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 ABSTRACT 

 In this paper, an exact closed-form solution is presented for free vibration analysis of 

Euler-Bernoulli conical and tapered beams carrying any desired number of attached 

masses. The concentrated masses are modeled by Dirac’s delta functions which 

creates no need for implementation of compatibility conditions. The proposed 

technique explicitly provides frequency equation and corresponding mode as 

functions with only two integration constants which leads to solution of a two by two 

eigenvalue problem for any number of attached masses. Using Basic functions which 

are made of the appropriate linear composition of Bessel functions leads to make 

implementation of boundary conditions much easier. The proposed technique is 

employed to study effect of quantity, position and translational inertia of the 

concentrated masses on the natural frequencies and corresponding modes of conical 

and tapered beams for all standard boundary conditions. Unlike many of previous 

exact approaches, presented solution has no limitation in number of concentrated 

masses. In other words, by increase in number of attached masses, there is no 

considerable increase in computational effort. 

          © 2017 IAU, Arak Branch. All rights reserved. 

 Keywords : Exact solution; Transverse vibration; Concentrated mass; Conical beam; 

Tapered beam. 

1    INTRODUCTION 

 YNAMIC characteristics of the rotors and flexible shafts can be strongly affected by mounted elements such 

as gears, sprockets, flywheels and cams; thus studying vibration of beams carrying concentrated masses is an 

essential research which can provide successful design for mechanisms and structures. So far, many researches have 

been focused on the vibration characteristics of beams carrying various concentrated elements such as translational 

and rotational springs, point masses, rotary inertias, spring-mass systems and multi-span beams. Many researchers 

studied vibration analysis of uniform beams carrying point masses. Chen [1] analytically studied dynamic behavior 

of a simply supported beam carrying a concentrated mass at its center. This mass was modeled by the Dirac’s delta 

function. Using the modified Dunkerley formula, a frequency analysis for a Euler-Bernoulli beam carrying a 

concentrated mass at an arbitrary position was presented by Low [2]. Laura et al. [3] obtained an analytical solution 
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for determining natural frequencies and mode shapes of a clamped-free beam carrying a mass at the free end. In a 

comprehensive paper, Dowell [4] focused on the effects of mass and stiffness added to a dynamical system. Laura et 

al. [5] presented a note on the transverse vibration of continuous beams subjecting an axial force and carrying 

concentrated masses by applying the Rayleigh–Ritz method. Gurgoze [6] determined the fundamental frequency and 

first mode shape of a beam with local springs and point masses. Also, in another paper, he investigated the vibration 

of restrained beams with heavy masses [7]. Liu et al. [8] employed Laplace transformation technique to formulate 

frequency equation for beams with elastically restrained ends and carrying intermediate concentrated masses. Some 

authors extended researches to vibration analysis of multi-step beams carrying concentrated elements. Torabi et al. 

[9] used transfer matrix method (TMM) and studied free vibration analysis of multi-step Euler-Bernoulli and 

Timoshenko beams carrying concentrated masses having rotary inertia. Depended on the type of boundary 

conditions, natural frequencies were obtained through solution of a determinant of order two or four for any number 

of lumped elements. Farghaly and El-Sayed [10] presented an exact solution for the analysis of the natural 

frequencies and mode shapes of an axially loaded multi-step Timoshenko beam carrying several point elements. 

In order to achieve better mass distribution and flexural stiffness, non-uniform beams are used widely in 

structures; e.g. robots, rotating shafts, blades, etc. Thus, studying dynamical behavior of non-uniform beams is one 

of the most important problems concerned by many researchers; Using Bessel functions and power series, Cranch 

and Adler [11] presented a closed-form solution for the vibration analysis of non-uniform beams with four kinds of 

rectangular cross-sections: linear depth-any power width, quadratic depth-any power width, cubic depth-any power 

width and constant depth-any exponential width. This solution extended by Conway and Dubil [12] for truncated 

conical beams and truncated wedge ones. Mabie and Rogers [13] studied transverse vibration of tapered cantilever 

beams with the end of support. They treated two configurations of interest: constant width and linearly variable 

thickness and constant thickness and linearly variable width. Heidebrecht [14] obtained the approximate natural 

frequencies and mode shapes of a non-uniform simply supported beam from the frequency equation and a Fourier 

sine series, where the frequency equation was derived from the Lagrangian equation by expanding the beam’s 

sectional area and moment of inertia in terms of the Fourier cosine series. Similarly, Mabie and Rogers [15] used the 

second and fourth order polynomials so as to express the sectional area and moment of inertia, respectively; But they 

transformed the partial differential equation for free vibration of a double-tapered beam into the ordinary one and 

then solved the last equation to derive the natural frequencies. Transverse vibrations of linearly tapered beams, 

elastically restrained against rotation at either end, have been investigated by Goel [16]. Using the dynamic 

discretion technique, Downs [17] obtained the natural frequencies and corresponding mode shapes of the cantilever 

beams with 36 combinations of linear depth and breadth taper. His work was based on both Euler-Bernoulli and 

Timoshenko beam theories. Free vibration analysis of non-uniform cantilever beams solved numerically by Bailey 

[18]; He derived the frequency equation from the Hamilton’s law. Gupta [19] derived the stiffness and consistent 

mass matrices for the linearly tapered beam element and then derived the natural frequencies and corresponding 

mode shapes with the finite element method. With the direct solution of the mode shape equation based on the 

Frobenius method, Naguleswaran determined the approximate natural frequencies of the single-tapered beams [20] 

and double-tapered ones [21]. Abrate [22] found that if the sectional area and the moment of inertia take the special 

forms, the equation of motion of a non-uniform beam may be transformed to the uniform beam and then determined 

the natural frequencies and corresponding mode shapes. Laura et al. [23] used three approximate numerical 

methods: Rayleigh–Ritz method, differential quadrature method and finite element method; He derived the natural 

frequencies of Bernoulli beams with constant width and bilinear various thicknesses. Datta and Sil [24] used the 

reverse procedures of Ref. [11] and obtained the natural frequencies of cantilever beams with constant width and 

linearly various depths. Hoffmann and Wertheimer [25] presented a simple formula for determining the fundamental 

frequency of tapered cantilever beams with linear tapers as a function of the first-mode-deflection beam stiffness, 

beam mass and a mass distribution parameter. Based on the Timoshenko beam theory, Genta and Gugliotta [26] 

derived a conical beam element for finite element analysis of nonuniform rotors. Attarnejad et al. [27] presented an 

exact solution for the free vibration of a tapered beam with elastic end rotational restraints problem. Their solution 

was in terms of the Bessel functions. Torabi et al. [28] used differential transform method (DTM) and presented a 

semi-analytical solution for vibration analysis of both conical and truncated conical cantilever beams. Vibration of 

truncated conical beam modeled by Euler-Bernoulli beam theory was presented analytically by Yan et al. [29] and 

results were used to study the vibration behaviour of a rat whisker. They used translational and rotational springs to 

better represent the constraint conditions at the base of the whiskers in a living rat. Boiangiu et al. [30] solved 

vibration analysis of a conical beam analytically in terms of Bessel functions and used transfer matrix method to 

present an exact solution for vibration analysis of multi-step conical beams. 

In the natural frequencies and mode shapes of the non-uniform beams with concentrated attachments at one end 

or both ends, the solution procedures are exactly the same as those for the non-uniform bare beams. The only 
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difference is to change the boundary conditions; In other words, inertial force due to attached mass should be 

considered in boundary conditions. Using Bessel functions, Lau [31] presented exact solution of a cantilever tapered 

beam with a tip mass. He considered both translational and rotational inertias of attached mass. Grossi and Aranda 

[32] focused on the vibration of tapered beams with one end spring hinged and the other end with tip mass. Auciello 

[33] generalized problem to the transverse vibration of a linearly tapered cantilever beam with tip mass and flexible 

constraint. He considered rotary inertia of the concentrated mass and its eccentricity. Wu and Chen [34] presented an 

exact solution for the natural frequencies and mode shapes of an immersed elastically restrained wedge beam 

carrying an eccentric tip mass with mass moment of inertia. 

In the cases that attachments are located at arbitrary positions along the length of the beam, the literatures are 

fewer, particularly for the cases with more than two attachments. Auciello and Maurizi [35] focused on the vibration 

of tapered beams with attached inertia elements. Wu and Hsieh [36] studied vibration analysis of a non-uniform 

beam with multiple point masses. Wu and Lin [37] presented an analytical and numerical combined method for Free 

vibration analysis of a uniform cantilever beam with point masses. Their method employed by Wu and Chen [38] to 

investigate vibrations of wedge beams by any number of point masses. 

Because of increasing number of masses leads to increase in computational effort and complexity, most of the 

above mentioned works was limited to a finite number of masses attached on the beam, while by using delta 

functions, any attachments at the beam can be modeled without imposing any compatibility conditions. The most 

advantage of this method is that frequency equation leads to a two by two matrix for any number of attachments 

[39,40]. In the present paper, formulation of governing equations in the presented technique is derived as an infinite 

series for terms including the effect of concentrated masses. Therefore, using this technique, a beam carrying an 

unlimited number of masses can be solved with the less calculation. A parametric analysis is presented for different 

boundary conditions in order to investigate the effect of the quantity, value and position of the attached masses on 

the natural frequencies and mode shapes of the truncated conical and tapered Euler-Bernoulli beams. 

2    VIBRATION ANALYSIS OF TRUNCATED CONICAL AND TAPERED BEAMS 

Consider a non-uniform beam as depicted in Fig.1; cross-sectional area and cross-sectional moment of inertia about 

the neutral axis can be expressed respectively as: 

 

1 1

1 1

2 4

( ) ( ) .
x x

A x A I x I
L L

   
    

   
   

 (1) 

 

 For a conical beam which its diameter at 1x L is denoted by 1d : 

 

1 1 1 1
2 4 ,

4 64
A d I d

 
   (2) 

 

and for a tapered one 

 

1 1 1 1 1 1
31

;
12

A b h I b h   (3) 

 

where 1b  and 1h  are width and height of the beam at 1x L , respectively. 

Eq. (1) can be transformed to the following dimensionless form: 

 

1 1
2 4( ) ( ) ,A A I I      (4) 

 

where 
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1

.
x

L
   (5) 

 

It is obvious that 

 

0

1

0 1.
L

L
     (6) 

 

In which 0  is called taper ratio. According to Euler-Bernoulli beam theory, the governing differential equation 

for free vibration analysis can be written as follows [41]: 
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2 2 2

2 2 2

( , ) ( , )
0,

y x t y x t
EI x A x

x x t

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  

    
 (7) 

 

where ( , ),y x t  and E denote transverse displacement, mass density and Young's modulus of material, respectively. 

The displacement ( , )y x t can be assumed as the product of the function ( )w x which only depends on the spatial 

coordinate x and a time dependent harmonic function as: 

 

 , ( ) ,i ty x t w x e   (8) 

 

where   is natural frequency of vibration; by definition of dimensionless parameters as: 
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Eq. (7) can be rewritten in the following dimensionless form: 
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It is worth mentioning that 1L  appeared in definition of dimensionless frequency (  ) is not length of the beam; 

thus, following definition of dimensionless frequency is more suitable: 

 

 0

1

4 2
4

4 41 1 .
A L

EI

 
      (11) 

 

Solution of the Eq. (10) can be considered as [42] 

 

1 2 2 2 3 2 4 2( ) ( ) ( ) ( ) ( ) ,W c J z c Y z c I z c K z     
 

 (12) 

 

where 

 

2 .z    (13) 

 

In Eq. (12) nJ  and nY  are the thn  order Bessel functions of type one and two, respectively, while nI  and nK  

are the modified thn  order Bessel functions of type one and two, respectively. Also 1 4c c are integration constants. 
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Fig.1 

Geometry parameters of conical and tapered beams. 

 

3    BASIC FUNCTIONS 

Instead of combination of standard Bessel functions (Eq. (12)), displacement may be expressed in a more convenient 

form in terms of four Basic functions which are a better choice of eligible functions than standard Bessel functions. 

These functions have several useful properties such that help implementation of boundary conditions. In order to 

obtain Basic functions, consider Eq. (12) in a new form as: 

 

       1 1 2 2 3 3 4 4( ) ,W e g e g e g e g         (14) 

 

where ( )ig  are defined in order that they have following properties: 
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(15) 

 

where prime indicates the derivative with respect to the dimensionless spatial variable  . It is noticeable that 

4 ( )W  and 4 ( )W 
 

 
are proportional with bending moment and shear force, respectively. Consider i

th
 Basic 

functions as a combination of the standard Bessel functions as: 

 

1 2 2 2 3 2 4 2( ) ( ) ( ) ( ) ( ) ;i i i iig c J z c Y z c I z c K z        (16) 

 

where ( , 1,2,3,4)ijc i j  are presented in Appendix A. 

For convenience in notification, let us rewrite Eq. (14) as: 
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where 

 

1 2 2 2 3 2 4 2
2 ( ) ( ) ( ) ( ) ( ) .i i i iig c J z c Y z c I z c K z        (18) 

 
 Now, derivatives of W(ξ) can be written as: 
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4    ATTACHED MASSES 

According to Fig.2, a non-uniform beam with p concentrated masses of translational inertia 1  pm m located at 

1  px x is considered. The translational inertia of the any attached mass can be assumed as a function of the spatial 

coordinates x as: 
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where ( ) iu x x is the well-known Heaviside function and 
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By considering the attached masses as point elements, differential length dx  should be led to zero, thus 
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By adding this term to the mass of the beam in Eq. (7), one can write 
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Using Eqs. (8) and (9), Eq. (24) can be rewritten in dimensionless form as: 
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In Eq. (26) i  is dimensionless intensity of each attached mass. It should be noted that in deriving last equation, 

the following property of Dirac’s delta function is used [43,44]: 

 

   1

1

1
.i iL

L
           (27) 

 

In order to solve Eq. (25) it can be observed that the solution of ( )W must be in the same form with the Eigen-

mode of the bare beam which is presented in Eq. (12). Therefore, a solution for the overall beam is assumed as a 

combination of the standard Bessel functions in which the coefficients of the combination are functions of spatial 

coordinate as: 
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The coefficients 1 4( ) ( ) c c appeared in Eq. (28), correspondent to the integration constant in the case of bare 

beams are unknown generalized functions determined according to the procedure outlined in Appendix B. The 

expressions of 1 4( ) ( ) c c depended on four integration constants 1 2 3, ,d d d and 4d  are defined as: 
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and substituting Eq. (29) into the Eq. (28) leads to 
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where 
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For convenience in applying boundary conditions, Eq. (31b) can be rewritten in terms of the Basic functions 

similar to Eq. (17) as: 
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Using Eq. (30) and known property of Dirac’s delta function, ( ) jW can be calculated as: 

 

     
 

   
2

1

0

2
1

,1
.

4

j
i j i

j j i j

ii

T
W W d W C

  
       









   
    

  
  (33) 

 

Now ( ) jW can be given by the following explicit form: 
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  1 2 3 4 .j j j j jW e e e e         (34) 

 

and substituting this presented form into the Eq. (33) leads to 

 

   
 
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j j j j
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 

 

 (35) 

 

Finally, the exact solution of the Eigen-mode in explicit form with using of Basic functions can be derived by 

using Eqs. (30), (34) and (35) as: 
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 (36) 

 
Also derivatives of W(ξ) appeared in boundary conditions can be written as: 
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 (37a) 
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 (37c) 

 

where 
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 (38) 
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Fig.2 

Geometry and parameters of a non-uniform beam with 

attached masses. 

5    FREQUENCY EQUATION 

In this section, frequency equation of the beam carrying multiple concentrated masses will be derived by enforcing 

nine standard boundary conditions such as pinned–pinned (PP), pinned–clamped (PC), pinned–free (PF), clamped–

pinned (CP), clamped–clamped (CC), clamped–free (CF), free–pinned (FP), free–clamped (FC) and free–free (FF). 

Then, the frequency equations will be derived from determinant of a matrix 2 2x  for each boundary conditions and 

any number of point masses. This equation will be solved in order to obtain the dimensionless frequency (  ) and 

corresponding vibration modes. It should be noted that in these paper each mode is normalized as the maximum 

displacement be equal to unit. 

5.1 Pinned-Pinned (PP) 

The boundary conditions of the pinned-pinned beam can be expressed as follows: 

 

       4
0 0 00 0 1 0 1 0.W W W W        (39) 

 

According to Eqs. (15), (36) and (37), the following conditions for the integration constants 1 2 3, ,e e e and 4e  can 

be indicated: 

 

1 3 0,e e   (40a) 
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 

 

 (41) 

5.2 Pinned-Clamped (PC) 

The boundary conditions of the pinned-clamped beam can be expressed as follows: 

 

       4
0 0 00 0 1 0 1 0.W W W W        (42) 

 

In a similar manner Eqs. (40a) and (40b) can be obtained again; where 
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 (43) 

5.3 Pinned-Free (PF) 

The boundary conditions of the pinned-free beam can be expressed as follows: 
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Again in a similar manner Eqs. (40a) and (40b) can be obtained again; where 
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5.4 Clamped-Pinned (CP) 

The boundary conditions of the clamped-pinned beam can be expressed as follows: 

 

       0 00 0 1 0 1 0.W W W W       (46) 

 

According to Eqs. (15), (36) and (37), the following conditions for the integration constants 1 2 3, ,e e e and 4e  can 

be indicated: 

 

1 2 0,e e   (47a) 
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5.5 Clamped-Clamped (CC) 

The boundary conditions of the clamped-clamped beam can be expressed as follows: 
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       0 00 0 1 0 1 0.W W W W       (49) 

 

In a similar manner Eqs. (47a) and (47b) can be obtained again; where 

 

 
 

 
 

 
 

 
 

2 2

11 3 12 4

2 3

21 3 22 4

2 20 0

2 2
1 1

3 30 0

2 2
1 1

1, 1,1 1
1 1

4 4
.

1, 1,1 1
1 1

4 4

p p
i i i i i i

i ii i

p p
i i i i i i

i ii i

T T
A g A g

T T
A g A g

      

 

      

 

 

 

       
      

      

       
      

      

 

 

 (50) 

5.6 Clamped-Free (CF) 

The boundary conditions of the clamped-free beam can be expressed as follows: 
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Again in a similar manner, Eqs. (47a) and (47b) can be obtained again; where 
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 (52) 

5.7 Free-Pinned (FP) 

The boundary conditions of the free-pinned beam can be expressed as follows: 

 

       
0

4 4
0 0 0 0 1 0 1 0.W W W W
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 

 (53) 

 

According to Eqs. (15), (36) and (37), the following conditions for the integration constants 1 2 3, ,e e e and 4e  can 

be indicated: 

 

3 4 0,e e   (54a) 
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5.8 Free-clamped (FC) 

The boundary conditions of the free-clamped beam can be expressed as follows: 

       
0

4 4
0 0 0 0 1 0 1 0.W W W W

 

   


      
 

 (56) 

 

In a similar manner, Eqs. (54a) and (54b) can be obtained again; where 
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5.9 Free-Free (FF) 

The boundary conditions of the free-free beam can be expressed as follows: 

 

       
0

4 4 4
0 0

1

0 0 1 0 0.W W W W

  

     
 

          
   

 (58) 

 

Again in a similar manner, Eqs. (54a) and (54b) can be obtained again; where 
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 (59) 

 

Depended on the type of boundary conditions, the frequency equation can be derived using Eqs. (40), (47) or 

(54) as: 

 

11 22 12 21 0,A A A A   (60) 

 

Also using obtained dimensionless frequencies, Eqs. (40), (47) or (54) and Eq. (36), corresponding modes can be 

derived. 

6    RESULTS AND DISCUSSIONS 

In this section effect of quantity, position and intensity of the point masses on the dimensionless frequencies and 

corresponding mode shapes are investigated using various numerical examples. 

First, in order to validate proposed method, consider a bare FC beam; Table 1. shows value of the first five 

dimensionless frequencies for various values of taper ratio. As this table shows, results of proposed solution are in 

excellent agreement with those presented by Lau [31].  

A bare beam is considered to study effect of taper ratio 0( ) ; Figs. 3(a)-3(c) show value of the first three 

dimensionless frequencies versus taper ratio for various boundary conditions. As shown, increase in value of the 

taper ratio, increases value of the frequencies except for first dimensionless frequency of the FC beam. These figures 

also show that as value of taper ration grows and the beam becomes more similar to a uniform one, value of 
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dimensionless frequencies get close to the corresponding values of a uniform beam which are presented in Table 2. 

[41]. 
 

Table 1 

First five dimensionless frequencies of a bare FC beam for various values of taper ratio. 

ξ0  λ1 λ2 λ3 λ4 λ5 

0.1 
present 2.68418 4.321934   6.092701 7.968475 9.907901 

Lau [31]   2.684189 4.322055   6.092932 7.968996 9.907861 

0.3 
Present   2.347119 4.317476 6.54229 8.860386 11.22162     

Lau [31]   2.347181 4.317541   6.542966 8.861199 11.222747    

0.5 
Present   2.150391 4.421094   6.969648 9.581652 12.22146      

Lau [31]   2.150616 4.421268   6.969857 9.581898 12.222516    

0.7 
Present   2.016504 4.533779   7.348485 10.19622     13.05803      

Lau [31]   2.016664 4.533818   7.349502 10.196823    13.060525    

0.9 
Present   1.916602 4.641855 7.69276 10.74172      13.79558     

Lau [31]   1.916690 4.642225   7.693415 10.742334    13.796986   

 

 
Table 2 

First three dimensionless non-zero frequencies of uniform beam for various boundary conditions [41]. 

Boundary conditions λ1 λ2 λ3 

PP π  2π  3π  

CC & FF 4.730041 7.853205 10.995608 

FC & CF 1.875104 4.694091   7.854757 

PC & CP & PF & FP 3.926602 7.068583 10.210176 
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Fig.3 

First three dimensionless frequencies of a bare beam versus 

value of the 0  for various boundary conditions. 

 

In order to investigate effect of point mass on the natural frequencies, consider a non-uniform beam ( 0 0.1  ) 

with a single point mass ( 1  ) at its midpoint, Table 3. shows value of the first three dimensionless frequencies 

and corresponding values of a bare beam for various boundary conditions. It is clear that existence of a point mass 

leads to decreases in all frequencies; it can be explained by increase in total mass of the system. Also corresponding 
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normal mode shapes are presented for bare beam in Figs. 4(a)-4(i) for all boundary conditions. These figures 

confirm accuracy of the proposed solution.  
 

Table 3 

First three dimensionless frequencies of a non-uniform beam ( 0 0.1  ) with a single point mass ( 1  ) at its midpoint and 

corresponding values of a bare one. 

ξ1=0.5, α=1 Bare beam 
Boundary conditions 

λ3 λ2 λ1 λ3 λ2 λ1 

5.478232 4.363214 1.021069 6.440923 4.3659     1.746606 PP 

6.703847 4.778717 1.790112 7.097992 5.108915 3.147363 PC 

6.075744 4.652848 1.332202 6.827068 4.709272 1.986768 PF 

5.678545 4.519773 1.120386 6.68917   4.562297 1.923047 CP 

6.793575 5.072924 1.833398 7.354928 5.312834 3.280518 CC 

4.90155   1.439209 0.298081 4.919799 2.187378 0.347849 CF 

6.602788 5.004114 3.565723 7.364438 5.465834 3.639111 FP 

6.092235 3.731095 1.661792 6.092701 4.321934   2.68418     FC 

6.79289   5.657023 3.685693 7.743018 5.798026 3.899268 FF 
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Fig.4 

First three normalized mode of a non-uniform bare beam 

( 0 0.1  ). 

 

 

Consider PP, CC, PC and CF non-uniform beams ( 0 0.5  ) in three cases, a bare beam, a beam with a point 

mass ( 0.5  ) located at 1 0.6  and a beam with two similar point mass ( 1 1 0.5   ) located at 1 0.6  and 

2 0.7  . For various boundary conditions Tables 4-7. show value of the first four dimensionless frequencies. These 

tables indicate that as number of point masses increases, more decrease in all natural frequencies can be detected. 

 
Table 4 

First four dimensionless frequencies of a non-uniform PP beam ( 0 0.5  ) for three cases. 

PP λ2 λ2 λ3 λ4 

Bare beam 2.637207 5.395068 8.076177 10.75294 
ξ1=0.6, α=0.5 2.204834 4.230005 7.397146 10.63491 

ξ1,2=[0.6 0.7], α=[0.5 0.5]  1.88501     3.859155 5.315383     9.667234  

  

 
Table 5 

First four dimensionless frequencies of a non-uniform CC beam ( 0 0.5  ) for three cases. 

CC λ2 λ2 λ3 λ4 

Bare beam 4.059082 6.72085 9.398794 12.07695 
ξ1=0.6, α=0.5 3.331055   5.331152 8.432627 11.70753 

ξ1,2=[0.6 0.7], α=[0.5 0.5] 2.835938  4.226465 6.490908 10.90758 

 

 
Table 6 

First four dimensionless frequencies of a non-uniform PC beam ( 0 0.5  ) for three cases. 

PC λ2 λ2 λ3 λ4 

Bare beam 3.584473 6.180225 8.822661 11.48032 
ξ1=0.6, α=0.5 2.713379 5.157568 8.31688 11.45911 

ξ1,2=[0.6 0.7], α=[0.5 0.5] 2.391113 3.995947 6.532261 10.92572 
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Table 7 

First three dimensionless frequencies of a non-uniform CF beam ( 0 0.5  ) for three cases. 

CF λ2 λ2 λ3 λ4 

Bare beam   1.139282  3.630652 6.518131 9.256858 
ξ1=0.6, α=0.5 1.13374 3.11186 5.029492 8.239472 

ξ1,2=[0.6 0.7], α=[0.5 0.5]   1.086621   2.708955 4.265007 6.095804 

 

In order to investigate effect of value of the translational inertia of the point masses on the natural frequencies, 

consider a non-uniform beam ( 0 0.1  ) with a point mass located at midpoint of the beam. Figs. 5(a)-5(c) show 

ratio of the first three frequencies to the corresponding value of a bare beam ( ir ) versus value of the dimensionless 

intensity of the point mass; As shown in these figures, increase in value of the translational inertia of the point mass 

leads to decrease in value of the natural frequencies. 

Position of the point masses has a significant effect on the value of the decrease in frequencies; for this purpose 

consider a non-uniform beam ( 0 0.1  ) with a single point mass ( 0.5  ); Figs. 6(a)-6(i) show value of the ratio 

of the first three frequencies to the corresponding value of a bare beam ( ir ) versus the position of the point mass. 

As these figures show, in each mode of any boundary conditions, there are some points which mass is located on 

them, there is no reduction in the natural frequency; actually these points are nodes in corresponding mode. On the 

other hand, in each mode there are some points that when mass is located on them, the highest reduction in the 

natural frequency happens; actually these points are antinodes in the corresponding mode. It is worth mentioning 

that quantity of nodes and antinodes increase at higher modes. 
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Ratio of the first three dimensionless frequencies of a non-

uniform beam ( 0 0.1  ) with a point mass at its midpoint to 

the corresponding value of a bare beam versus value of the 

dimensionless mass parameter for various boundary 

conditions. 
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Fig.6 

Ratio of the first three dimensionless frequencies of a non-

uniform beam ( 0 0.1  ) with a point mass ( 0.5  ) to the 

corresponding value of a bare beam versus position of the 

mass for various boundary conditions. 

 

Finally consider a non-uniform ( 0 0.2  ) FC beam with two symmetric point masses ( 0.8  ); Table 8. shows 

value of the first three dimensionless frequencies for the various position of the masses. Also corresponding mode 

shapes are depicted in Figs. 7(a)-7(c). These figures indicate that position of point masses has a significant effect on 

the mode shapes. 

 
Table 8 

First three dimensionless frequencies of a non-uniform FC beam ( 0 0.2  ) with two symmetric masses ( 0.8  ). 

λ 3 λ2 λ 1 ξi 

6.411314 2.839645 1.130391 [0.3 0.9] 

4.980748 2.73985   1.239961 [0.35 0.85] 

4.258655 2.729225 1.355586 [0.4 0.8] 

3.878181 2.836363 1.471016 [0.45 0.75] 

3.734798 3.134703 1.570625 [0.5 0.7] 

4.409531 3.388541 1.635664 [0.55 0.65] 
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Fig.7 

First three normalized mode of a non-uniform beam ( 0 0.2  ) 

with two symmetric masses ( 0.8  ). 
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8    CONCLUSIONS 

Vibration analysis of truncated conical and tapered Euler-Bernoulli beams carrying multiple concentrated masses 

was investigated for nine standard boundary conditions: pinned-pinned, pinned-clamped, pinned-free, clamped-

pinned, clamped-clamped, clamped-free, free-pinned, free-clamped and free-free. Using Bessel functions, the 

fourth-order partial differential equation was transformed to a quadratic eigenvalue problem. Some typical results 

calculated by the presented model, showed excellent coincidence with the presented results of the other authors. The 

influence of the quantity, intensity and position of point masses on the dimensionless frequencies were studied. 

Based on the results discussed earlier, several conclusions can be addressed as follows:  

In general, for a beam with concentrated masses the value of frequencies are less than corresponding ones of a 

bare beam. Therefore, it can be obviously concluded that increase in the number of concentrated masses always 

causes more decrease in frequencies.  

It is observed that all frequencies decrease with respect to the intensity of the point masses except for the cases 

which the masses are located at nodal points of the corresponding modes.  

The concentrated mass has its highest influence over a natural frequency, when is located at an antinode of the 

corresponding mode. It is worth mentioning that proposed solution has some advantages against previous exact 

approaches; e.g. for any number of concentrated masses, natural frequencies and corresponding modes can be 

derived by solution of a determinant of order two; therefore, this method can be applied easily for beams with 

desired number of concentrated masses without considerable additional computational effort. 

APPENDIX A 

Substituting Eq. (16) in Eq. (15), leads to calculate ijc  coefficients as: 

 

           
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(A.1) 

 

where 

 

0 02 .z    (A.2) 
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It is noticeable that in deriving Eq. (A.1), following relations are used: 

 

1 1 1 1

2 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .v v v v v v v vY z J z Y z J z K z I z K z I z

z z
        (A.3) 

APPENDIX B 

Eq. (28) is given here for convenience: 

 

1 2 2 2 3 2 4 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .W c J z c Y z c I z c K z            (B.1) 

 

Differentiation of Eq. (B.1) respect to the   leads to 

 

1 3 2 3 3 3 4 3

1 2 2 2 3 2 4 2

1.5( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .

W c J z c Y z c I z c K z

c J z c Y z c I z c K z

      

    

       

       
  

 (B.2) 

 

By imposing the following condition: 

 

1 2 2 2 3 2 4 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,c J z c Y z c I z c K z           (B.3) 

 

Proportional parameter with bending moment 4 ( )  
 

W  can be obtained as: 

 

1 4 2 4 3 4 4 4

1 3 2 3 3 3 4 3

4 2 2

2.5

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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    

      

       
  

 (B.4) 

 

Furthermore, by imposing the next condition as: 

 

1 3 2 3 3 3 4 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,c J z c Y z c I z c K z           (B.5) 

 
Proportional parameter with transverse force ([ξ

4
W''(ξ)]') can be written as follows: 

 

1 3 2 3 3 3 4 3

1 4 2 4 3 4 4 4

4 3 1.5
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 (B.6) 

 

and finally by imposing the next condition as: 

 

1 4 2 4 3 4 4 4( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,c J z c Y z c I z c K z           (B.7) 

 

one can write 
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Substituting Eq. (B.8) in governing Eq. (25), leads to 

 

1 3 2 3 3 3 4 3
3

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

B
c J z c Y z c I z c K z

 
   


        (B.9) 

 

Incorporating the assumed conditions of the Eqs. (B.3), (B.5), (B.7) and (B.9), the generalized functions 

1 2 3( ), ( ), ( )    c c c , and 4 ( )c can be achieved by integrating the following system of four differential equations: 
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         
 

 (B.10) 

 

The system of differential equation matrix, Eq. (B.10), can be written under the following uncoupled form: 

 

                       1 1 2 2 3 3 4 4c b A c b A c b A c b A                    (B.11) 

 

where 
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It is noticeable that in deriving Eq. (B.12), Eq. (A.3) is used. Substituting ( )A from Eqs. (B.12) in Eq. (B.11) 

and integration of the obtained equations leads to 
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 (B.13) 

 

Substituting Eqs. (B.13) into Eq. (B.1) provides a suitable form of the Eigen-mode to be used to obtain the 

explicit closed- form solution of the problem of interest. 

REFERENCES 

[1] Chen Y., 1963, On the vibration of beams or rods carrying a concentrated mass, Journal of Applied Mechanics 30: 310-

311. 

[2] Low K.H., 2000, A modified Dunkerley formula for eigenfrequencies of beams carrying concentrated masses, 

International Journal of Mechanical Sciences 42: 1287-1305. 

[3] Laura P.A.A., Pombo J.L., Susemihl E.L., 1974, A note on the vibration of a clamped–free beam with a mass at the free 

end, Journal of Sound and Vibration 37: 161-168. 

[4] Dowell E.H., 1979, On some general properties of combined dynamical systems, ASME Journal of Applied Mechanics 

46: 206-209. 



781                        K.Torabi et al. 

 
 

© 2017 IAU, Arak Branch 

[5] Laura P.A.A., Irassar P.L., Ficcadenti G.M., 1983, A note of transverse vibration of continuous beams subjected to an 

axial force and carrying concentrated masses, Journal of Sound and Vibration 86: 279-284. 

[6] Gurgoze M., 1984, A note on the vibrations of restrained beams and rods with point masses, Journal of Sound and 

Vibration 96: 461-468. 

[7] Gurgoze M., 1985, On the vibration of restrained beams and rods with heavy masses, Journal of Sound and Vibration 

100: 588-589. 

[8] Liu W.H., Wu J.R., Huang C.C., 1988, Free vibrations of beams with elastically restrained edges and intermediate 

concentrated masses, Journal of Sound and Vibration 122: 193-207. 

[9] Torabi K., Afshari H., Najafi H., 2013, Vibration analysis of multi-step Bernoulli-Euler and Timoshenko beams 

carrying concentrated masses, Journal of Solid Mechanics 5: 336-349. 

[10] Farghaly S.H., El-Sayed T.A., 2016, Exact free vibration of multi-step Timoshenko beam system with several 

attachments, Mechanical Systems and Signal Processing 72-73: 525-546. 

[11] Cranch E.T., Adler A.A., 1956, Bending vibration of variable section beams, Journal of Applied Mechanics 23: 103-

108. 

[12] Conway H.D., Dubil J.F., 1965, Vibration frequencies of truncated-cone and wedge beams, Journal of Applied 

Mechanics 32: 932-934. 

[13] Mabie H.H., Rogers C.B., 1968, Transverse vibration of tapered cantilever beams with end support, Journal of 

Acoustics Society of America 44: 1739-1741. 

[14] Heidebrecht A.C., 1967, Vibration of non-uniform simply supported beams, Journal of the Engineering Mechanics 

Division 93: 1-15. 

[15] Mabie H.H., Rogers C.B., 1972, Transverse vibration of double-tapered cantilever beams, Journal of Acoustics Society 

of America 5: 1771-1775. 

[16] Goel R.P., 1976, Transverse vibrations of tapered beams, Journal of Sound and Vibration 47: 1-7. 

[17] Downs B., 1977, Transverse vibration of cantilever beams having unequal breadth and depth tapers, Journal of Applied 

Mechanics 44: 737-742. 

[18] Bailey C.D., 1978, Direct analytical solution to non-uniform beam problems, Journal of Sound and Vibration 56: 501-

507. 

[19] Gupta A.K., 1985, Vibration of tapered beams, Journal of Structural Engineering 111: 19-36. 

[20] Naguleswaran S., 1992, Vibration of an Euler–Bernoulli beam of constant depth and with linearly varying breadth, 

Journal of Sound and Vibration 153: 509-522. 

[21] Naguleswaran S., 1994, A direct solution for the transverse vibration of Euler–Bernoulli wedge and cone beams, 

Journal of Sound and Vibration 172: 289-304. 

[22] Abrate S., 1995, Vibration of non-uniform rods and beams, Journal of Sound and Vibration 185: 703-716. 

[23] Laura P.A.A., 1996, Gutierrez R.H., Rossi R.E., Free vibration of beams of bi-linearly varying thickness, Ocean 

Engineering 23: 1-6. 

[24] Datta A.K., Sil S.N., 1996, An analysis of free undamped vibration of beams of varying cross-section, Computers & 

Structures 59: 479-483. 

[25] Hoffmann J.A., Wertheimer T., 2000, Cantilever beam vibration, Journal of Sound and Vibration 229: 1269-1276. 

[26] Genta G., Gugliotta A., 1988, A conical element for finite element rotor dynamics. Journal of Sound and Vibration 

120(l): 175-182. 

[27] Attarnejad R., Manavi N., Farsad A., 2006, Exact solution for the free vibration of tapered bam with elastic end 

rotational restraints, Chapter Computational Methods 1993-2003. 

[28] Torabi K., Afshari H., Zafari E., 2012, Transverse Vibration of Non-uniform Euler-Bernoulli Beam, Using Differential 

Transform Method (DTM), Applied Mechanics and Materials 110-116: 2400-2405. 

[29] Yan W., Kan Q., Kergrene K., Kang G., Feng X.Q., Rajan R., 2013, A truncated conical beam model for analysis of the 

vibration of rat whiskers, Journal of Biomechanics 46: 1987-1995. 

[30] Boiangiu M., Ceausu V., Untaroiu C.D., 2014, A transfer matrix method for free vibration analysis of Euler-Bernoulli 

beams with variable cross section, Journal of Vibration and Control 22: 2591-2602. 

[31] Lau J.H., 1984, Vibration frequencies for a non-uniform beam with end mass, Journal of Sound and Vibration 97: 513-

521. 

[32] Grossi R.O., Aranda A., 1993, Vibration of tapered beams with one end spring hinged and the other end with tip mass, 

Journal of Sound and Vibration 160: 175-178. 

[33] Auciello N.M., 1996, Transverse vibration of a linearly tapered cantilever beam with tip mass of rotatory inertia and 

eccentricity, Journal of Sound and Vibration 194: 25-34. 

[34] Wu J.S., Chen C.T., 2005, An exact solution for the natural frequencies and mode shapes of an immersed elastically 

restrained wedge beam carrying an eccentric tip mass with mass moment of inertia, Journal of Sound and Vibration 

286: 549-568. 

[35] Auciello N.M., Maurizi M.J., 1997, On the natural vibration of tapered beams with attached inertia elements, Journal 

of Sound and Vibration 199: 522-530. 

[36] Wu J.S., Hsieh M., 2000, Free vibration analysis of a non-uniform beam with multiple point masses, Structural 

Engineering and Mechanics 9: 449-467. 



Exact Closed-Form Solution for Vibration Analysis of Truncated ….                      782 

 

© 2017 IAU, Arak Branch 

[37] Wu J.S., Lin T.L., 1990, Free vibration analysis of a uniform cantilever beam with point masses by an analytical-and 

numerical- combined method, Journal of Sound and Vibration 136: 201-213. 

[38] Wu J.S., Chen D.W., 2003, Bending vibrations of wedge beams with any number of point masses, Journal of Sound 

and Vibration 262: 1073-1090. 

[39] Caddemi S., Calio I., 2008, Exact solution of the multi-cracked Euler–Bernoulli column, International Journal of 

Solids and Structures 45: 1332-1351. 

[40] Caddemi S., Calio I., 2009, Exact closed-form solution for the vibration modes of the Euler–Bernoulli beam with 

multiple open cracks, Journal of Sound and Vibration 327: 473-489.  

[41] De Silva C.W., 2000, Vibration: Fundamentals and Practice, CRC Press.  

[42] Karman T.V., Biot M.A., 1940, Mathematical Methods in Engineering, McGraw-Hill, New York. 

[43] Lighthill M.J., 1958, An Introduction to Fourier Analysis and Generalised Functions, Cambridge University Press, 

London. 

[44] Colombeau J.F., 1984, New Generalized Functions and Multiplication of Distribution, North-Holland, Amsterdam. 


