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 ABSTRACT 

 A Newtonian (vectorial) approach is used to develop the governing 

differential equations of motion for a three layer sandwich beam in which the 

uniform distribution of mass and stiffness is dealt with exactly. The model 

allows for each layer of material to be of unequal thickness and the effects of 

coupled bending and longitudinal motion are accounted for. This results in an 

eighth order ordinary differential equation whose closed form solution is 

developed into an exact dynamic member stiffness matrix (exact finite 

element) for the beam. Such beams can then be assembled to model a variety 

of structures in the usual manner. However, such a formulation necessitates 

the solution of a transcendental eigenvalue problem. This is accomplished 

using the Wittrick-Williams algorithm, whose implementation is discussed in 

detail. The algorithm enables any desired natural frequency to be converged 

upon to any required accuracy with the certain knowledge that none have 

been missed. The accuracy of the method is then confirmed by comparison 

with five sets of published results together with a further example that 

indicates its range of application.  A number of further issues are considered 

that arise from the difference between sandwich beams and uniform single 

material beams, including the accuracy of the characteristic equation, co-

ordinate transformations, modal coupling and the application of boundary 

conditions.                                © 2017 IAU, Arak Branch.All rights reserved. 

 Keywords : Sandwich beam; Exact dynamic stiffness matrix; Coupled 

motion; Transcendental eigenvalue problem; Wittrick-Williams algorithm. 

1    INTRODUCTION 

PTIMISATION of the strength to weight ratio in structural members has been a necessary goal in the 

aeronautics and space environment for many years and to a lesser extent in many other areas of structural 

design. Such a philosophy is epitomized by sandwich construction which, in its most usual form, is characterized by 

a thick lightweight core that is bonded between two thin faceplates of high strength material. An early analysis of 

the vibrational behavior of sandwich beams was given by Kerwin [1] in the late nineteen fifties and subsequently by 

a number of authors using a variety of different approaches [2-7], all of which allowed only for transverse inertia. 

The addition of longitudinal and rotary inertia appears to have been put forward first by Yu [8] in the context of 

sandwich plate vibration. Later Rao and Nakra [9] also studied these secondary inertia effects in simply supported 
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sandwich beams that were unsymmetric about their neutral axis. They showed that there are three families of modes; 

flexural, extensional and thickness shear and that coupling between them may occur at frequencies of practical 

interest.  Mead [10] confirmed these findings and concluded that the accuracy of the flexural modes thus calculated 

was superior to earlier theories [3, 5]. Chonan [11] further extended the theory to allow for elastic bonding between 

the core and face plates.  More generally, Mead and Markus [12] showed that coupling between longitudinal and 

flexural waves was strongest when allowing for both shear deformation and rotational inertia. They concluded that 

the well-known thickness-shear type of deformation in which the cross-section rotates without translation 

corresponds to a rotational wave with negligible longitudinal and transverse motion.  There have also been some 

attempts to develop a more accurate way of allowing for shear deformations in the layers by utilizing higher order 

shear theories [13,14] and the use of variational methods in a variety of forms in order to solve problems with non-

classical boundary conditions [13,14,15,16]. Amirani et al [17] extracted the natural frequencies of sandwich beam 

with functionally graded core using the element free Galerkin method. They used the penalty method for imposition 

of the essential boundary condition and material discontinuity condition. Hashemi and Adique [18] developed a 

dynamic finite element method based on the weak integral form of the differential equations of motion governing 

the free vibration of a symmetric three-layered sandwich beam. Their numerical results showed good agreement 

with finite element method, exact dynamic stiffness method and other published results. Moreover they also 

developed a new dynamic finite element model for the free vibration analysis of three-layered sandwich  beams 

applied to an asymmetric steel-face, soft-core sandwich beam, that the face layers follow the Rayleigh beam 

assumptions, while the core is governed by Timoshenko beam theory and by exploiting only a one-element DFE 

model [19]. 

Despite the extensive literature on sandwich beams, there is little work that utilizes a stiffness formulation and 

also accounts in an exact way for the uniform distribution of mass. Banerjee [20] used an analytical approach to 

develop the dynamic stiffness matrix for a symmetric three layered beam.  His model allowed for axial extension, 

but assumed that the density of the core material was negligible in comparison to that of the faceplates, which can 

often be an acceptable simplification, but which inevitably leads to non conservative values of the important lower 

frequencies.  Over the same period, two of the present authors developed an equivalent matrix model for an 

unsymmetrical three layer sandwich beam that allowed for the density of the core, but ignored the longitudinal 

inertia [21].  In a later paper, Banerjee and Sobey [22] improved Banerjee’s earlier model and allowed for rotary 

inertia in both the core and the faceplates and additionally allowed for shear deformation of the core material.  This 

is undoubtedly a powerful model, but its complexity will rarely be required in order to analyze the majority of 

practical applications.  Banerjee et al [23] again improved their earlier model for a three-layered sandwich beam of 

unequal thicknesses which each layer was idealized by the Timoshenko beam theory. They have also used an 

experimental modal testing set up using the impact hammer kit where the experimental results match reasonably 

well with theoretical predictions using the dynamic stiffness theory. Jun et al [24] introduced a exact dynamic 

stiffness method for determining the natural frequencies and mode shapes of laminated composite beams based on 

third-order shear deformation theory. They also performed a parametric study of the influences of Poisson effect, 

material anisotropy, slenderness and end condition on the natural frequencies of the composite beam.  Khalili et al 

[25] investigated free vibration of three-layered symmetric sandwich beam using dynamic stiffness and finite 

element methods. To determine the equations of motion, core density is considered. Natural frequencies were 

computed using Wittrick–Williams algorithm. They concluded that irrespective of the type of the boundary 

conditions, increasing the core/face density ratios, decrease the first natural frequency of the sandwich beam, but 

increasing the face/core thickness ratios and the core shear modulus, increases the first natural frequency of the 

beam. Damanpack and Khalili [26] investigated high-order free vibration of three-layered symmetric sandwich 

beam using dynamic stiffness method. They checked the natural frequencies and corresponding vibration modes 

against those produced by the experiment analysis. 

 The work of the present paper therefore takes a different course and extends the model of a previous paper [21] 

to obtain the simplest exact dynamic stiffness model that can be used to analyze practical assemblies of such 

members realistically.  The model is first developed using a vectorial approach that emphasizes the underlying 

physical relationships that characterize the problem. Attention is then focused on the practical application of the 

theory. Initially the implementation of the Wittrick-Williams algorithm is considered in detail and leads to a simple 

description of the fundamental shear thickness mode.  This is followed by a discussion on the possible 

representations of longitudinal displacement and the corresponding implementation of the boundary constraints.  

Finally guidance is given on a simple way to eliminate the possibility of numerical instability stemming from the 

characteristic equation. 
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2    THEORY 

The dynamic stiffness matrix of a three layer sandwich beam is now developed from first principles. It accounts 

exactly for the uniform distribution of mass and stiffness in the member, subject to the following assumptions:  

(i) transverse direct strains in the face plates and core are negligible so that small transverse displacements are 

the same for all points in a normal section; 

(ii) there is perfect bonding at the core/faceplate interfaces; 

(iii) the face plates are elastic, isotropic and do not deform in shear; 

(iv) the linearly elastic core carries only shear and the in-plane normal stresses are assumed to be negligible. 

Fig. 1 shows the positive sense of the displacements experienced by a typical section of a sandwich beam at 

some instant during the motion. The beam has unit width and ,t ct t and bt  are the thickness of the top face, core and 

bottom face, respectively. The face plates are assumed to undergo bending and axial deformation, while the core 

deforms only in shear. Throughout this text the subscripts t, c, and b refer to the top faceplate, core and bottom 

faceplate of the three-layered sandwich beam, respectively. Also the generic quantities m, q, n and μ  represent 

bending moment, shear force, axial force and mass/unit length, respectively.  When they are not subscripted they are 

resultant or total values. The prime and dot notations refer to partial differentiation with respect to x and time in the 

usual way.  

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

The displaced section, cross-section and co-ordinate system of a 

typical sandwich beam of unit width. 

Due to neglecting transverse direct strains in the face plates and core, small transverse displacements w remain 

constant throughout the section at all layers. Hence, the resultant bending moment at any section is given by 

 

t b t t b bm m m E I E I
κ


 


         

 

(1a) 

 

w   (1b) 

 

where i iE I  is the flexural rigidity of face plate    ( ,   ), 1/ t t b bi i t b κ E I E I    and   is the bending slope. It 

is assumed that plane sections of both the faces and core remain plane as the beam bends. However, in the former 

they will remain perpendicular to the neutral axis, but not in the latter. Hence, the shear strain in the core layer is 

given by  

 

( )t b
c

c

u ud

t d
 


   

 

(2) 

where 
2

t b
c

t t
d t


   is the distance between centre lines of the face plates and tu and bu are the mid-layer 

longitudinal displacement of the top and bottom faces, respectively. The other necessary force displacement 

relationships for axial extension and shearing deformation are 
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i i i i i i i in E t ε E t u K u     (3a) 

 

c c c c c cq t G t    (3b) 

 

where iε  and ( ) i i iK E t  are the longitudinal strain and axial rigidity of faceplate   ( ,   ), ci i t b   and c  are the 

uniform shear stress and strain through the thickness of the core and cG  is the effective shear modulus of the core 

material.  Also it is clear from Fig. 1 that cu and c , the average longitudinal displacement and rotation of the core, 

are given by  

 

1
2

t b
c

u u
u ψ e


   

(4a) 

2
c

t b

c

u u ψ e

t


 
  

(4b) 

respectively, where 1
4

b tt t
e


  and 2

2

b tt t
e


 . 

Now consider Fig. 2, which shows the forces acting on a typical elemental length of a member at some instant 

during the motion.  The equation of horizontal equilibrium can then be written as: 

 

t c bμ μ μt b
t c b

n n
u u u

x x

 
   

 
 

 

(5) 

 

Substituting Eqs. (4a) and (3a) into Eq. (5) gives the first differential equation of motion as: 

 

1( ) ( ) 0
2 2

c c
t t b b t t b b c

μ μ
K u K u μ u μ u μ e ψ         

 

(6) 

 

In similar fashion, the equation of vertical equilibrium is 

 

μ
q

w
x





 

 

(7) 

 

Comparing Figs. 2 and 3 and using Eq. (3b), it is clear that t b cq q q q    is the resultant shear force at any 

normal section of the element. Thus taking moments about the centre line at the right hand side of the bottom 

faceplate in Fig.2 and ignoring terms of second order yields the moment equilibrium equation as 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Positive resultant forces, moments and reversed linear inertias 

acting on a typical elemental length of a sandwich beam of unit 

width in local co-ordinates. The layer dimensions are also 

shown. 
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Fig.3 

Component member forces, moments and inter-member stresses 

on a typical elemental length of a sandwich beam. 

 

d d d ( ) d ( ) d ( ) 0t
t t c c

nm
q x x x d μ u x d μ u x a
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    
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(8) 

 

where 
2

t b
c

t t
d t


   is the distance between the centre lines of the two faceplate and the core and  m  is the 

resultant bending moment at any section given by Eq. (1a).  Substituting Eqs.  (1a), (3a) and (4a) into Eq. (8) yields 

the resultant shear force as: 

 

c c
1 c

μ μψ
  ( μ ) μ

2 2
t t t t bq K d u d a u a u ae ψ

κ


        

 

(9) 

 

Differentiating and substituting Eq. (9) into Eq. (7) gives the second differential equation of motion as: 

 

c c
1 c

μ μ
μw   ( μ ) μ 0

2 2
t t t t b

ψ
K d u d a u a u ae ψ

κ


           

 

(10) 

 

Consider finally the horizontal equilibrium of the top faceplate in Fig. 3, which may be written as: 

 
2

t 2
d d μ dt t

t

n u
x x x

x t


 
 

 
 

 

(11) 

 

where t  is the shear stress at the interface between the top faceplate and the core. It then follows that 

 

t t t t tK u u     (12) 

 

In addition, the equation of horizontal equilibrium of the bottom faceplate in Fig. 3 may be written as: 

 
2

b 2
d d db b

b

n u
x x μ x

x t


 
 

 
 

 

(13) 

 

where b  is the shear stress at the interface between the bottom faceplate and the core.  Hence 

 

b b b b bK u u    (14) 

  

Since it was assumed that the shear stress through the core thickness has an average value of c , the equation of 

moment equilibrium of the core about the midpoint of the right hand side of the core in Fig. 3 can be written as: 
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d d d 0
2 2

c c
t b c c

t t
x x t x       

 

(15) 

 

Substituting Eqs. (2), (3b), (12) and (14) into Eq. (15) yields the last differential equation of motion as: 

 

2 2 2
0c c c

t t t t b b b b t b
c c c

G d G G
K u u K u u ψ  u u

t t t
          

 

(16) 

 

Attention is now confined to harmonic motion in which the time dependent terms are related to ω , the circular 

frequency, by the generic equation 

 
i( , ) ( )   ωtf x t F x e  (17) 

 

where the upper case character refers to the amplitude of the equivalent time dependent quantity. Hence, using the 

appropriate form of Eq. (17) in the partial differential Eqs. (10), (6) and (16) yields the following linear differential 

equations with constant coefficients  

 

2 2 2 2
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2 2 2
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0
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c c c
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κ
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   
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


         



         


 

 

 

 

(18) 

 

Rewriting Eqs. (18) in matrix form and introducing the operator d/ dD x ,  
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1
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D K D K D
t t t

 
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 
   

   
   

       
    
     
 
 

 

 

 

(19) 

 

Eqs. (19) can be rewritten in symmetric form using the following operations that do not alter its determinant.  

i) Add the last two rows of Eq. (19) and divide by 2 to give the second row of Eq. (20).  

ii) Subtract the third row of Eq. (19) from the second row and divide by 2 to give the third row of Eq. (20).  

iii) Finally, differentiate the second row of Eq. (20) once, multiply by d and then subtract it from the first row 

of Eq. (19) to give the first row of Eq. (20). 

These operations yield 

 
4 2
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2

4 5 6 7 8

2

4 5 8 9 10

( ) ( )

( )   0
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t
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(20) 

 

where 

 
2 2 2

1 2 1 3 4

2 2 2

5 1 6 7
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2

ˆ ˆ  / 4; ;    ( / 4)

c c c

c
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c c b c c
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μ
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

      



     

      

 

 

 

(21) 
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and  
2

ˆ c

c

c

G d
S

t
 . 

It is interesting to note that all component parts of the ( 1,...,10)
i

A i  that contain 2  stem from the inclusion of 

coupled longitudinal inertia, except for term 
3

A .   

Eqs. (19) or (20) can now be used to develop the eighth order differential equation governing the motion of the 

beam by eliminating all but one of  ,    or  
t b

W U U  to give 

 
8 6 4 2

1 2 3 4
[ ]   0D c D c D c D c V      (22) 
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(23) 

 

and 

 

ˆ( ); ( ).
t b t b t b t t b b

ς   K K K K ς   K K K μ K μ     (24) 

 

Expressions for the general displacements ,  Ψ,    and  
t b

W U U  can now be deduced using Eqs. (1b), (17) and (22), 

while expressions for the corresponding forces can be obtained by imposing Eq. (17) on Eqs. (9), (1a) and (3a) to 

yield 
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1
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κ

W
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
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 

 

 

 

 

(25) 

 

We now seek to solve the governing differential equation of motion, Eq. (22), for the harmonically varying 

displacement field.  Eq. (22) is a linear differential equation with constant coefficients and its solution can be sought 

in the following form 

 

 
8

1

 1,2,...8
ij j

j

V C ζ i


   
 

(26a) 

 

where        

; 0jη x

j
ζ e x L    (26b) 

 

The   1,2,...8
ij

C i   are arbitrary constants and  η  1,8
j

j   are the roots of the characteristic equation 

stemming from Eq. (22), i.e. the roots of 
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8 6 4 2

1 2 3 4
0η c η c η c η c      (27) 

 

The η
j
 define ( ,    or   )

t b
V W U U and the other necessary quantities for the stiffness formulation of the problem, 

i.e. Eqs. (1b) and (25) to yield the following results 
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(28) 

 

where 
ij j ij

H C C , such that 
j

C  is common to all the equations and 
ij

H  is the relational constant.  Noting that one 

of the 
ij

H  is arbitrary, it is convenient to set 
1

1
j

H  .  This, together with the use of Eqs. (21), yields the following 

relationships between the 
ij

H of Eqs. (28)  
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(29) 

 

It is now convenient to switch from the local co-ordinate system of Fig. 4(a) to the member co-ordinate system 

of Fig. 4(b).  Comparison of the two figures shows that this is equivalent to imposing the conditions of Eqs. (30) 

onto Eqs. (28). 

 

1 1 1 1 1 1 1 1

2 2 2 1 2 2 2 2

At    0 : ,   , ,   ,   ,   ,    , 

At    : , , ,   , , , , 

t t b b t t b b

t t b b t t b b

x W W Ψ Ψ U U U U Q Q M M N N N N

x L W W Ψ  Ψ U U U U Q Q M M N N N N

           

         
 

 

(30) 

 

 

(a) 

 
(b) 

Fig.4 

Nodal forces and displacements of a sandwich beam a) in local coordinates, b) in member coordinates. 

 

The resulting matrix equations are given by 
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d SC  (31a) 

 

and 

 
p S C  (31b) 

 

where 
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(32) 

and  
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(33) 

 

where 
ij

s  and *

ij
s  are the elements of S and S

*
, respectively, and their subscripts correspond to row and column co-

ordinates in the usual way. The required dynamic stiffness matrix, k, follows from Eq. (31) through the following 

steps.  From Eq. (31a),  

 
1C S d  (34) 

 

and substituting in Eq. (31b) gives 

 
p dk  (35) 

 

where  

 
1  Sk S  (36) 

 

The dynamic stiffness matrix for the overall structure can now be assembled from the element matrices in the 

usual way. The use of ‘exact’ finite elements leads to an idealization containing the minimum number of elements, 

while leaving invariant the accuracy to which any particular natural frequency can be converged upon. This can be 

important for higher natural frequencies and should be contrasted with traditional finite elements in which the 

accuracy is sensitive to the idealization. Once the required natural frequencies have been determined, the 

corresponding mode shapes can be retrieved by any reliable method. The method for converging with certainty on 

the required natural frequencies is now described.  
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3    WITTRICK-WILLIAMS ALGORITHM 

The Wittrick-Williams algorithm [27], has been available for over forty years and states that  

 

0
{  }J J s  K  (37) 

 

where J is the number of natural frequencies of the structure exceeded by some trial frequency, 
0

ω , J  is the 

number of natural frequencies which would still be exceeded if all the elements were clamped at their ends so as to 

make D 0 , and { }s K is the sign count of the matrix  K. { }s K  is defined in reference [27] and is equal to the 

number of negative elements on the leading diagonal of the upper triangular matrix obtained from K, whenω ω , 

by the standard form of Gauss elimination without row interchanges. A knowledge of J corresponding to any trial 

frequency makes it possible to develop a method for converging upon any required natural frequency to any desired 

accuracy. However, while { }s K is easily computed, the value of 
0

J  is more difficult to determine and is dealt with 

below.  

From the definition of 
0

J  it can be seen that 

 

0 m
J J  (38) 

 

where 
m

J  is the number of natural frequencies of a component member, with its ends clamped, which have been 

exceeded by ω , and the summation extends over all such members. In some cases it is possible to determine the 

value of 
m

J  for the element type symbolically, using a direct approach. However, this is impractical in the present 

case due to the algebraic complexity of the expressions. Instead, the same result is achieved by an argument based 

on Eq. (37) that was originally put forward by Howson and Williams [28].  

Consider a component member that has been isolated from the remainder of the structure by clamping its ends. 

Treating this member as a complete structure, it is evident that the required value of 
m

J  could be evaluated if its 

natural frequencies were known.  Unfortunately, this simple structure can rarely be solved easily. We therefore seek 

to establish a different set of boundary conditions that admit a simple symbolic solution and which enable solutions 

to the clamped ended case to be deduced. This is most easily achieved by imposing roller-roller supports which, in 

this case, permit rotation and longitudinal motion of the faceplates, i.e. Ψ,   and 
t b

U U  respectively, but prevent 

lateral displacement W, see Fig. 5. 

 

 

 

 

 

 

 

 

 

Fig.5 

Roller-roller supported beam and the position of axial 

freedoms through the beam thickness. 

 

Let the stiffness matrix for this structure be rr
k , then the number of roots exceeded by ω  is given by Eq. (37) 

and the arguments above as: 

 

{  }rr

rr m
J J s  k  (39) 

  

where 
rr

J  is the number of natural frequencies that lie below the trial frequency for the member with roller-roller 

supports. It then follows directly that 
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{  }rr

m rr
J J s  k  (40) 

 

Once more rr
k , and hence { }rrs k , is readily obtained, this time from Eq. (35). 

rr
J  is slightly more difficult, 

but relates to the element with boundary conditions that yield a simple exact solution, as shown below. 

For the roller-roller-supported case, the boundary conditions are defined by  

 

1 2 1 2 1 2 1 2
0

t t b b
N N N N M M W W         (41) 

 

Now it can be seen from Eq. (25) that   and  
ti bi

N N  , the amplitude of the axial forces in the top and bottom 

faceplates, are functions of   (  and   )
i

U i t b  .  These conditions are therefore satisfied by assuming solutions of the 

form  

 

1 2 3
 sin    cos    cos  

t b
W B δ x U B δ x U B δ x    (42) 

 

where 
1 2
,B B  and 

3
B are constants and   0,1,2,3,

n π
δ n

L
   . Since Eq. (22) is a combined equation that 

allows for the effects of ,    and  
t b

W U U , substituting any part of Eq. (42) into Eq. (22) yields 

 
8 6 4 2

1 2 3 4
0δ c δ c δ c δ c      (43) 

 

A further substitution of Eqs.(23) into Eq. (43) leads to the following frequency equation for a roller-roller 

supported beam 

 
6 4 2

1 2 3 4
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(45) 

 

Eq. (44) can be expressed as a cubic equation in 2ω  and consequently its real, positive roots are the square of its 

natural frequencies for each value of n = 0,1,2, …. Hence 
rr

J  is given by the number of positive values of 
n

ω that lie 

below the trial frequency, ω . Thus, substituting Eq. (40) in to Eq. (38) gives 

 

0
(  { })rr

rr
J J s  k  (46) 

 

The required value of J then follows from Eq. (37). It is interesting to note that when 0, 0n    and the 

coefficients 
3

 b and 
4

 b are zero. For this case it can be shown that 
1

 b is always negative and that
2

 b is always positive. 
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Eq. (44) then yields a single non-trivial real root. It is equally clear from Eq. (42) that  

 

2 3
0 ; ;

t b
V U B U B    (47) 

 

Thus the mode corresponding to 0n   has no lateral displacement and rigid body displacements horizontally. 

Thus there is no axial extension and the frequency corresponds to the fundamental shear thickness mode. 

4    TRANSFORMATION MATRICES 

The stiffness matrix formulation of a sandwich beam, using the sign convention of Fig. 1 and including the effects of 

both transverse and longitudinal inertia, leads to the set of boundary conditions stated in Eqs. (30). However, it is 

possible to formulate the problem via a number of possible sets of displacement variables together with their 

corresponding sets of boundary conditions. For example, rather than using the mid-layer displacement of the 

faceplates as being representative of the longitudinal displacement,  and   
t b

u u in Fig. 6, the displacements at the 

interface of the core and the faceplates, 
2 3
 and   u u , or the longitudinal displacements at the external fibers of the 

faceplates, 
1 4
 and   u u , could equally well be used. However, in contrast to conventional homogeneous beams, these 

alternative sets of axial displacements, which also correspond to possible locations of axial constraint, can 

significantly influence the natural frequencies [29].  Fortunately, the dynamic stiffness matrix of Eq. (35) can be 

made to be compatible with any required set of field displacements by appropriate transformation.  Once the desired 

configuration has been achieved, it can be used to model general two dimensional structures by further 

transformation from local to global co-ordinates see Fig.7.  Details of all these transformations are given in the 

Appendix. 

 

 

 

 

 

 

 

 

Fig.6 

The displaced section showing the possible displacement field 

variables (  
i

u ) of a typical sandwich beam section of unit 

width. Note that the vertical position of the longitudinal 

displacement u is not a geometric property of the section, but a 

function of  
t

u and .
b

u  

  

 

 

 

 

 

 

Fig.7 

Clamped-clamped curved sandwich beam of Example 4. The 

length of the beam is 0.7112m and its radius is 4.2672m. 

 

This figure ignored in uncorrected proof version of the paper. 

5    NUMERICAL RESULTS 

A number of examples are now given to validate the theory and indicate its range of application. The first three 

examples compare results obtained by a number of authors for simply supported or cantilevered beams that have 
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been widely used as test examples. The fourth and fifth examples are used to validate the accuracy of the proposed 

theory when used to analyze structures formed from sandwich beams. The final example considers a simple frame 

for which the values of some of the natural frequencies can be argued through a self consistency check. 

Table 1. sets out various groups of material and geometric properties that define the member(s) used in each of 

the examples. 
 

 

Table 1 

Details of the material and geometric properties of the members used in the numerical examples. 

Propery group 

No. 

    
t b

E E  

GPa 

  
c

E  

GPa 

 
c

G  

MPa 

 
t c

G G  

MPa 

     
t b
   

3kg/ m  

 
c

  

3kg/ m  

t
t  

mm 

 
b

t  

mm 

 
c

t  

mm 

1 68.9 0 82.68    2680 32.8 0.4572 0.4572 12.7 

2 210 0.0015 0.3333 53333 7850 950 2 3 20 

3 210 0 0.3333    7850 950 2 3 20 

4 210 16 3667 53333 7850 11100 2 3 20 

5 210 0 3667    7850 11100 2 3 20 

6 69 0 440    3180 83 0.56 0.56 25.4 

7 69 0 440 2620 3180 83 0.56 0.56 25.4 

,  
t b

E E and 
c

E  are the Young’s moduli of the top, bottom and core layers, respectively, ,    
t b

G G and  
c

G  are the shear modulus of the top, bottom 

and core layers, respectively, ,  
t b
  and  

c
  are the densities of the top, bottom and core layers, respectively, and ,    

t b
t t  and  

c
t are the 

thicknesses of the top, bottom and core layers, respectively. 

 

Example 1: The first problem considers a sandwich beam whose properties are defined in Property Group 1 and 

which has length 0.9144m, identical faceplates and the following boundary conditions, 0
b t

W M N N    , at 

each end of the member.  Such boundary conditions are correctly described as ‘roller-roller’ supports and are 

identical to the ‘simple supports’ described in those papers reporting comparative results in Table 2.  However, the 

term ‘simple support’ needs to be clarified, since the position on the cross-section of the longitudinal constraint has a 

significant effect on the vibration of the beam.  See the Appendix and reference [29].  Thus, when comparing the 

results in Table 2., it should be noted that those stemming from references [7,21,30] do not allow for coupled 

longitudinal inertia and those stemming from references [13,14] do not relate to an identically comparable set of 

field displacements. 

 
 

Table 2 
Comparative results for the non-zero natural frequencies (Hz) of the roller-roller§ supported sandwich beam of Example 1 using 

property group No. 1. 

Freq. No.* Mode Current theory [21] [7] [30] [14] [13] 

1 B1      57.1241     57.1358     56.159     57.5   57.068    57.041 

2 B2 219.431 219.585 215.82 - 218.569 218.361 

3 B3 464.595 465.172 457.22 467 460.925 460.754 

4 B4 766.915 768.177 755.05 - 757.642 758.692 

5 B5 1104.63     1106.68     1087.9     1111    1086.955    1097.055   

6 B6 1462.31     1465.10     1440.3    - 1433.920   1457.064  

7 B7 1830.14     1833.55     1802.7    1842  1789.345   1849.380  
8 B8 2202.32     2206.19     2169.8    - 2147.969   2275.916  
9 A1 2563.22     - - - - 2562         

10 B9 2575.62     2579.79     2538.2     2594  - - 

11   B10 2948.30     2952.65     2906.2   - - - 

17 A2 5126.44     - - - - - 

26 A3 7689.67     - - - - - 

54 S1 16406.4        - - - -  - 

56 S2 16642.4        - - - -  - 
§ Except for the current theory, the term “simply supported” is used by others. 

* ‘Freq. No.’ indicates the order of occurrence of the modes. 

 The predominant component of the mode and it’s ordering number.  For example, ‘B1’ indicates the first bending mode, ‘A1’, the first axial 

mode, ‘S2’, the second shear thickness mode and so on. 
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Example 2: The beam of Example 1 is now constrained to act as a cantilever and its length is reduced to 

0.7112m. Comparative results for the first eight natural frequencies are presented in Table 3. 
 

Table 3 

Comparative results for the natural frequencies (Hz) of a cantilevered sandwich beam of length 0.7112m with material properties 

given in Property Group No. 1. 

Freq. No.* Mode Proposed theory [21] [30] [7] [20] [22] 
[13] 

HOBT4b HOBT5 

1 B1     33.7459     33.7513   33.97    33.146    31.46    33.74    33.7    33.7 

2 B2 198.798 198.992 200.5 195.96 193.7 198.8 197.5 197.5 

3 B3 511.420 512.307 517    503.43 529.2 511.4 505.5 505.5 

4 B4 905.226 907.299 918    893.28 1006     905.1 890.5 890.5 

5 B5 1346.23     1349.65    1368     1328.5   -  1321     1321     

6 A1 1647.79     - - - -  1648     1648     

7 B6 1811.15     1815.82    1844     1790.7   -  1786     1786    

8 B7 2286.77     2292.45    2331     2260.2   -  2271    2271    

9 B8 2765.80      2772.23    2824     2738.9   -  2792    2792    

14 A2 4943.36      - - - -     4943§          4941§     

*,+ See footnote of Table 2 

§Reference [13] indicates that values correspond to the second axial mode but frequency no. 13. 
 

Example 3: The third example is a cantilevered sandwich beam with unsymmetrical cross-section of length 0.5m 

for which the top and bottom layers have thicknesses 2mm and 3mm respectively and are made of steel. The middle 

core layer has thickness 20mm and possesses the two different material properties of rubber and lead in turn.  The 

material properties are given in Table 1. in Property Groups 2 to 5.  Property Groups 2 and 4 include appropriate 

values of 
c

E  and 
c

G  required by the more sophisticated model of reference [22], while Property Groups 3 and 5 

give the corresponding data with the equivalent properties for 
c

E and 
c

G  in the proposed model.  Comparative 

results are given in Table 4. and show good agreement for the rubber core model, but less so for the unlikely lead 

core model in which the lead contributes significant bending stiffness that is not accounted for herein.  
 

Table 4 

Comparative results for the circular natural frequencies of the cantilever beam of Example 3. 

Property Group No. 2 3 4 5 

Freq.No. [22] Proposed theory [22] Proposed theory 

1    67.5   67.5 321.4   307.6 

2 316.6 316.6 1864      1798.6 

3 827.7 827.7 4718      4589.4 

4 1594       1594.3   7193      6297.5 

* See footnote of Table 2. 

 
Example 4: A circularly curved sandwich beam that is fully clamped at both ends is now considered, see Fig. 8. 

The length of the curve is 0.7112m and its radius is 4.2672m. Comparative results for the first five natural 

frequencies (Hz) of this beam are given in Table 5. In addition, Table 6. shows the results of modeling the beam 

with the proposed theory using different numbers of identical straight elements. From Table 6. it is clear that 

modeling the curved beam with 4 such elements gives acceptable accuracy in the results. 

 

 

 

 

 

 

Fig.8 

The free-free rigidly jointed frame of Example 5. 
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Example 5: Reference [34] considers the experimental evaluation and theoretical (FEM) verification of the 

natural frequencies of a uniform three-dimensional sandwich plate structure whose cross-section is identical to the L 

shaped frame of Fig. 9.  The structure comprises two, rigidly jointed sandwich beams of length 0.175m and 0.4m 

with identical material and cross-sectional properties that correspond to Property Group No. 6.  Our proposed model 

is able to replicate the fundamental bending mode of the original structure, comprising flexure of the two arms, but 

not the more complicated modes that involve torsional displacements along its length.  Table 7. shows the first five, 

free-free natural frequencies of the frame in Fig. 8 according to the proposed theory, together with the comparison of 

the fundamental frequency of the original structure from reference [34]. 
 
 
Table 5 

Comparative results for the first five natural frequencies (Hz) of the clamped-clamped curved sandwich beam of Example 4 using 

property group No. 1. § 

Freq. No.* Current theory [30] [31] [32] [33] [35] [18] 

1 244.168 264 240 244.6 237.8 243.2431 263.094 

2 484.384 522 474 485.6 504    477.4111 517.882 

3 856.020 889 843 859.8 866   839.3961 875.794 

4 1267.82     1312   1253   1276     1283    1237.50      1286.882   

5 1710.42     1767   1697   1725    1728   1664.37     1728.185   

* See footnote Table 2 

§ The results in column 2 were obtained by modelling the structure with 10 straight elements. The results in columns three and four were 
obtained using 10 curved finite elements developed according to traditional assumptions. 

 

 
Table 6 

An assessment of the accuracy of the idealisation when modelling the curved sandwich beam of Example 4 with straight 

elements derived from the proposed theory for the first five natural frequencies (Hz). 

Freq.No.* 
Number of straight elements used to model the curve  

2 3 4 5 6 8 10 20 

1 236.885 241.914 243.148 243.626 243.860 244.075 244.168 244.284 

2 485.212 484.522 484.478 484.440 484.418 484.395 484.384 484.369 

3 861.824 854.552 855.101 855.540 855.748 855.938 856.020 856.123 

4 1268.88     1268.07    1268.44    1268.01    1267.95    1267.86    1267.82    1267.76    

5 1714.25     1716.34    1710.24    1710.47    1710.29    1710.39    1710.42    1710.46    

* See footnote Table 2 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Fig.9 

The pin-roller supported frame of Example 6. 
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Table 7 

Results for the first five in-plane natural frequencies (Hz) of the free-free, L-shaped frame of Example 5 according to the 

proposed theory and a comparative value for the fundamental. 

Property group No 6 7 

Freq.No.* Current theory 
[34] 

Experimental FEM 

1   483.4 479.24 478 

2 1031.4 -§ - 

3 2284.6 - - 

4 3167.4 - - 

5 3959.1 - - 

* See footnote Table 2 
§ The other four modes of vibration contain out of plane torsional deformation and therefore are not comparative. 

 

Example 6: Fig. 10 shows a square, rigidly jointed plane frame constructed from four identical sandwich 

members.  It is supported on pin-roller supports, where the horizontal constraint is imposed at the lower edge of the 

bottom faceplate of the bottom member.  The length of each member is 0.40m. Since the authors were unable to find 

any results in the literature for a comparable frame, the initial results for this frame were checked for consistency by 

increasing the axial rigidities by 10
3
, a factor that is often used to make a structural element effectively in-extensible.  

On this assumption it is easy to argue that the fourth natural frequency of the frame will have a mode shape in which 

the moment contributed by each member at a joint balance to give zero rotation and must therefore correspond to the 

clamped ended natural frequency of an individual member. In this case the comparison will not be absolutely precise 

since the members are not completely in-extensible. The results are shown in Table 8. 
 

Table 8 

The first six natural frequencies (Hz) of the pin-roller supported frame of Example 6 for property group No. 1 and various axial 

rigidities of the faceplates. The clamped-ended frequency of a component member has been determined independently as 

1794.927Hz and compares closely with the fourth frequency of the frame. 

 Axial rigidity of each faceplate, EA n  

Freq. No.* n = 1 n = 5 n = 10 n = 50 n = 100 n = 1000 

1 120.5597 236.2467      294.1580     393.2158    414.1590    436.2600 

2 449.3290 899.0634 1137.489 1577.231 1676.611 1784.083 

3 656.9620 1158.450     1351.973 1632.770 1698.095 1784.598 

4 750.7903 1328.063     1551.367 1744.639 1770.458 1794.660 

5 884.3581 1413.161     1573.129 1879.365 1954.698 2053.488 

6 1547.585     2664.531     3035.691 3456.595 3522.775 3587.312 

       * See footnote Table 2 

 

 

 

 

 

 

 

 

 
 
 
 

 

 
 

Fig.10 

The pin-roller supported frame of Example 6. 
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6    GENERAL REMARKS 

Sandwich beams have three fundamentally different types of mode of vibration; flexural, axial and shear thickness. 

A pure shear thickness mode is a mode in which the beam remains straight, without any lateral deflection or uniform 

extension in the usual sense. Instead, the faceplates displace horizontally relative to each other causing the core to 

deform in pure shear. The span length of the roller-roller supported beams does not affect the frequency of the 

fundamental shear thickness mode. 

The three families of modes are normally coupled, but in some special cases it is possible to have uncoupled 

modes. For example, in a roller-roller supported sandwich beam with symmetric cross-section, the axial and flexural 

modes are uncoupled. Also the fundamental shear thickness mode is always a pure shear mode. Furthermore, a study 

of the mode shapes of the roller-roller beam shows that except for the fundamental shear thickness mode, the higher 

shear thickness modes always couple with flexural modes, with the result that two modes exist with the same 

number of half-waves in the transverse direction. The only difference between these two modes being an opposite 

sign associated with the average rotation of the cross-section and the general slope of the beam.  A wider study 

shows that even for a completely symmetric beam, if the axial rigidity of the faceplates is increased, besides 

increasing the axial frequencies, the frequencies of the other families of modes are also increased.  This means that 

the flexural and shear thickness modes are influenced by axial rigidity [29].  A further crucial point is to distinguish 

fully between sandwich beams and homogeneous beams, since the thickness in the former plays an important role in 

the behavior of the beam in the shear thickness mode of vibration and consequently on the coupling of the modes.  

In contrast with homogeneous beams, the position of the axial constraint through the thickness of the beam is 

important.  This leads to variations in coupling between the modes, as well as differences in corresponding 

frequencies. 

The use of the stiffness method offers great flexibility to analyze two dimensional structures, as well as to 

impose ‘constraints’ on any selected freedom of the structure.  The latter will typically take the form of mass inertia, 

spring support stiffness or relationships that constrain one or more displacements to move in a predefined way 

relative to another set of displacements. Imposing such constraints follows the normal rules that would apply to a 

traditional beam element, except that more care is required to associate the constraint with the appropriate degree(s) 

of freedom.  Also by using the appropriate transformations, as discussed in the Appendix, the developed element can 

be used to model structures constructed from sandwich beams. Example 5 shows good correlation between the 

present authors’ results for the L-shaped frame and the experimental and FEM results of reference [34].   

Furthermore, although the proposed element is straight, it can be used to model curved structures by using an 

appropriate number of straight elements to model the geometry of the curve.  The results of Example 4 show that the 

number of straight elements needed is even less than the number of curved finite elements required to analyse a 

circularly curved arch. Ref. [31] compares the results of an FEM analysis with 6, 8 and 10 curved elements and 

shows that at least 10 elements are required for sufficient accuracy.  However, Table 6. shows that the necessary 

convergence is achieved with only 4 of the proposed straight elements and the error with respect to the case with 10 

such elements is less than 0.5 percent.  Moreover, it should be noted that the results from reference [31] are always 

lower bounds, while those from [30] are always upper bounds, due to the different assumptions in each reference. 

The results of Examples 1 to 5 show good correlation between the proposed theory and a selection of comparable 

results available in the literature.  The differences in the results are attributable to many factors that vary widely 

from their approximate solution techniques to differences in basic assumptions. Also, the results of Example 6 

provide a range of ‘exact’ solutions that may be helpful for future comparisons.  

Finally, it is worth noting that while assembling the results it became apparent that it is relatively easy to 

generate an example in which the roots of the characteristic equation, Eq. (27), become sufficiently large that the 

value of  in Eq. (27b) overflows, even when using double precision arithmetic.  However, because the combined 

effects of the roots and the length of the member are the source of this difficulty, reducing the length of the member 

(element) can help.  Thus, if difficulty is experienced, a simple method is to subdivide the member into a greater 

number of elements until the problem is resolved. 
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7    CONCLUSIONS 

A method for converging with certainty upon any required natural frequency of a rigid frame constructed from 

sandwich elements has been presented. It uses exact member theory in conjunction with the dynamic stiffness 

technique and this necessitates the solution of a transcendental eigenvalue problem. Solutions are achieved by use of 

the Wittrick-Williams algorithm, which yields the required natural frequencies to any desired accuracy in such a 

way that no difficulties are experienced with close or coincident natural frequencies or those exceptional natural 

frequencies which correspond to the nodal displacement vector being zero. The method therefore provides a very 

attractive alternative to the traditional finite element technique in which the accuracy is sensitive to the idealization.  

The investigation shows that three families of modes; flexural, axial and shear thickness, are expected for any 

structure made from sandwich elements. These families are normally coupled, except for some special cases. 

However, the coupled mode can usually be identified as having a predominant component.  On the other hand, the 

higher shear thickness modes always couple with flexural modes and result in two modes with the same number of 

half-waves in the transverse direction. The only difference between these two modes being an opposite sign 

associated with the average rotation of the cross-section and the general slope of the beam. 

APPENDIX A 

One of the most practical sets of axial constraint is perhaps the one that comprises the longitudinal displacements at 

the external fibers of the faceplates, i.e. 
1

u and 
4

 u  of Fig. 6. The necessary transformation between Eqs. (32) and the 

desired set of displacements and forces is  
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(A.1) 

 

where the transformation matrices are 
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(A.2) 

 

The transformed dynamic stiffness matrix, 
1

k̂ , follows through the following steps 

 
-1 -1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ; ; ;   T p T d p T T d p d k T Tk k k k  (A.3) 
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From Eq. (A.2) it can be deduced that -1 T

1 1
T T , where superscript T denotes the transpose of the matrix, and 

therefore  

 
T

1 1 1
ˆ k T Tk  (A.4) 

 

In the case where the core/faceplate interfaces are chosen as the axial freedoms, i.e. 
2

u and 
3

 u  in Fig. 6, it is only 

necessary to change the sign of all of the non-diagonal elements of the transformation matrices of Eq. (A.2).  

Another useful transformation enables the average axial displacement of the face layers, u ,  to be used, thus 

requiring only one axial displacement at each end of the beam. However, its vertical position across the beam 

thickness is not fixed and varies due to changes in the values of 
t

u and  
b

u .  The average rotation of the beam cross-

section,   , is the by-product of this transformation. From Fig. 6, it is clear that 
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(A.5) 

 

Consequently, the resultant axial force in the beam’s cross-section, n , and the couple due to the axial forces 

developed in the top and bottom faceplates during bending, m , become 
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with regard to Eq. (32), the necessary transformations between the displacements and forces can be written as: 
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where the transformation matrices are 
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In similar fashion to Eq.(A.3), the new transformed stiffness matrix is  
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T

2 2 2
ˆ k T Tk  (A.9) 

 

Finally, to include a beam in a plane frame, it is necessary to transform the stiffness matrix from member co-

ordinates to global co-ordinates (see Fig. 7). During transformation the rotations and moments remain unchanged. 

Thus from Fig. 7 it is clear that 
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The transformations can then be written in matrix notation as: 
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where subscript G denotes quantities in global co-ordinates and the transformation matrix is 
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Hence, the element stiffness matrix in global co-ordinates, 
G

k , is  
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REFERENCES 

[1] Kerwin E. M., 1959, Damping of flexural waves by a constrained viscoelastic layer, Journal of the Acoustical Society 

of America 31: 952-962. 

[2] Mead D. J., 1962, The Double-Skin Damping Configuration, University of Southampton.  

[3] DiTaranto R. A., 1965, Theory of vibratory bending for elastic and viscoelastic layered finite-length beams, Journal of 

Applied Mechanics 32: 881-886. 

[4] Yin T. P., Kelly T. J., Barry J. E., 1967, A quantitative evaluation of constrained layer damping, Transactions of the 

American Society of Mechanical Engineers, Journal of Engineering for Industry 89: 773-784. 

[5] Mead D. J., Markus S., 1969, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary 

conditions, Journal of Sound and Vibration 10: 163-175. 

[6] Rao D. K., 1978, Frequency and loss factors of sandwich beams under various boundary conditions, Journal of 

Mechanical Engineering Science 20: 271-282. 



                                                                                      Coupled Bending-Longitudinal Vibration of Three Layer….                   750 

 

© 2017 IAU, Arak Branch 

[7] Sakiyama T., Matsuda H., Morita C., 1996, Free vibration analysis of sandwich beam with elastic or viscoelastic core 

by applying the discrete Green function, Journal of Sound and Vibration 191: 189-206. 

[8] Yu Y.Y., 1959, A new theory of elastic sandwich plate-one dimensional case, Journal of Applied Mechanics 26: 415-

421. 

[9] Rao Y. V. K. S., Nakra B. C., 1970, Influence of rotary and longitudinal translatory inertia on the vibrations of 

unsymmetrical sandwich beams, Proceeding of the 15th Conference I.S.T.A.M. 

[10] Mead D. J., 1982, A comparison of some equations for the flexural vibration of damped sandwich beams, Journal of 

Sound and Vibration 83: 363-377. 

[11] Chonan S., 1982, Vibration and stability of sandwich beams with elastic bonding, Journal of Sound and Vibration 

85(4): 525-537. 

[12] Mead D. J., Markus S., 1985, Coupled flexural, longitudinal and shear wave motion in two- and three-layered damped 

beams, Journal of Sound and Vibration 99(4): 501-519.  

[13] Marur S. R., Kant T., 1996, Free vibration analysis of fiber reinforced composite beams using higher order theories and 

finite element modeling, Journal of Sound and Vibration 194: 337-351. 

[14] Kameswara Rao M., Desai Y.M., Chitnis M. R., 2001, Free vibration of laminated beams using mixed theory, 

Composite Structures 52: 149-160. 

[15] Silverman I. K., 1995, Natural frequencies of sandwich beams including shear and rotary effects, Journal of Sound and 

Vibration 183: 547-561. 

[16] Fasana A., Marchesiello S., 2001, Rayleigh-Ritz analysis of sandwich beams, Journal of Sound and Vibration 241: 

643-652. 

[17] Amirani M. C., Khalili S. M. R., Nemati N., 2009, Free vibration analysis of sandwich beam with FG core using the 

element free Galerkin method, Composite Structures 90: 373-379. 

[18] Hashemi S. M., Adique E. J., 2009, Free vibration analysis of sandwich beams: A dynamic finite element, International 

Journal of Vehicle Structures and Systems 1(4): 59-65.  

[19] Hashemi S. M., Adique E. J., 2010, A quasi-exact dynamic finite element for free vibration analysis of sandwich 

beams, Applied Composite Materials 17(2): 259-269. 

[20] Banerjee J. R., 2003, Free vibration of sandwich beams using the dynamic stiffness method, Computers and Structures 

81: 1915-1922. 

[21] Howson W. P., Zare A., 2005, Exact dynamic stiffness matrix for flexural vibration of three-layered sandwich beams, 

Journal of Sound and Vibration 282: 753-767. 

[22] Banerjee J. R., Sobey A.J., 2005, Dynamic stiffness formulation and free vibration analysis of a three-layered sandwich 

beam, International Journal of Solids and Structures 42(8): 2181-2197. 

[23] Banerjee J. R., Cheung C. W., Morishima R., Perera M., Njuguna J., 2007, Free vibration of a three-layered sandwich 

beam using the dynamic stiffness method and experiment, International Journal of Solids and Structures 44: 7543-

7563. 

[24] Jun L., Xiaobin L., Hongxing H., 2009, Free vibration analysis of third-order shear deformable composite beams using 

dynamic stiffness method, Archive of Applied Mechanics 79: 1083-1098. 

[25] Khalili S. M. R., Nemati N., Malekzadeh K., Damanpack A. R., 2010, Free vibration analysis of sandwich beams using 

improved dynamic stiffness method, Composite Structures 92: 387-394. 

[26] Damanpack A. R., Khalili S. M. R., 2012, High-order free vibration analysis of sandwich beams with a flexible core 

using dynamic stiffness method, Composite Structures 94: 1503-1514.  

[27] Wittrick W. H., Williams F. W., 1971, A general algorithm for computing natural frequencies of elastic structures, 

Quarterly Journal of Mechanics and Applied Mathematics 24: 263-284. 

[28] Howson W. P., Williams F. W., 1973, Natural frequencies of frames with axially loaded Timoshenko members, 

Journal of Sound and Vibration 26: 503-515. 

[29] Zare A., 2004, Exact Vibrational Analysis of Prismatic Plate and Sandwich Structures, Ph.D. Thesis, Cardiff 

University. 

[30] Ahmed K. M., 1971, Free vibration of curved sandwich beams by the method of finite elements, Journal of Sound and 

Vibration 18: 61-74. 

[31] Ahmed K. M., 1972, Dynamic analysis of sandwich beams, Journal of Sound and Vibration 10: 263-276. 

[32] Sakiyama T., Matsuda H., Morita C., 1997, Free vibration analysis of sandwich arches with elastic or viscoelastic core 

and various kinds of axis-shape and boundary conditions, Journal of Sound and Vibration 203(3): 505-522. 

[33] Bozhevolnaya E., Sun J. Q., 2004, Free vibration analysis of curved sandwich beams, Journal of Sandwich Structures 

& Materials 6(1): 47-73. 

[34] Petrone F., Garesci F., Lacagnina M., Sinatra R., 1999, Dynamical joints influence of sandwich plates, Proceedings of 

the 3rd European Nonlinear Oscillations Conference, Copenhagen, Denmark. 

[35] Marura S. R., Kant T., 2008, Free vibration of higher-order sandwich and composite arches, Part I: Formulation, 

Journal of Sound and Vibration 310: 91-109. 


