear stress along radial and axial directions for different values of 

  and   respectively in the nonhomogeneous case.  Along radial direction, it is observed that the shear stress is 

compressive throughout the cylinder. Its absolute value is decreasing from the curved surface till 0.6   and 

suddenly increasing towards the inner radius. Along axial direction, the shear stress is compressive throughout the 

cylinder. Its absolute value is decreasing from the upper surface till 0.4   and suddenly increasing towards the 

lower surface. The shear stress is zero at both surfaces satisfying the prescribed traction free conditions. 

 

  
Fig.7 

Variation of dimensionless shear stress along radial and axial directions in the nonhomogeneous case. 
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6    CONCLUSIONS 

In the present paper, we have investigated temperature and thermal stresses in a thick hollow cylinder subjected to 

sectional heating on the upper surface with temperature dependent material properties. We have obtained the 

solution for transient two-dimensional conductivity equation with internal heat source and its associated thermal 

stresses for a thick hollow cylinder. The solutions are obtained in the form of Bessel’s and trigonometric functions. 

Numerical computations are carried out for ceramic-metal-based FGM, in which alumina is selected as ceramic and 

nickel as metal. Furthermore the influence of thermo-sensitivity on thermal stresses is investigated.  

During this analysis, we observe that:   

1. The nature of temperature distribution and displacement is sinusoidal along radial and axial directions. 

2. The radial, axial and tangential stresses are both compressive and tensile in the homogeneous case, whereas 

compressive in the nonhomogeneous case. 

3. The nature of shear stress is sinusoidal in both homogeneous and nonhomogeneous cases. 

4. This type of theoretical analysis may be used under high temperature conditions in non-homogeneous and 

functionally graded materials.  

From the above observations one can conclude that there are variations in radial, tangential and axial stresses for 

homogeneous and nonhomogeneous cases in radial and axial directions. Also tremendous change is seen in shear 

stress in both homogeneous and nonhomogeneous cases for both radial and axial directions. These variations are due 

to the presence of inhomogeneity parameters ,  . 

APPENDIX A 

The volume fraction distribution of metal obeying simple power law with exponent d is given as: [8] 

 

( ) 1 for 0d

mf z z d      (A.1) 

 

where ( )mf z  is the local volume fraction of metal in a functionally graded  plate and d is a parameter that describes 

the volume fraction of metal.  

We express the thermal conductivity of the material using the thermal conductivities of metals mk  and of 

ceramics ck  with the volume fractions of metals ( )mf z , and ceramics, 1 ( )mf z  as follows:  

 

( , ) ( ) ( ) ( )(1 ( ))m m c mk z T k T f z k T f z      (A.2) 

 

Inverse transformation: We substitute Eq. (A.2) in Eq. (17) to obtain the inverse transformation of Eq. (17) as: 
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Following [4], we assume the thermal conductivity of the hollow cylinder as 0( ) exp( )k T k T .                    

Hence Eq. (A.4) becomes 

 

0(1/ )[[exp( ) exp( )] ( )]T T u z       (A.5) 

 

where 
0 0 0

( ) [ ( )( ) ]m m c cu z f z k k k   . Using Eq. (A.5) in Eq. (26), we obtain, 
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where    
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We use the following logarithmic expansion 
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We observe that 
0[ ( , , ) / exp( )]mL r z t T given in Eq. (A.7) converges to zero as m tends to infinity. Also the 

truncation error in Eq. (A.8) is observed as 65.37 10 . 

Hence, for the sake of brevity, neglecting the terms with order more than one, we obtain 

 

0 0log [( ( , , ) / exp( )) 1] [ ( , , ) / exp( )]e L r z t T L r z t T       

                            

Hence Eq. (A.6) becomes 
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