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 ABSTRACT 

 In this paper, the stability of a functionally graded magneto-electro-elastic (FG-

MEE) micro-beam under actuation of electrostatic pressure is studied. For this 

purpose Euler-Bernoulli beam theory and constitutive relations for magneto-

electro-elastic (MEE) materials have been used. We have supposed that material 

properties vary exponentially along the thickness direction of the micro-beam. 

Governing motion equations of the micro-beam are derived by using of 

Hamilton’s principle. Maxwell’s equation and magneto-electric boundary 

conditions are used in order to determine and formulate magnetic and electric 

potentials distribution along the thickness direction of the micro-beam. By using 

of magneto-electric potential distribution, effective axial forces induced by 

external magneto-electric potential are formulated and then the governing motion 

equation of the micro-beam under electrostatic actuation is obtained. A Galerkin-

based step by step linearization method (SSLM) has been used for static analysis. 

For dynamic analysis, the Galerkin reduced order model has been used. Static 

pull-in instability for 5 types of MEE micro-beam with different gradient indexes 

has been investigated. Furthermore, the effects of external magneto-electric 

potential on the static and dynamic stability of the micro-beam are discussed in    

detail.                                             © 2016 IAU, Arak Branch. All rights reserved. 

 Keywords : Functionally graded; MEE; MEMS; Maxwell’s Equation; Pull-in 

instability. 

1    INTRODUCTION 

 MART structures constructed from smart materials, have absorbed much attentions of researchers and 

scientists in recent years. Smart or intelligent materials such as piezoelectric, piezomagnetic, magnetostrictive 

and so others, are finding numerous applications in broad- range of technological fields such as nano-scale 

technology, sensors, actuators and many others. These materials have a unique ability of self-sensing and adaptive 

capabilities [1- 5]. There is a coupling effect and interactions between different fields in these materials that allow 

them to convert energy from one type to the other [6,7]. One of the most important smart materials is MEE 

materials. MEE composite materials are made of piezo-electric and piezo-magnetic phases, which allow them to 

exhibit three-phase coupling effect between magnetic, electric and mechanical fields, in the other words they have 

novel property of converting energy from one form to the other among magnetic, electric and mechanical energies 

[8-12]. Because of these magneto-electricity properties of these new smart composite materials (MEE) which cannot 
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be found in the single-phase piezo-electric and piezo-magnetic materials, they have attracted more attentions [13-

15]. An example of such a composite is piezoelectric Barium Titanate (BaTiO3) embedded in a matrix of magneto-

strictive Cobalt Iron Oxide (CoFeO4).   

During the last several years, the magneto-electro-mechanical coupling problems which are associated with the 

reputed MEE materials have been developed by many researchers and authors. These composite materials have 

concomitantly piezoelectric, piezo-magnetic and magneto-electric effects [16-19]. Li [16] investigated buckling 

analysis of MEE plate resting on Pasternak foundation. They have used mindlin theory, Maxwell’s equation and 

variational principle for modeling the problem. In numerical results, they have investigated the effects of magneto-

electric potential, Pasternak shear coefficients and Winkler spring on the buckling load. Ke and Wang [10] 

investigated the free vibration of MEE nano-beams based on the nonlocal theory and Timoshenko beam theory. In 

their study, the MEE nano-beam is under the external magneto-electric potential and constant temperature change. 

They have used the differential quadrature (DQ) method in order to investigate the natural frequencies and mode 

shapes. Furthermore, they have studied the effects of nonlocal parameter, temperature change and magneto-electric 

potential on the size-dependent vibration characteristics of MEE nano-beams.  Xue et al [8] investigated the large 

deflection of a rectangular MEE thin plate. In their investigation, the nonlinear partial differential equation has been 

derived using Von Karman plate theory of large deflection. They have used Bubnov-Galerkin method for 

transforming the governing nonlinear equation to third-order nonlinear algebraic equation for the maximum 

deflection. In addition, the coupling factor has been introduced in order to determine the coupling effect on 

deflections. Milazzo [20] derived a model for the large deflection analysis of MEE laminated plates. They have 

employed first order shear deformation theory and Von Karman stress function approach and investigated the 

influence of large deflection on the plate response. 

On the other hands, functionally graded materials (FGM) have been rapidly growing during recent years. Some 

studies have been performed by researchers on the mechanical behavior of FG-MEE structures. Huang et al [13] 

presented an analytical solution for FG-MEE plane beams. They have assumed that the properties of the MEE 

material vary arbitrarily along the thickness direction and obtained the analytical solutions for beams under tension 

and pure bending, for cantilever beams subjected to shear force applied at the free end, and for cantilever beams 

subjected to uniform load.  Xue and Pan [21] studied the wave propagation in FG-MEE long and circular rod made 

of piezoelectric BaTiO3 and piezomagnetic CoFe2O4. They have assumed that the material properties vary 

exponentially along the rod direction and derived one-dimensional wave-motion equation for the problem. In 

numerical results, they have studied the effect of the gradient factor and material coupling on the wave features. In 

addition they have calculated the effective Young’s modulus and effective Poisson’s ratio in the BaTiO3-CoFe2O4 

composite rod.   

Micro-cantilevers and clamped-clamped micro-beams are used extensively in micro-electro-mechanical systems 

(MEMS). There are various actuation methods in such systems, but electrostatic actuation is the most popular 

actuation mechanism used in micro/nano electromechanical systems (NEMS/MEMS), and this is due to its many 

intrinsic advantages. These systems contain two electrodes, which one of them is fixed and the other one is movable. 

When the applied voltage exceeds a critical value, the movable micro-beam becomes unstable and is pulled into the 

fixed electrode. Pull-in phenomenon is very important in designing such systems [22-27]. This phenomenon has 

been investigated by many researchers in recent years for micro structures made of different materials. In nano-scale 

structures, intermolecular forces such as Casimir force and Van der Waals force can play a crucial role in the 

deflection and pull-in performance. These forces depend on the gap between beam and substrate. When the gap 

between beam and substrate is large enough (larger than 20 nm, and below 1000 nm), the intermolecular force is 

simplified as the Casimir force. Casimir force is not affected by material properties. Van der Waals force is 

important when the gap between the electrodes is less than 20 nm [28-31].  

In this paper, due to importance of smart materials in mechanical systems, the stability behavior of electro-

statically-actuated FG-MEE micro-beam is studied. In fact the novelty of this paper is employing of the FG-MEE 

materials in MEMS structures. Due to adaptive and controllable properties of MEE materials, we can control the 

pull-in instability in the system. For numerical analysis, an Euler-Bernoulli clamped-clamped FG-MEE micro-beam 

is considered. Constitutive relations for MEE materials, Maxwell’s equation and Hamilton’s principle have been 

used in order to model the problem. In numerical results, we have investigated the static and dynamic mechanical 

behavior of the system. Furthermore, the effects of magneto-electric external potential on the pull-in phenomenon 

are discussed. Present paper and its results may be useful for development of smart MEMS structures which have 

attracted more attentions of researchers in recent years. 
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2    MODEL DESCRIPTIONS 

2.1 Euler-Bernoulli beam theory 

According to the coordinate system (x,z), shown in  Fig.1, the displacement components in the Euler-Bernoulli beam 

can be represented as following: 

 

 

 
(a) 

 
(b) 

Fig.1 
Schematic view of an electro-statically actuated FG-MEE micro-beam; (a) Clamped-Clamped FG-MEE micro-beam ;(b) Side 

view of the micro-beam under external magneto- electric potential. 
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where u, v and w, are respectively, the x- , y- , and z- components of displacement vector. So the strains associated 

with the above displacement field of the micro-beam can be expressed in the following form: 
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In which ε and γ are the normal and shear strains, respectively. 

2.2 Mathematical modeling 

For a beam made from transversely isotropic FG-MEE material, we suppose that the material properties vary 

exponentially along the thickness direction as [21]: 

 
0 0 0 0 0 0 0, , , , , ,z z z z z z z

ij ij ij ij ij ij ij ij ij ij ij ij ij
c c e e e e h h e f f e g g e e e                 (3) 

 

where the constant factor of the material property is denoted by superscript 0; ,  ,  , , ,  
ij ij ij ij ij ij

c e h f g µ
 
and  ρ  denote  

elastic, piezoelectric, dielectric, piezomagnetic, magneto-electric and magnetic permeability constants and the 
density of the material, respectively; α  is the gradient index of the material. 

The constitutive relations for a Homogeneous MEE solid can be written as [10]: 

 

,
ij ijkl kl mij m nij n

c e E f H     (4) 

 

,
i ikl kl im m in n

D e h E g H    (5) 

 

.
i ikl kl im m in n

B f g E H     (6) 

 

where 
ij

  is the stress component; 
i

D  and 
i

B  are the electric displacement and magnetic induction, respectively; 

i
E  and 

i
H  are the electric and magnetic field intensities, respectively. 

Based on the Maxwell’s equation, the electric and magnetic intensities can be expressed as gradients of the 

scalar electric and magnetic potentials   and  , respectively as following: 
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;
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(7) 

 

;
z x

H H
z x

     
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(8) 

 

Considering Eqs. (4), (5) and (6), the constitutive relations for MEE beam can be written as: 
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The in-plane magnetic and electric fields can be neglected for a thin beam, in the other words 0
x x

E H  . 

According to this assumption, we can write the strain energy of the beam as following: 
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Considering relations (2), (7) and (8), Eq. (14), can be rewritten as following: 
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where 
xx

M  is the bending moment which can be calculated from Eq. (16).   
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Neglecting the micro-rotations, the kinetic energy 
T

U  can be expressed as [32]: 
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The work done by the external electric and magnetic potentials can be calculated from Eq. (19) [10]. 
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where 
m

N and 
e

N  are the normal axial force generated by the external magnetic and electric potentials respectively. 

The variation of work done by the electrostatic force can be denoted as: 

 

0

( )

l
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(20) 

 

where  
elect

q   is the electrostatic force between micro-beam and substrate, which can be expressed as [33]: 
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where 2 1 2

0
8.854 10 12 c N m      is the permittivity of vacuum within the gap, V is the electric potential 

difference between the beam and the substrate, 
0

g  is initial gap between beam an substrate. 

Now the Hamilton’s principle is considered: 
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By substituting Eqs. (15), (17), (19) and (20) into (22), integrating by parts and setting the coefficients of  

, ,w    to zero, the governing equations of the beam are derived as following [10]: 
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Considering Eqs. (3), (7), (8), (10) and (11) and applying them to Eqs. (24) and (25), the following equations are 

obtained: 
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Eqs. (26) and (27) can be represented as following matrix form: 
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Referring to the Crammer’s rule for the matrix equations, we can obtain the following equations: 
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Eqs. (29) and (30) can be rewritten as the form as Eqs. (31) and (32), respectively. 
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where: 
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Considering boundary conditions of the external magneto-electric potential represented by Eq. (34), solving Eqs. 
(31) and (32) according to this assumption that gradient index α is positive (α>0), distribution of the electric and 

magnetic potentials along the thickness direction of the micro-beam can be obtained as following: 
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Substituting Eqs. (2), (35), and (36) into Eq. (9), using Eq. (16), the following result is obtained: 
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Eq. (37) can be rewritten as the form of following equation: 
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By attention to Eq. (9), generated axial forces caused by external electric and magnetic potentials can be 

calculated from: 
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According to Eqs. (35) and (36) and using Eqs. (7), (8), (39), the effective normal forces induced by the external 

electric and magnetic potentials are formulated as following: 
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Substituting Eq. (38) into Eq. (23), the governing motion equation of FG-MEE Euler-Bernoulli beam under 

electrostatic actuation is obtained as: 
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Non-dimensional parameters represented in Eq. (42), are used in order to write Eq. (41) in non-dimensional 

form. 
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In which the variables with hat are the non-dimensional values of the related parameters and t is a characteristic 

time. So Eq. (41) can be changed as:  
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2

1 2

11 3 2

;
4 2

( ) ( ) ( )
2 2 2

m

L
N

h h h h
c Sinh Cosh



 
  


 

  
 

 
     (45) 

 
2

2 2

11 3 2

;
4 2

( ) ( ) ( )
2 2 2

e

L
N

h h h h
c Sinh Cosh



 
  


 

  
 

 
     (46) 

 
4

0

3 2
3

11 03 2

.
4 2

2 ( ) ( ) ( )
2 2 2

L

h h h h
c Sinh Cosh g




 
  


 

  
 

 
     (47) 

 



A. Amiri et.al                       763 

© 2016 IAU, Arak Branch 

The static equation can be written as following: 
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3    NUMERICAL APPROACH  

3.1 Static analysis 

 

For numerical analysis of the problem, SSLM is used to linearize Eq. (48). When this equation is linearized, it can 

be solved by using of the Galerkin-based weighted residual method. According to SSLM, the voltage applied 

between the micro-beam and substrate is increased from zero to the final value gradually. By assumption of 

superscript ‘i’ as the step counter, the deflection at ( 1)thi   step can be obtained as: 
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where   is the deflection growth. 

According to Eq. (48), static deflection of the micro-beam at ( 1)thi   step can be expressed as: 
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Substituting Eq. (49) into Eq. (50), using Taylor’s expansion and keeping first two terms of expansion in each 

step, following result can be obtained: 

 
4 2 2

1 2 3 3 34 2 3 2 3

( )
( ) 2 2 4 0

ˆ ˆ ˆ ˆ ˆ(1 ) (1 ) (1 )

i i i

i i i

V V V
V V

x x w w w

 
       

 
     

    
 

     (51) 

 

In order to solve Eq. (51), ψ is expressed as following:

 

 

1

ˆ ˆ ˆ( ) ( ) ( )
N

N j j

j

x x a x  


 
 

     (52) 

 

ˆ( )
j

x   is the suitable thj  shape function satisfying all of boundary conditions of the micro-beam, which can be 

defined as [33]: 

 

ˆ ˆ ˆ ˆ ˆ( ) (cos( ) cosh( )) (sin( ) sinh( )),
j j j j j j

x x x x x        

 

     (53) 

 

where: 

 

(cos( ) cosh( ))
; 4.73,7.85,10.99,14.137

(sin( ) sinh( ))

j j

j j

j j

P
  

  
  

 

     (54) 

 

Applying Eq. (52) into Eq. (51), multiplying the result by ˆ( )
i

x  as a weight function in the Galerkin method and 

calculating the integrated from ˆ 0x   to 1, a set of equations is obtained. By solving these equations, static 

deflection of the micro-beam and consequently static pull-in voltage can be determined.  Numerical results for this 

analysis have been presented in next section. 
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3.2 Dynamic analysis 

In order to investigate the dynamic instability behavior of the micro-beam, dynamic deflection can be expressed as: 

 

1

ˆˆ ˆ ˆw( , ) (t) ( )
N

j j

j

x t q x



 

     (55) 

 

where ˆ( )
j

q t   is the time dependent generalized coordinate. 

Substituting Eq. (55) into Eq. (44), multiplying the result by ˆ( )
i

x  and integrating from ˆ 0x    to 1, following 

result can be obtained: 

 

1 1

ˆ ˆ(t) ( ) (t)
N N

a b

ij j ij ij j i

j j

M q K K q F
 
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     (56) 

 

,  ,   
ij

b

ij j

a

i
M K K  and 

i
F  are given as:  
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   
 

     (57) 

 

It is worth to pointing out that Eq. (56) can be solved by one of the numerical integration methods such as Rung-

Kutta method. 

In order to demonstrate the accuracy of the proposed method and verify it, the pull-in voltages of a silicon-made 

fixed-fixed micro-beam are compared with the results reported in Ref. [34]. The geometrical properties of the 

considered micro-beam are listed in Table 1. The calculated results are presented in Table 2. As it is seen, the results 

of SSLM agree well with the results in Ref. [34]. 

 
Table 1 

Geometrical properties of FG-MEE micro-beam. 

Symbol Parameters Values 

L Length 250 (μm) 

h Thickness 3 (μm) 

b Width 50 (μm) 

g0 Initial gap 1(µm) 

 
 Table 2 

The obtained pull-in voltages for different step size for the applied voltage. 

Step size of the applied voltage (dV)                                           Obtained pull-in voltage in this paper  Pull-in voltage in reference [34 ] 

   1 40 39.5 

0.1    39.5 39.5 

 0.05    39.4 39.5 

0.01     39.33 39.5 

 0.005     39.32 39.5 

4    NUMERICAL RESULTS AND DISCUSSION 

4.1 Model properties 

Numerical results of the problem are presented in this section. For this purpose, a clamped-clamped FG-MEE micro-

beam made of two-phase BaTiO3-CoFe2O4 composite with different volume fractions (V.F.) of BaTiO3 is 

considered. For different volume fractions of BaTiO3 in the composite, there are distinct effective properties for the 

MEE material which are listed in Table 3. [21] 
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Table 3 

Properties of BaTiO3- CoFe2O4 composite material. 

Type 1 2 3 4 5 

V.F. 0% 25% 50% 75% 100% 

C0 11 286 245 213 187 166 

C0 12 173 139 113 93 77 

C0 13 170 138 113 93.8 78 

C0 33 269.5 235 207 183 162 

C0 44 45.3 47.6 49.9 52.1 43 

e0 31 0 -1.53 -2.71 -3.64 -4.4 

e0 33 0 4.28 8.86 13.66 18.6 

e0 15 0 0.05 0.15 0.46 11.6 

h0 11 0.08 0.13 0.24 0.53 11.2 

h0 33 0.093 3.24 6.37 9.49 12.6 

µ0 11 5.9 3.57 2.01 0.89 0.05 

µ0 33 1.57 1.21 0.839 0.47 0.1 

f0 31 580 378 222 100 0 

f0 33 700 476 292 136 0 

g0 11 0 -3.09 -5.23 -6.72 0 

g0 33 0 2334.15 2750 1847.49 0 
ρ0 

5300 5430 5550 5660 5800 
Unit: elastic constants, cij, in 109 N/m2, piezoelectric constants, eij, in c/m2, piezomagnetic constants, fij, in N/Am2, dielectric constants, hij, in 10-9 
c2/Nm2, magnetic constants, μij, in 10-6 Ns2/c2 , magneto-electric coefficients, gij, in 10-12 Ns/Vc and density, ρ, in Kg/m3. 

4.2 Static pull-in analysis of the micro-beam, with no external electric/ magnetic potential (
0 0

0V   ) for various 

gradient index α in (µm
-1

) 

The dimensionless midpoint deflections versus applied voltage, for the five types of FG-MEE clamped-clamped 

micro-beams and different gradient indexes are presented in Figs. (2), (3) and (4). As it is indicated in these figures, 

when electrostatic force caused by the applied voltage between two electrodes exceeds a critical value, the system 

will be unstable. Static instability which is known as pull-in phenomenon is shown in these figures in which at a 

particular voltage value, the movable micro-beam is suddenly pulled into the fixed electrode. Static pull-in voltages 

of the mentioned micro-beams are calculated and presented in these figures. Fig. 5 shows the variation of the static 

pull-in voltage versus volume fraction of BaTiO3 in the MEE material. As expected, while the volume fraction of 

BaTiO3 in the material increases, the pull-in voltage of the micro-beam decreases. This is due to the fact that, by 

enhancing the volume fraction of BaTiO3, the effective Young’s modulus of the micro-beam is decreased. By 

decreasing the effective Young’s modulus, bending stiffness of the micro-beam is decreased and therefore micro-

beam deflection versus voltage is increased and so the pull-in voltage decreases. The other result which can be 

obtained from this figure is that by increasing the gradient index of the FG-MEE material, the static pull-in voltage 

of the micro-beams increases drastically. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

The non-dimensional midpoint deflection versus applied 
voltage (v) for gradient index α=1. 
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Fig.3 

The non-dimensional midpoint deflection versus applied 
voltage (v) for gradient index α=2. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

The non-dimensional midpoint deflection versus applied 

voltage (v) for gradient index 0.5. 

  

 

 

 

 

 

 

 

 

 

 

Fig.5 

Static pull-in voltages versus volume fraction of BaTiO3 in 

FG-MEE micro-beam for different gradient indexes. 

 

4.3 Effects of the external magnetic potential 
0

  and external electric potential 
0

V  on the pull-in instability of FG-

MEE micro-beam 

The non-dimensional midpoint deflection versus applied voltage (v) for FG-MEE micro-beams with gradient index 

of 1 ( 1  ) and 50% BaTiO3 is presented in Fig.6. This figure shows the static pull-in instability for different 

values of external magnetic potential (
0

 ), and 
0

0.V  As it is shown, for a constant electrostatic voltage by 

increasing the external magnetic potential, the micro-beam deflection decreases and this is due to increasing the 

stiffness of the micro-beam.  It can be obtained from this figure that by increasing the external magnetic potential 

0
 , the pull-in voltage increases. Fig. 7 shows the static pull-in voltages for different values of external electric 

potential 
0

V , and 
0

0  , for  FG-MEE micro-beams with gradient index of 1 ( 1  ) and 50% BaTiO3. This 

figure showes that, for a constant electrostatic voltage, when the applied external electric potential 
0

V  increases, the 

deflection of the micro-beam is increased. This is because of reducing the stiffness of the micro-beam which leads to 
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pull-in instability. This sensitivity of FG-MEE materials to the applied magneto-electric potential is due to the fact 

that the axial forces are generated in the micro-beams by the applied external magnetic and electric potentials. In the 

other words, by appliying the external magneto-electric potential the stiffness of the micro-beams is changed. This 

property of FG-MEE smart materials can be usefull for controlling the pull-in instability in the smart MEMS 

structures.  

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

The non-dimensional midpoint deflection versus applied 

voltage (v) for gradient index 1, and various magnetic 

potential (
0

 ),
0

0V  . 

  

 

 

 

 

 

 

 

 

 
Fig.7 

The non-dimensional midpoint deflection versus applied 

voltage (v) for gradient index 1, and various electric 

potential (
0

V ),
0

0  . 

 

 

Fig. 8 shows the effect of the external magnetic potential 
0

 , on the pull-in voltage of FG-MEE micro-beam 

with gradient index of 1( 1  ) and 
0

0.V  This figure shows that, the pull-in voltage of FG-MEE micro-beam 

increases with the increase/decrease of the positive/negative external magnetic potential 
0
.  This is due to the fact 

that the axial tensile and compressive forces are generated in micro-beam by the applied positive and negative 

magnetic potentials, respectively, in the other words by increasing/decreasing the applied positive/negative magnetic 

potential 
0

 , the stiffness of micro-beam increases, so the pull-in voltage of FG-MEE micro-beam increases. One 

can understand from this figure that the effect of the external magnetic potential on the pull-in voltage decreases by 

increasing the volume fraction of piezoelectric phase in the FG-MEE material and this is due to the fact that 

piezomagnetic constant (
31

f ) is decreased in the material when the volume fraction changes from 0% to 100%.  

Fig. 9 represents the effect of the external electric potential 
0

V  on the pull-in voltage of FG-MEE micro-beam 

with gradient index of 0.5( 0.5  ) and 
0

0.   Opposite of the effect of external magnetic potential, the pull-in 

voltage of FG-MEE micro-beam decreases with the increase/decrease of the positive/negative external electric 

potential 
0

V  because of generating the axial compressive and tensile forces, respectively. This figure shows that the 

effect of external electric potential on the pull-in voltage is increased when the volume fraction of BaTiO3 in the FG-

MEE material increases and this is due to increasing piezoelectric constant (
31

e ). 
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Fig.8 

The effect of the external magnetic potential 
0

  on the 

static pull-in voltage of FG-MEE micro-beam with 1  , 

0
0V  . 

  

 

 

 

 

 

 

 

 

 
Fig.9 

The effect of the external electric potential 
0

V  on the static 

pull-in voltage of FG-MEE micro-beam with 0.5  , 

0
0  . 

 

The effect of applied external magnetic and electric potentials on the static pull-in voltages of the FG-MEE 

micro-beams with 50% volume fraction of BaTiO3 for different values of gradient index is illustrated in Figs. (10) 

and (11), respectively. What is interesting in these figures is that, when the gradient index of the FG-MEE material 

increases, the effect of 
0

V  and 
0

  on the pull-in instability of the micro-beam decreases. This is due to the fact that, 

for a constant magneto-electric potential, by increasing the gradient index α, the generated axial forces will be 

reduced (See Eq. (40)).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10 

The effect of 
0

  on the pull-in voltage of third type of 

FG-MEE micro-beam with 
0

0V  , for different values of 

α. 
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Fig.11 

The effect of 
0

V  on the pull-in voltage of third type of FG-

MEE micro-beam with 
0

0  , for different values of α. 

 

Dynamic instability behavior of 4
th

 type of FG-MEE micro-beam with gradient index of 0.5, subjected to 

constant step DC voltage (40v), for various external electric voltages 
0

V  is illustrated in Figs. (12), (13). As is 

evident, the response of the micro-beam to small positive 
0

V  is periodic. When 
0

V  increases, period of the 

vibrations increases and symmetry breaking in phase portrait happens, because of declining of the equivalent 

stiffness of micro-beam. In other words, when the positive 
0

V  is big enough, the system will be unstable. 

 

 

 

 

 

 

 

 

 

 

 

Fig.12 

Time history of the 4th type of FG-MEE micro-beam for 

different values of 
0

V  with constant electrostatic voltage 

0
40 , 0.5, 0V v     . 

 

  

 

 

 

 

 

 

 

 

 
Fig.13 

Phase portrait of the 4th type of FG-MEE micro-beam for 

different values of 
0

V  with constant electrostatic voltage 

0
40 , 0, 0.5V v     . 

 

Figs. (14) and (15) show the dynamic instability of the FG-MEE micro-beam with 75% volume fraction of 

BaTiO3 and gradient index of 0.5, for different values of negative magnetic potential. As it can be obtained from 

these figures, by increasing of negative 
0

 , dynamic instability occurs in the system, and this is due to this fact that 

by increasing negative 
0

 , stiffness of the micro-beam decreases suddenly. 
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Fig.14 

Time history of the 4th type of FG-MEE micro-beam for 
different values of Ω0 with constant electrostatic voltage 

0
40 , 0.5, 0V v V   . 

  

 

 

 

 

 

 

 

 

 
Fig.15 

Phase portrait of the 4th type of FG-MEE micro-beam for 
different values of Ω0 with constant electrostatic voltage 

0
40 , 0, 0.5V v V    . 

5   CONCLUSIONS 

In the present work, the stability of electro-statically actuated FG-MEE micro-beams was studied. It was supposed 

that the properties of the FG-MEE material vary exponentially along the thickness direction of the micro-beam. 

Using Hamilton’s principle, governing equations of the problem were derived. Maxwell’s equation and magneto-

electric boundary conditions was used in order to formulate the magnetic and electric potentials distribution along 

the thickness direction of the micro-beam. For static and dynamic analysis, the Galerkin-based step by step 

linearization method and Galerkin reduced order model was employed, respectively. From numerical results, 

following conclusions can be drawn: By increase of the volume fraction of piezoelectric phase in the FG-MEE 

material, the pull-in voltage is decreased. By increase of the gradient index, the pull-in voltage is increased. The 

pull-in voltage of the micro-beam decreases with the increase of the external electric potential (
0

V ), whereas the 

external magnetic potential (
0

 ) has the opposite effect, in the other words by increasing the external magnetic 

potential, the value of pull-in voltage of the micro-beam is increased. The effects of magnetic/electric potential on 

the pull-in instability of the FG-MEE micro-beams decrease/increase with the increase of the volume fraction of 

BaTiO3 in the MEE material. By increase of the gradient index, the effect of magnetic and electric potentials on the 

pull-in instability decreases.  It is worth to point out that the effects of electric and magnetic potentials on the 

dynamic instability of the micro-beams under constant electrostatic step DC voltage was investigated in detail by 

plotting time histories and phase portraits. This work and the obtained results could be used in the design and 

development of smart MEMS structures constructed from FG-MEE composite materials. 
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