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 ABSTRACT 

 First time, an analytical two-dimensional (2D) elasticity solution for 

arbitrarily supported axially functionally graded (FG) beam is developed. 

Linear gradation of the material property along the axis of the beam is 

considered. Using the strain displacement and constitutive relations, 

governing partial differential equations (PDEs) is obtained by employing 

Ressiner mixed variational principle. Then PDEs are reduced to two set of 

ordinary differential equations (ODEs) by using recently developed extended 

Kantorovich method. The set of 4n ODEs along the z-direction has constant 

coefficients. But, the set of 4n nonhomogeneous ODEs along x-direction has 

variable coefficients which is solved using modified power series method. 

Efficacy and accuracy of the present methodology are verified thoroughly 

with existing literature and 2D finite element solution. Effect of axial 

gradation, boundary conditions and configuration lay-ups are investigated. It 

is found that axial gradation influence vary with boundary conditions. These 

benchmark results can be used for assessing 1D beam theories and further 

present formulation can be extended to develop solutions for 2D micro or 

Nanobeams.                            © 2018 IAU, Arak Branch. All rights reserved. 

 Keywords : Axially functionally graded; Two-Dimensional elasticity; 

Arbitrary supported; Extended Kantorovich method. 

1    INTRODUCTION 

ARIOUS engineering structures such as turbine blades, ship propellers, robot arms, helicopter rotor blades 

and space structures are often modeled as a beam. Functionally graded (FG) beams offer high thermal 

resistance, high toughness, low density and low-stress concentration as compared to composite laminated beams. In 

FG beams, material properties vary gradually along the spatial coordinates (either axial or through the thickness). 

This gradation in material properties may due to some environment effects like corrosion, high temperature, exposed 

to the gaseous environment [1–3], or it may induce intentionally during fabrication to meet design requirements [4]. 

Therefore, design and development of axially graded beams have become topic of research from last decade. There 

are number of analytical, semi-analytical and numerical techniques have been developed to predicts the behavior of 

through-thickness functionally graded beams [5–16] based on elasticity theory or one-dimensional beam theories 

like Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy or higher order shear deformation theories.  

However, there are certain circumstances such as graded temperature field, non-uniform loading where the axially 

graded beam can resist multi-directional sever variation of loading better than through thickness graded beams. For 
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an axially graded beam, exact close form solution is difficult to obtain due to the presence of variable coefficients in 

the governing equations. Therefore, very few research articles are presented in literature. First-time, Elishakoff and 

Candan [17] introduced a closed-form solution of axially grade beam using Euler-Bernoulli beam theory. The 

inverse method of solution was applied to obtain the solution for free vibration case. Huang and Li [18] developed a 

dynamic solution for axially graded non-uniform Euler-Bernoulli beam by employing Fredholm integral equations. 

Giunta et al. [19] presented a linear static analysis of simply supported beams having axially or bi-directional 

material gradation based on refined theories. Sarkar and Ganguli [20] developed closed-form dynamic solution for 

non-uniform axially graded Euler-Bernoulli beam and further extended this approach to analyze axially graded 

Timoshenko beams [21]. Li et al. [22] presented frequency analysis of Euler-Bernoulli beam in which density and 

stiffness vary exponentially along the axis of beam. Tang and Wu [23] presented exact solutions for arbitrary 

supported Timoshenko beam which has exponentially gradation along the longitudinal axis of beam. Nguyen et al. 

[24] presented an analytical solution for functionally graded beams (axially as well as through-thickness) with 

tapered cross-section under static loading by taking power-law variation in elastic modulus of the beam. Recently, 

Kukla and Rychlewska [25] developed a free vibration solution for axially graded beam having non-uniform cross-

section and arbitrary axial inhomogeneity. Very recently, Huang and Rong [26] analyzed the dynamic behavior of 

nonuniform axially graded Euler-Bernoulli beam using power series method. In this work, material property follows 

random gradation along the axial direction of the beam. 

The numerical methods are also employed to develop solutions for axially FG beams. Shahba et al. [27, 28] and 

Shahba and Rajasekaran [29] analyzed dynamic response and stability of Timoshenko and Euler-Bernoulli axially 

graded beams by employing finite element methods and other numerical methods, e.g., differential transforms 

element method (DTEM). Li et al. [30] presented solution for bending and free vibration of axially and transversally 

functionally graded (FG) beam with variable cross-section by employing new finite element technique, in which 

exact displacement interpolation function was used.  Arefi and Rahimi [31] presented an analytical solution of the 

functionally graded beam having variable thickness based on Euler Bernoulli theory. Giunta et al. [32] presented 

three-dimensional static bending analysis of functionally graded beams by employing hierarchical modeling and a 

collocation meshless method.  Recently, Arefi and Zenkour [33] developed solution for free vibration and bending 

of a sandwich microbeam based on first-order shear deformation theory and further extended the approach for the 

analysis of the piezo-magnetic three layers nano-beams based on a combination of nonlocal model and Timoshenko 

model [34].  Further, Zenkour et al. [35] developed solution for sandwich curved nano-beam integrated with piezo-

magnetic face-sheets using non-local theory to investigate the effect of size. Using the non-local theory, Arefi and 

Zenkour [36] presented the bending analysis of sandwich nano-beams having functionally graded core and piezo-

magnetic face sheets.  Using GDQM (Generalized differential quadrature method), Li et al. [37] analyzed the 

bending, buckling and vibration behaviors of size-dependent axially functionally graded beams based on Euler-

Bernoulli beam theory. The material properties follow power-law variation along the axis of the beam. Most of the 

work for the axially graded or homogeneous beam are based on 1D theories. Two-dimensional elasticity solution is 

always needed for predicting accurate behavior and boundary effects of composite laminated or functionally graded 

beams [38]. Further, the closed-form 2D elasticity results help to verify the accuracy and efficacy of 1D analytical, 

approximate and numerical solutions. Recently, Kapuria and coworkers [39, 40] presented analytical solution for 

arbitrary supported plate based on three-dimensional (3D) elasticity by employing the extended Kantorovich 

method. Very recently, Kumari et al. [41] extended this approach to develop a 3D analytical solution for static 

analysis of Levy-type functionally graded plate having in-plane stiffness variation. As per author knowledge, there is 

no closed-form 2D elasticity solution for axially functionally graded beams exist in the literature. Moreover, 2D 

elasticity the analytical solution for the arbitrary supported homogeneous beam is also not available in the literature. 

Hence, the present work will help to fill up the gap in the literature by providing analytical two-dimensional 

elasticity solution for arbitrary supported axially functionally graded beam. Further, two-dimensional elasticity 

solution for the arbitrary supported homogeneous beam is obtained as a special case of present study. 

A benchmark two-dimensional (2D) elasticity analytical solution is presented for axially functionally graded 

beam subjected to the arbitrary boundary condition. The compliance properties of the beam are assumed to vary 

linearly along the axis of the beam. By using the Reissner-type variational principle, governing equations derived for 

the functionally graded beam in the form of in-plane and out-of-plane coordinate variables. Recently developed 

multi-term extended Kantorovich method is used to transform governing equations into sets of coupled algebraic-

ordinary differential equations along in-plane direction and thickness direction. The coefficient of ordinary 

differential equations (ODEs) along the thickness has constant coefficients which are solved exactly. But the ODEs 

along x-axis have variable coefficients due to the variation of material properties along the axis of the beam. 

Therefore, along x-axis, the set of ODEs is solved by employing the modified power series methodology. The 

numerical results are presented for single and multi-layered beam subjected to different boundary conditions. The 
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effects of material property variations are investigated by plotting the results for the various cases along with the 

homogeneous beam. The bending behavior of beam is greatly influenced by small increment in material properties. 

2    ELASTICITY FORMULATION OF BEAM 

2.1 Material property variation of beam 

The compliances of the layer are assumed to vary linearly along the x-direction as: 

 

1 ˆ(1 )m
ij ij ij ijs s s s        for j=1,3 

55 55 2 55 55ˆ(1 )ms s s s      

 

(1) 

        
         

    
where ξ non-dimensional parameter along x (ξ = x/a) and δ1, δ2 are gradation indexes which control the material 

property variation and can have any arbitrary value.  Indexes can take positive or negative value as per application 

or requirement.  

2.2 Basic governing equation for beam 

A multilayered axially graded laminated beam (x = (0, a), z = −h/2, h/2) as shown in Fig.1, is considered for the 

analysis. The governing equations hold for each layer (kth layer) having thickness t
(k)

. Since width is very small 

along y-direction, the displacement u and w along x-axis and z-axis, respectively are considered which are 
independent of y axis. Therefore, stresses σy , τyz , τxy becomes zero. Using non-zero strain-displacements relations, 

the two-dimensional constitutive equations for FGM beam are given as, 
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(2) 

 

Using Eq.(2), Reissner-type mixed variational principle for an axially graded beam without body force is 

expressed as, 
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(3) 

 
Beam is subjected to uniform distributed pressure (σz = -pα) at top and bottom surface and there is no shear stress 

(τzx) at bottom and top surface of beam. For perfect inter-laminar bounding case, displacements (u, w) and transverse 

stresses (σz, τzx) need to satisfy following condition at the kth interface 

 
( ) ( 1)

1 0
( , , ) ( , , )

k k

z zx z zxu w u w
 

   


 
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   

   
 

(4) 

 
where ζ

(k) 
is non-dimensional local thickness parameter for the kth layer (ζ

(k) 
= (z−zk−1)/t

(k)
) which takes value 0 to 1 

for each layer. Along x-axis, FG beam can have any type of support such as: 
(i) Simply supported (σx = w = 0),  

(ii) Clamped (u = w = 0), 
(iii) Free (σx = τxz = 0). 
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Fig.1 

Geometry of the FGM laminated beam. 

3    GENERALIZED MULTI-TERM EKM SOLUTION 

There are five primary field variables (u, w, σx, σz, τzx) which are to be solved. Using the multi-term EKM [39], the 

field variables for the kth layer are expressed as, 

 

  1 1 2 2 3 3 4 4 5 5

1

[ ]

n TT i i i i i i i i i i
x z zx a d

i

u w f g f g f g f g p zp f g  



   
     

 

(5) 

 
where f and g are unknown functions of ξ and ζ, respectively, and pa = −(p1+p2)/2 and pd = −(p2−p1)/h. The  functions 

( )i
lg   is dependent on kth layer, while functions ( )i

lf   are valid for all layers. 

3.1 First step - along thickness direction 

Functions ( )i
lf   along ξ direction are assumed in trigonometric form (cosiπξ or siniπξ) which identically satisfy 

the simply supported boundary conditions. But in multi-term EKM solution, the starting guess functions need not to 

be assumed as per the boundary conditions. The functions ( )i
lg   are to be solved in this step. For this purpose, first 

variation δXl  is obtained as, 
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     

 

 (6) 

 

Substitute Eqs. (5) and (6) into Eq. (3) and integration is performed along x-axis. Since variation is arbitrary, the 
coefficient of δgl

i  
must vanish, yields the following set of governing equation 

 

,
ˆ ˆm m m

pMG A G A G Q        (7) 

 

ˆm m m
pK G A G Q      (8) 

 

where ˆ, ,m m mM A A K  and mA  are 4n × 4n, 4n × 4n, 4n × 1n, 1n × 1n and 1n × 4n matrices. 

1 1 1 1
1 1 2 2 4 4 5 5[ ... ... ... ... ] ,n n n n TG g g g g g g g g 1

3 3
ˆ [ ... ] .n TG g g  Non-zero elements of the matrices are given 

below: 
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(9) 

 

where ip = (p − 1)n + i  and  jq = (q − 1)n + j  for  p,q = 1,2,...,5. ,m m
p pQ Q   are load vectors of size 4n, and 1n, 

respectively, whose non-zero terms are given by 

 

3 2

2

2 33 4

13 3 1 13 3

, ( )

( ) ( )

i i

i

m i m i k
d a dp pa a

m i k i k
a d a dp a a

Q t f p Q t s f p t p

Q s f p t p s f p t p



   

   

    

   

 

(10)  

 

 

where 
1

1
0

... (...) ,
a

a d   and 
k
a a d kp p p z  . The functions 

i
lf  are known so the above elements of matrices 

are obtained in closed form. Substituting algebraic Eqs. (8) into Eq. (7) gives: 

 

, pG AG Q      (11) 

 

with 
11 ˆ[ ]m m m mA M A A K A
   and 

11 ˆ[ ]m m m m
p p pQ M Q A K Q

  . Eq. (11) is a system of simultaneous 

nonhomogeneous first order differential equations of size 4n which is solved using the technique given by Kapuria 

and Kumari [39]. 

3.2 Second step - along direction (x) 

Now ( )i
lg   is known from the first step (Sec. 3.1) and arbitrary variation is considered along the x-direction 

therefore variation for this case is written as: 

 

  1 1 2 2 3 3 4 4 5 5

1

n T
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i

u w T g f g f g f g f g f         
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(12) 

 

Similarly like first step, the functions ( )i
lf   are partitioned into 1 1 1 1

1 1 2 2 3 3 5 5[ ... ... ... ... ]n n n n TF f f f f f f f f  

and 1
4 4

ˆ [ ... ]n TF f f . Further substituting Eq. (12) in Eq. (3), and integrating along z-axis, yields the following set of 

governing equations: 

 

,
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mNF B F B F P         (13) 

 

ˆ ( )f f
mLF B F P     (14) 



A. Singh and P. Kumari                        724 

 

© 2018 IAU, Arak Branch 

where ˆ, , ,f fN B B L  and fB  are 4n × 4n, 4n × 4n, 4n × 1n, 1n × 1n and 1n × 4n matrices respectively, and f
mP  

and f
mP  are 4n × 1 and 1n × 1 load column vectors. The nonzero terms of these matrices are given as: 
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where
1

( ) ( )

1 0
... (...) ,

L k k
h k

t d


  . Since functions ( )i
lg   are known in close form from previous step, so 

the above elements of matrices are obtained in closed form. Substituting algebraic Eqs. (14) into Eq. (13) gives: 

 

, ( ) ( )F B F P       (16) 

 

where 1 1 1 1ˆ ˆ[ ]; [ ]f f f f f f
m mB N B B L B P N P B L P       . 

3.3 Solution technique 

Eq. (16) is a system of simultaneous nonhomogeneous first order differential equations (4n) with variable 

coefficients which is solved using modified power series technique given by Kumari et al. [41]. Thus, general 

solution is approximated as: 

 

0

0 0
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p pN N
j jj i i

i i

i i

F Z H C  

 
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 

     

 

 

(17) 

 

where constants iZ , iH   obtained from recursive relations and unknown constant C0  is calculated by applying x-

direction boundary conditions. Np  is the number of terms in power series which is chosen large enough so that the 
contribution of further terms is negligible and less than a stipulated small number η (= 10

−10
). For detailed solution 

procedure one can refer article Ref. [41]. Now F  is known function which is substituted into Eq. (14) to solve the 

function F̂ . Now the second step is completed and further, these two steps of thickness and in-plane directions are 

repeated to achieve the required level of accuracy. 

4    NUMERICAL RESULTS AND DISCUSSIONS 

Numerical results are presented and discussed for a single layer and muti-layered beams (a = 1, S = 5). Beams are 

subjected to a uniformly distributed pressure load p2 = p0 at the top surface. The material properties of beam are 
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taken as: [(Y1, Y2, Y3, G23, G13, G12), ν12, ν13, ν23] = [(181.0, 10.3, 10.3, 2.87, 7.17, 7.17) GPa, 0.28, 0.28, 0.33]. The 

present results are non-dimensionalized with S = a/h, Y0 = 10.3 GPa and p0 = 1 as: 
3

0 0( , ) 100( , / ) /u w u w S Y p hS ; 

2
0( , ) ( , ) /x zx x zxS p S    . The beams are designated according to their support conditions at the edges ξ = 

0,1. For example, the beam which is clamped (C) at ξ = 0 and free (F) at ξ = 1, is called an C-F beam. For axially 

graded beam, there are no analytical results available in the literature. Therefore, accuracy and efficiency of the 

present EKM method are verified thoroughly by comparing with 2D FE. Since it is a beam with a small width, plane 

stress element of ABAQUS [43] is used. Therefore, the 2D plane beam, with length a along x-direction and 

thickness h along z-direction is modeled in ABAQUS using the element type CPS8R with a mesh size of 50 (length) 

×16 (thickness). For FG beams, the spatially graded property distribution (at different Gauss points) is implemented 

by employing user material subroutine (UMAT) [41]. Converged results of EKM are presented for all the cases. 

4.1 Validation 

A simply-supported composite beam consisting of four-ply of equal thickness 0.25h is considered for the validation. 

The accuracy of the present method has been investigated by comparing the result for beams with symmetric lay-up 

[0
o
/90

o
/90

o
/0

o
] and unsymmetrical lay-up [0

o
/90

o
/0

o
/90

o
] as listed in Table 1. The present results are in excellent 

agreement with the results are given in Ref. [42] for the simply-supported thick beam (S = 5), moderate beam (S = 

10) and thin beam (S = 20). It is observed that for various span-to-thickness ratios S, the one-term solution (n = 1, 

iter = 1) gives an accurate prediction for simply supported support condition. 

 
Table 1 

Comparison of present EKM results with exact 2D elasticity results for homogeneous beam. 

  Lay-up [0o/90o/90o/0o]  Lay-up  [90o/0o/90o/0o]  

Entity S 2D Exact [42] ZIGT [42] Present 2D Exact [42] ZIGT [42] Present 

 5 -2.6748 -2.6828 -2.6657 -3.7943 -3.7374 -3.7859 

w  (0.5a,0) 10 -1.4343 -1.4357 -1.4339 -2.4461 -2.4265 -2.4456 

 20 -1.1152 -1.1152 -1.1152 -2.0958 -2.0895 -2.0959 

 5 1.0711 1.0732 1.0995 0.15824 0.14273 0.16365 

x  (0.5a, −0.5h) 10 0.90587 0.90587 0.91728 0.12679 0.12273 0.12895 

 20 0.86414 0.86414 0.86731 0.11878 0.11783 0.11939 

 5 -1.0602 -1.0729 -1.1037 -1.4862 -1.5011 -1.5239 

x   (0.5a, 0.5h) 10 -0.9031 -0.90581 -0.91482 -1.3442 -1.3469 -1.3546 

 20 -0.8635 -0.86436 -0.86646 -1.3081 -1.3094 -1.3108 

4.2 Effect of various parameter on single layered beam (a) 

Single-layer thick beam (a) (as shown in Fig. 2) is considered for study in this section.  

 

 

 

 

Fig.2 

Configuration of FGM beams. 

 

Longitudinal variation of deflections ( ,u w  ) and stresses ( ,x zx  ) for the beam (a) are plotted in Figs. 3, 4 for 

various boundary conditions. Results are plotted for three different variation cases {Case(i)a: δ1 = δ2 = 0.5, Case(ii)a: 

δ1 = δ2 = 1.0, and Case(iii)a: δ1 = 2.0, δ2 = 1.0} along with homogeneous case to investigate the effect of axially 

varying material properties on bending behavior of the beam. 2D FE results for case (iia) are also plotted in these 
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figures. It is observed that present EKM results are in excellent agreement with 2D FE results except for stresses at 

very clamped edges. This mismatch near the clamped edge is because the FE solution does not satisfy the conditions 

of applied normal and transverse stresses ( z  and
zx  ) [39] and it can be verified from Fig. 5. It is observed that 

for simply-supported boundary condition, the single term (n=1, iter.1) gives an accurate prediction for all the entities 

whereas two-term solution (n=2, iter.2) is required for the other type of boundary conditions. It is evident that for all 

the boundary conditions (S-S, C-S, C-F, C-C), deflections ( ,u w ) are effected significantly with increase in 

variation indices whereas stresses ( ,x zx  ) have almost no effect. 

As variation indices increases, the point of maximum deflection (w ) for S-S, C-S, and C-C boundary conditions 

is shifted gradually toward ξ = 1.0. For S-S and C-F support conditions, percentage (%) increment in w  is nearly 

equal for all the cases. But percentage increment in w   for Case (iiia) is very less as compared to Case (ia) and Case 

(iia) for C-S and C-C support conditions. 

For all the support conditions, axial displacement (u ) is influenced profoundly by an increase in variation index. 

It is observed that effect of varying material property on u  is more pronounced near to simply-supported and free 

edges than the center of the beam. For S-S, C-S and C-C conditions, the effect of gradation on are minimum (around 
ξ = 0.6) with respect to the constant case. All the lines cut the homogeneous case line at one point near to ξ = 0.6. 

For all the boundary conditions, the axial displacement (u ) increases abruptly for Case (iiia) as compared to Case 

(ia) and Case (iia). The in-plane displacement (u ) becomes asymmetrical as the variation index increases for S-S 

and C-C boundary conditions. Asymmetry in the longitudinal variation is maximum for Case (iiia) for both C-C and 

S-S conditions, and similar trends are observed for C-S case also. Fig. 5 shows the longitudinal variation of normal 

stress z  for case (ia) along with homogeneous beam (a) for different boundary conditions. For C-C and C-S 

conditions, a longitudinal variation of z   becomes asymmetric for the axially graded beam while symmetric 

homogeneous beam (which is obvious). Figs. 3, 4 and 5 revealed that influence of axially graded material properties 

on the behavior of the beam depends significantly on boundary conditions of the beam. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Effect of variation in properties on longitudinal variations of 

deflection and stresses for the beam (a) (S = 5) subjected to S-S 

and C-S boundary conditions. 



727                                Two-Dimensional Elasticity Solution for Arbitrarily …. 
 

 

© 2018 IAU, Arak Branch 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Effect of variation in properties on longitudinal variations of 

deflection and stresses for beam (a) (S = 5) subjected to C-F 

and C-C boundary conditions. 

  

 
 

 

 

 

 

 

Fig.5 

Longitudinal variations of stress σz  for homogeneous and FGM 

beam (b) (S = 5). 

 
Through-thickness variations at different ξ location are depicted in Fig. 6 for Case (iia) under C-S support 

conditions. 2D FE results for all ξ location are also plotted in the Fig. 6. It is observed that the distribution of in-

plane displacement u  and normal stress x   match well with the 2D FE solution near to clamped support, but 2D 

FE does not predict the stresses ( z  and zx  ) accurately near the clamped edge. In the vicinity of the clamped 

edge, 2D FE does not satisfy the boundary conditions for z  and zx  at the top and bottom surfaces of beams 

whereas present EKM solution satisfies these conditions exactly. As we move away from the clamped edge, 2D FE 

matches excellently with the present solution. It is observed that in-plane displacement (u ) and stress x  vary 

nonlinearly across the thickness near the supports. In-plane displacement (u ) is assumed as a linear function of z 

along the thickness of one-dimensional theory based on Euler-Bernoulli and Timoshenko beam theory. Therefore, 

these theories cannot predict the behavior accurately near the edges. Through-thickness variation of zx   is 

parabolic and its magnitude decreases as we move from clamped edge to center of the beam. Similarly, through-
thickness variations at different ξ location are presented in Fig. 7 for homogeneous beam under C-S support 

conditions. Similar trends are observed for the homogeneous case also. These benchmark results can be used to 

verify the accuracy of the 1D solution for homogeneous as well as axially FG beams. 
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Fig.6 

Comparison of stresses distributions at different ξ-locations 

with 2D FE solution for beam (a) (Case (ii) a, S=5) under C-S 

boundary condition. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Comparison of stresses distributions at different ξ-locations for 

homogeneous beam (a) (S = 5) under C-S boundary condition. 

4.3 Effect of various parameter on two layered beam (b) 

A two-layered beam (b) with the unsymmetrical lay-up schemes of [0
o
/90

o
], as shown in Fig. 2, is considered for 

analysis in this section. Figs. 8, 9 and 10 depict the effect of variation index on the longitudinal variation of 

deflections ( ,u w ) and stresses ( ,x zx  ) of the beam (b) for C-S, C-F, and C-C support conditions, respectively. 

Beam (b) is a two-layered beam in which effect of longitudinal varying material property is investigated by taking 
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different and same variation indices (δ1, δ2) for the top and bottom layer. Results are plotted for following variation 

cases: Case (ib):- Bottom layer δ1=δ2=1.0, Top layer δ1=δ2=0.0; Case (iib):- Bottom layer δ1=δ2=1.0, Top layer 

δ1=δ2=1.0; Case (iiib):- Bottom layer δ1=δ2=2.0, Top layer δ1=δ2=1.0 

The results for the homogeneous beam (no variation in material properties) are also plotted in Figs. 8, 9 and 10. 

It is observed that deflections ( ,u w ) are affected significantly by all type of boundary condition even if the axial 

variation of material property is considered in one layer. Whereas stresses x   and zx   have no significant effect. 

2D FE results for case (iib) are also presented in Figs. 8, 9 and 10. The present results are in excellent agreement 

with 2D FE except for stress at very clamped edges. Fig. 11 shows the through-thickness distribution of u  and 

stresses ( ,x z   and zx ) for case (iib) under C-F boundary conditions. It is observed that stresses z  and zx  are 

highly non-linear near the clamped support and 2 D FE fails to predict it because finite element solution does not 

satisfy the boundary conditions and interface continuity conditions at the very clamped edge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Effect of variation in properties on longitudinal variations of 

deflection and stresses for beam (b) subjected to C-S boundary 

condition. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Effect of variation in properties on longitudinal variations of 

deflection and stresses for beam (b) subjected to C-F boundary 

condition. 
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Fig.10 

Effect of variation in properties on longitudinal variations of 

deflection and stresses for beam (b) (S=5) under C-C boundary 

condition. 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11 

Comparison of stresses distributions at different ξ-locations 

with 2D FE solution for FGM beam (b) (Case (ii) b, S=5) under 

C-F boundary condition. 

4.4 Effect of various parameter on four-layer beam (c) 

A four-layered beam (c) with the symmetrical lay-up schemes of [0
o
/90

o
/90

o
/0

o
], as shown in Fig. 2, is analyzed in 

this section. Results are presented for two cases of property variation, Case (ic) δ1=δ2=1.0 for all layer; Case (iic) 

δ1=δ2=2.0 for all layer. Longitudinal variation of deflections ( ,u w ) and stresses ( ,x zx  ) have been plotted in 

Figs. 12, 13 and 14 for clamped-simply supported (C-S), clamped-free supported (C-F) and clamped-clamped (C-C) 

boundary conditions, respectively. Here, results for the layerwise homogeneous beam (c) are also plotted to show 

the effect of axially graded material properties on deflections and stresses. 2D FE results for Case (iic) are also 

plotted which are in good agreement with present results except for stresses at very clamped support. It is revealed 

that the effect of axial gradation of the property is more significant for deflections ( ,u w ) as compared to stresses 

( ,x zx  ) for all three boundary condition (C-S, C-F, C-C). The longitudinal variation of deflections ( ,u w ) 

become more asymmetric as the variation indexes increase particularly for C-C boundary condition. 
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Fig.12 

Effect of variation in properties on longitudinal variations of 

deflection and stresses for beam (c) (S=5) under C-S boundary 

condition. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.13 

Effect of variation in properties on longitudinal variations of 

deflection and stresses for beam (c) (S=5) under C-F boundary 

condition. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.14 

Effect of variation in properties on longitudinal variations of 

deflection and stresses for beam (c) (S=5) under C-C boundary 

condition. 

5    CONCLUSIONS 

In this paper, two-dimensional elasticity analytical solution is presented for axially functionally graded beam 

subjected to the arbitrary boundary condition. Further, 2D elasticity solution for the arbitrary supported 

homogeneous beam is obtained as a special case of present development. New benchmark results are presented for 

the axially functionally graded beam as well as a homogeneous beam subjected to arbitrary support conditions. The 
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influence of material properties variation on the bending response of axially FG beam, as compared to the 

homogeneous beam, is investigated comprehensively by considering various cases. 

Based on the present numerical results, following conclusions are drawn: 

• The effects of axial gradation depend significantly on the type of support conditions. 

• For S-S and C-C boundary conditions, the longitudinal variation of in-plane displacement (u ) becomes 

asymmetrical as the variation indices increases. 

• For both axially graded and homogeneous beams, in-plane displacement (u ) and normal stress ( x )  vary 

nonlinearly through the thickness near the edges. Therefore, 1D theories such as Euler-Bernoulli and 

Timoshenko beam theory cannot predict bending behavior accurately. That is why two-dimensional 

elasticity solutions are required to predict the bending behavior of beams accurately near to edges. 

• The axial gradation of material property even in one layer significantly affects the deflections ( ,u w ) for all 

boundary condition. 

• Normal stress ( z ) and transverse shear stress ( zx ) are highly non-linear near to clamped support for 

axially graded as well as homogeneous beams.  2D FE fails to predict it because finite element solution 

does not satisfy the boundary conditions and interface continuity conditions at the very clamped edge. 

This development has shown that, by controlling the axial variation of material properties, the desired response 

of beam can be achieved for specific applications. The current research will also be beneficial to modeled real-life 

beam structures in which material properties of beam deteriorate due to some environmental effect. The present 

results may be used for assessing the validity and accuracy of different beam theories and computational models for 

analysis of axially graded beams. The present formulation can be modified for another type of material property 

variations.  
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