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 ABSTRACT 

 In this paper, an analytical solution for computing the linear plastic stresses and 

critical pressure in a FGM hollow cylinder under the internal pressure due to non-

Axisymmetric Loads is developed. It has been assumed that the modulus of elasticity 

was varying through thickness of the FGM material according to a power law 

relationship. The Poisson's ratio was considered constant throughout the thickness. 

The general form of mechanical boundary conditions is considered on the inside 

surfaces. In the analysis presented here the effect of non-homogeneity in FGM 

cylinder was implemented by choosing a dimensionless parameter, named m, which 

could be assigned an arbitrary value affecting the stresses in the cylinder. Distribution 

of stresses in radial, circumferential and shear directions for FGM cylinders under the 

influence of internal pressure were obtained. Graphs of variations of stress versus 

radius of the cylinder were plotted. The direct method is used to solve the Navier 

equations.                                               © 2016 IAU, Arak Branch.All rights reserved. 

 Keywords : Hollow cylinder; Non-Homogenous; Non- Axisymmetri; FGM; Elastic-

plastic analysis. 

1    INTRODUCTION 

 UNCTIONALLY graded material (FGM) is heterogeneous material in which the elastic and thermal 

properties change from one surface to the other, gradually and continuously. Since ceramic has good resistance 

to heat, corrosion, and erosion and metal has high fracture toughness, ceramic-metal FGM may work at super high-

temperatures or under high temperature differences and also corrosive fields. In effect, the governing equations of 

temperature and stress distributions are coordinate dependent as the material properties are functions of position.  

There are a number of analytical thermal and mechanical stress calculations for functionally graded material in 

the one-dimensional case for thick cylinders and spheres [1, 2]. The authors have considered non-homogeneous 

material properties as linear function of radius. Jabbari et al. [3] presented a general solution for mechanical and 

thermal stresses in a functionally graded hollow cylinder due to non-axisymmetric steady-state load. They applied 

separation of variables and complex Fourier series to solve the heat conduction and Navier equations. Poultangari et 

al. [4] presented a solution for the functionally graded hollow spheres under non-axisymmetric thermo-mechanical 

loads. Lu yunbing et al. [5] analyzed the steady state temperature distribution and the associated thermal stress 

distribution of a 3-layer composite cylinder system with material ingredient changing continuously in the middle 

FGM layer and a set of formulas for the temperature and the thermal stresses are obtained. Shariyat et al. [6] 

presented the nonlinear transient thermal stress and elastic wave propagation of thick temperature-dependent FGM 

cylinders, using a second-order point-collocation method. In another work [7], he found an algorithm for nonlinear 
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transient behavior analysis of thick functionally graded cylindrical vessels or pipes with temperature-dependent 

material properties under thermo-mechanical load.  Chen and Lim [8] presented elastic mechanical behavior of 

nano-scaled FGM films incorporating surface energies. Afsar and Sekine [9] presented inverse problems of material 

distributions for prescribed apparent fracture toughness in FGM coatings around a circular hole in infinite elastic 

media. Tajeddini et al. [10] discussed the three-dimensional free vibration of thick circular and annular isotropic and 

functionally graded (FG) plates with variable thickness along the radial direction. Nosier and Fallah [11], based on 

the first-order shear deformation plate theory with the von Karman non-linearity, presented the non-linear 

axisymmetric and asymmetric behavior of functionally graded circular plates under transverse mechanical loading. 

Zhang and Zhou [12] conducted a theoretical analysis of FGM thin plates based on the physical neutral surface. 

Fazelzadeh and Hosseini [13] discussed the aero-thermoelastic behavior of supersonic rotating thin-walled beams 

made of functionally graded materials. Ootao and Tanigawa [14] analyzed the transient thermo elastic problem of 

functionally graded thick strip due to non-uniform heat supply. They obtained the exact solution for the two-

dimensional temperature change in a transient state, and thermal stresses of a simply supported strip under the state 

of plane strain condition. Jabbari et al. [15] studied the mechanical and thermal stresses in functionally graded 

hollow cylinder due to radial symmetric loads. They assumed the temperature distribution to be a function of radial 

direction. They applied a direct method to solve the heat conduction and Navier equations. Farid et al. [16] presented 

three-dimensional temperature dependent free vibration analysis of functionally graded material curved panels 

resting on two-parameter elastic foundation using a hybrid semi-analytic differential quadrature method. Bagri and 

Eslami [17] analyzed the generalized coupled thermoelasticity of functionally graded annular disk considering the 

Lord–Shulman theory. Jabbari et al [18] studied an axisymmetric mechanical and thermal stresses in a thick short 

length functionally graded material cylinder.  They applied separation of variables and complex Fourier series to 

solve the heat conduction and Navier equation. Zamani-nejad and Rahimi  [19], using the infinitesimal theory of 

elasticity, derived closed-form solutions for the one-dimensional steady-state thermal stresses in a rotating 

functionally graded (FGM) pressurized thick-walled hollow circular cylinder under generalized plane strain and 

plane stress assumptions, respectively. Batra and Iaccarino [20] found closed-form solutions for axisymmetric plane 

strain deformations of a functionally graded circular cylinder comprised of an isotropic and incompressible second-

order elastic material with elastic module varying only in the radial direction. Cylinder’s inner and outer surfaces are 

loaded by hydrostatic pressures. Three-dimensional thermo-elastic analysis of a functionally graded cylindrical 

panel with finite length and subjected to non-uniform mechanical and steady-state thermal loads are carried out by 

Shao and Wang [21].  

There are limited papers on the subject of plasticity of FGM structures. Shabana and Noda [22] presented 

thermo-elasto-plastic stresses in functionally graded materials subjected to thermal loading taking residual stresses 

of the fabrication process into consideration. Eraslan and Akis [23] presented plane strain analytical solutions for a 

functionally graded elastic–plastic pressurized tube. Eraslan and Arslan [24] discussed the plasticity of plane strain 

rotating graded hollow shafts. The elasto-plastic response of a long functionally graded tube subjected to internal 

pressure is given by Eraslan and Akis [25]. Alla et al. [26] analyzed the elastic–plastic problem of 2D-FGM plates 

made of ZrO2, 6061-T6 and Ti-6Al-4V under transient thermal loading. Lu [27] presented a stress analysis for the 

functionally graded disc under mechanical loads and a steady state temperature distribution. Jahromi [28] obtained 

the elasto-plastic stresses in a functionally graded rotating disk. Sadeghian and Toussi [29] presented the elasto-

plastic axisymmetric thermal stress analysis of functionally graded cylindrical vessel.  

Classical method of analysis is to combine the equilibrium equations with the stress-strain and strain- 

equilibrium equations relations to arrive at the governing equation in terms of the displacement components called 

the Navier equation. Navier equations are solved in elastic and plastic hollow FGM, analytically. The analysis is 

presented for two types of applicable boundary conditions.  In this work, an analytical method is presented for linear 

plastic mechanical stress analysis for a hollow cylinder made of functionally graded materials. Mechanical boundary 

conditions are considered in general forms. It has been assumed that the modulus of elasticity was varying through 

thickness of the FGM material according to a power law relationship. The Poisson's ratio was considered constant 

throughout the thickness. The Navier equation is solved analytically by the direct method. 

2    EQUATIONS 

The linear plastic stress–strain relations for plane-strain conditions are 
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where (, )r  denotes differentiation with respect to r and ( p ) means plastic strain described at linear plastic strain 

part. Where 
ij and ( , , )ij i j r   are the stress and strain tensors,  and   are Lame´ coefficients related to the 

modulus of elasticity E and Poisson’s ratio v as: 
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The equilibrium equation in the radial direction, disregarding the body force and the inertia term, is 
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To yield the equation of stresses in terms of plastic strain for the FGM cylinder, the functional relationship of the 

material properties must be known. Since the cylinder’s material is assumed to be graded along the r direction, the 

modulus of elasticity, the coefficient of thermal expansion and yield strength are assumed to be described with a 

power law as: 
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where 0E and 0   are the material constants and  1 2 3, ,m m m  and 4m  are the power law indices of the material and 

0r is yielding point. We may further assume that Poisson’s ratio is constant. 

2.1 Linear plastic strain 

The elastic stresses are [3] 
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Based on the graph of ( , )p

rr S  the gradient ( * )M E of graph yields, so the equation of linear plastic strain for 

mechanical stresses based on this graph obtains as [30] 
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From Eq. (8), S and 
rs    yield as: 
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By substituting Eq. (9) into Eq. (8) the p

rr  yields  
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By substituting Eq. (9) into Eq. (1) the p
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2.2 Linear plastic stresses 

With using relations (1) to (4), the Navier equations in term of the displacements are 
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To solve the Navier equations, the displacement components U(r,) and V(r,) are expanded in the complex 

Fourier series as: 
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where ( )nu r and ( )nv r are the coefficients of complex Fourier series of (r, )u  and (r, )v   respectively, and are 
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The Fourier series for 1 is  
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By substituting Eq. (14), Eq. (15) and Eq. (16) into Eq. (13) the ''Un
 and ''

nV  yield as: 
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Eqs. (17) and (18) are a system of ordinary differential equations having general and particular solutions. The 

general solutions are assumed as: 
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A nontrivial solution of Eq. (20) yields as: 
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Eq. (21) has four roots 1n  
to 4n . So, the general solutions are 
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where 
njN  is the relation between constants 

njB and 
njC  yielded from the first of Eq. (21) as: 
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For isotropic materials (
1 0m  ) and for 1n  , Eq. (23) has repeated roots so hence a solution of the form of 

Lnr  must be considered for 
1

gu  and
1

gv .  

The particular solutions ( )p

nu r  and ( )p

nv r are assumed as: 

 
2 2

1 2 3 4

p p

n n n n n nu I r I r v I r I r        (24) 

 

By substituting Eq. (24) into Eq. (17) and Eq. (18) the 
njI yields as: 

 

15 5 , 13 , 16 6 10 14

1 2

15 11 13 17 12 16 14 18

11 , 17 5 , 6 18 10 12

3 4

17 13 11 15 14 18 12 16

p p p p
rr r r r rr r

n n

p p p p
r r rr r rr r

n n

g g g g g g g
I I

g g g g g g g g

g g g g g g g
I I

g g g g g g g g

 

 

   

   

 
 

 

 
 

 

 

 

    

(25) 

 

The coefficients of 1g
 
to 18g

 
 formula presented at Appendix part (A). 

The complete solutions for ( )nu r  and ( )nv r  are the sum of the general and particular solutions as: 

 
4 4

2 2

1 2 3 4

1 1

( ) ( )nj nj

n nj n n n nj nj n n

j j

u r B r I r I r v r N B r I r I r
 

 

        
    

(26) 

 

For n 0  the coefficient 
njN  in Eq. (23) is undefined because the system of Eq. (17) and (18) for n 0 is two 

decoupled ordinary differential equations as: 

 

'' '

0 0 0 5 0, 6 02

''

1

'

0 0 1 0 0, 11 02

1

0

m
(m 1)

(

1 1 1
U     ( 1)

1

1 1 1
    (m m )1 1)

p p

rr r rr

p p

r r r

U U g g
r rr

V V V g
r rr

 

 


 


 

 

   


    

 

 

    

(27) 

 

The solutions of Eq. (27) are 

 

0 0

2 4
2 2

0 0 01 02 0 0 03

1 3

( ) ( )j j

j j

j j

u r B r I r I r v r B r I r
 

 

       
  

(28) 

 
2

.51 1 1
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01 02 03

1

01,2 3 4 1
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) ( 1) ( m

2

)
1

4

1

1
p pp
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m m vm
m

g g
I I I

vm vm
m

v

v

v

 

  


   


   



     



  
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(29) 
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By substituting Eq. (28) and (26) into Eq. (14) the (r, )u   and (r, )v   yield as: 

 

0

0

2 4
2 2

0 01 02 1 2

1 ,n 0 1

4 4
2 2

0 03 3 4

3 ,n 0 1

( , ) ( )

( , ) ( )

j nj

j nj

in

j nj n n

j n j

in

j nj nj n n

j n j

u r B r I r I r B r I r I r e

v r B r I r N B r I r I r e

  

  







   



   

 
      

 

 
     

 

  

  

 

 

  

(30) 

 

Substituting Eq. (30) into Eq. (1), the linear plastic stresses yield as: 

 

0 1 1 1 1 1

1 1 1 1

1 1
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(31) 
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(32) 
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
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   

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     

  
  
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(33) 

 

To determine the constants ,
nj

B  the general from of boundary conditions for displacements and stresses consider 

as: 

 

1 2 3 4

5 6 7 8

( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) (  )rr rr r r

u a g u b g v a g v b g

a g b g a g b g 

       

           

   

   
 

 

(34) 

 

It is recalled that Eq. (30) through Eq. (33) contain four unknowns 1 2 3Bn ,Bn ,Bn  and 4Bn . Therefore, four 

boundary conditions are required to evaluate the four unknowns. These boundary conditions may be selected from 

the list of conditions given in Eq. (34). Assume that the four boundary conditions are specified from the list of Eq. 

(34). The boundary conditions may be either the given displacements or stresses, or combinations. Expanding the 

given boundary conditions in complex Fourier series gives 
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

 

 

 

(35) 
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Substituting the four boundary conditions (34) with the exploit of Eq. (35) in Eq. (31), Eq. (32), and Eq. (33) the 

constants of integration Bn j
are calculated. 

3    RESULTS AND DISCUSSION 

Consider a thick hollow cylinder of inner radius 1a m  and outer radius 1.2 .b m  The Poisson’s ratio is assumed 

0.3 and the modulus of elasticity of the inner radius is 200iE Gpa , respectively. For simplicity of analysis we 

consider the power law of material properties be the same as 
1 2 3 4m m m m m    and 50 .P Mpa  

As the first example, consider a thick hollow cylinder where the inside boundary is traction-free with given 

pressure distribution ( , ) p cos2 , ( , ) 0 , ( , ) 0rr i r ra a b            and ( , ) 0.u a   As the second example, 

a thick-walled cylinder may be assumed with 0( , ) 0 , ( , ) , ( , ) 0rr ra a u a          and ( , ) 0.v a   The 

reason to select such boundary conditions is to examine the mathematical strength of the proposed method. These 

types of boundary conditions may not be handled with the potential function method. Fig. 1 shows the radial perfect 

plastic stress by substituting 0M  in radial linear plastic stress formula in the cross section of a cylinder (example 

1). The absolute maximum radial perfect plastic stresses occurs at the inner edge because of the type of boundary 

conditions. By substituting 0M   in linear plastic stresses formula the perfect plastic stresses yields. Fig. 2 

demonstrates the circumferential perfect plastic stress by substituting 0M   in circumferential linear plastic stress 

formula in the cross section of a cylinder in the section of a cylinder (example 1). The normalized tangential stress 

components at the inner edge are found to be higher than those at the outer edge. Fig. 3 indicates the shear perfect 

plastic stress by substituting 0M   in shear linear plastic stress formula in the cross section of a cylinder in the 

section of a cylinder (example 1). The shear perfect plastic stress components at the inner edge are found to be 

higher than those at the outer edge. Fig. 4 shows the radial distribution of radial perfect plastic stress by substituting 

0M   in radial linear plastic stress formula at 
3


  (example 1). Effect of power-law index on the radial perfect 

plastic stress is shown in this figure. By increasing grading parameter m , the normalized radial plastic stresses at the 

outer section decrease in a cylinder. Fig. 5 shows the radial distribution of circumferential perfect plastic stress by 

substituting 0M   in circumferential linear plastic stress formula  at 
3


    (example 1). Effect of power-law 

index on the circumferential plastic stress is shown in this figure. By increasing grading parameter m, the normalized 

circumferential plastic stresses at the outer section decrease in a cylinder. Fig. 6 indicates the radial distribution of 

shear perfect plastic stress by substituting 0M   in shear linear plastic stress formula at 
3


   (example1). Effect 

of power-law index on the shear perfect plastic stress is shown in this figure. By increasing grading parameter m, the 

normalized shear plastic stresses at the outer section decrease in a cylinder. Fig. 7 shows the radial perfect plastic 

stress by substituting 0M   in radial linear plastic stress formula in the cross section of a cylinder (example 2). The 

absolute maximum radial perfect plastic stresses occur at the inner edge because of the type of boundary conditions. 

Fig. 8 shows the circumferential perfect plastic stress by substituting 0M   in circumferential linear plastic stress 

formula in the section of a cylinder (example 2). The absolute maximum circumferential plastic stresses occur at the 

inner edge because of the type of boundary conditions. Fig. 9 shows the shear perfect plastic stress in the section of a 

cylinder (example 2). The absolute maximum shear plastic stresses occur at the inner edge because of the type of 

boundary conditions. Fig. 10 demonstrates the radial distribution of radial perfect plastic stress by substituting 

0M   in radial linear plastic stress formula at 
3


   (example 2). Effect of power-law index on the radial plastic 

stress is shown in this figure. By increasing grading parameter m, the normalized radial plastic stresses at the outer 

section decrease in a cylinder. Fig. 11 shows the radial distribution of circumferential perfect plastic stress by 

substituting 0M   in circumferential linear plastic stress formula  at 
3


  (example 2). Effect of power-law index 

on the circumferential plastic stress is shown in this figure. By increasing grading parameter m, the normalized 

circumferential plastic stresses at the outer section decrease in a cylinder. Fig. 12 shows the radial distribution of 
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shear perfect plastic stress at 
3


   (example 2). Effect of power-law index on the shear perfect plastic stress is 

shown in this figure. By increasing grading parameter m, the shear perfect plastic stresses at the outer section 

decrease in a cylinder. Fig. 13 shows the radial linear plastic stress in the cross section of a cylinder  for 

0.1M  (example 1). Fig. 14 shows the circumferential linear plastic stress in the cross section of a cylinder  for 

0.1M  (example 1). Fig. 15 shows the shear linear plastic stress in the cross section of a cylinder  for 0.1M   

(example 1). Fig. 16 indicates the radial elastic stress in the cross section of a cylinder for 
, , 0p p p

rr rr r rr rr      

(example 1). By substituting 
, , 0p p p

rr rr r rr rr      in linear plastic stresses formula the elastic stresses obtain. Fig. 

17 indicates the circumferential elastic stress in the cross section of a cylinder for 
, , 0p p p

rr rr r rr rr      (example 1). 

By substituting 
, , 0p p p

rr rr r rr rr      in linear plastic stresses formula the elastic stresses obtain. Fig. 18 shows the 

shear elastic stress in the cross section of a cylinder for 
, , 0p p p

rr rr r rr rr      (example 1). By substituting 

, , 0p p p

rr rr r rr rr      in linear plastic stresses formula the elastic stresses obtain.  

 

 

 

 

 

 

 

 

Fig.1 

Radial perfect plastic stress in the cross section of a cylinder for 

0M  (example 1). 

 

  

 

 

 

 

 

 

 

 

Fig.2 

Circumferential perfect plastic stress in the cross section of a 

cylinder for 0M   (example 1).  

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Shear perfect plastic stress in the cross section of a cylinder for 

0M   (example 1). 
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Fig.4 

Radial distribution of radial perfect plastic stress  for 0M  at 

3


  (example 1). 

 

 

 

 

 

 

 

 

 

Fig.5 

Radial distribution of circumferential perfect plastic stress  for 

0M  at 
3


   (example 1). 

  

 

 

 

 

 

 

 

Fig.6 

Radial distribution of shear perfect plastic stress for 0M  at 

3


   (example1). 

  

 

 

 

 

 

 

 

 

 

Fig.7 

Radial perfect plastic stress in the cross section of a cylinder for 

0M   (example 2). 

 

  

 

 

 

 

 

 

 

 

Fig.8 

Circumferential perfect plastic stress in the cross section of a 

cylinder for 0M   (example 2). 
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Fig.9 

Shear perfect plastic stress in the cross section of a cylinder for 

0M   (example 2). 

 

 

 

 

 

 

 

Fig.10 

Radial distribution of radial perfect plastic stress for 0M  at 

3


   (example 2). 

  

 

 

 

 

 

 

 

Fig.11 

Radial distribution of circumferential perfect plastic stress for 

0M  at 
3


   (example 2). 

  

 

 

 

 

 

 

 

Fig.12 

Radial distribution of shear perfect plastic stress for 0M  at 

3


   (example 2). 

  

 

 

 

 

 

 

 

Fig.13 

Radial linear plastic stress in the cross section of a cylinder  for 

0.1M  (example 1). 
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Fig.14 

Circumferential linear plastic stress in the cross section of a 

cylinder for 0.1M   (example 1). 

  

 

 

 

 

 

 

 

 

Fig.15 

Shear linear plastic stress in the cross section of a cylinder  for 

0.1M   (example 1). 

 

 

 

 

 

 

 

 

 

 

Fig.16 

Radial elastic stress in the cross section of a cylinder for 

, , 0p p p

rr rr r rr rr      (example 1). 

 

 

 

 
 

 

 

 

 

 

 

 

Fig.17 

Circumferential elastic stress in the cross section of a cylinder  

for 
, , 0p p p

rr rr r rr rr      (example 1). 

 

  



                          Mechanical Stresses in a Linear Plastic FGM Hollow Cylinder….                       717 

© 2016 IAU, Arak Branch 

 

 

 

 

 

 

 

 

Fig.18 

Shear elastic stress in the cross section of a cylinder for 

, , 0p p p

rr rr r rr rr      (example 1). 

4    CONCLUSIONS 

The analytical solution for the non-axisymmetric mechanical linear stresses in a thick hollow cylinder made of 

functionally graded material has been presented. The method of solution considered based on the direct method and 

using power series, rather than the potential function method. The advantage of this method is its mathematical 

power to handle mathematical function for the mechanical linear plastic stresses boundary conditions. The yield 

strength through the graded direction is assumed to be nonlinear with a power law distribution. Depending on 

applied boundary condition, by selecting optimum value of m, desirable level of radial and circumferential and shear 

stresses could be obtained in FGM cylinders with respect to those in homogenous ones. By setting 0m  in every 

equation the radial, circumferential and shear stresses expressions turned to homogenous ones which could approve 

the validity of formulations.  It is to be emphasized that the proposed method does not have the mathematical 

limitations to handle the general types of boundary conditions which are usually countered in the potential function 

method. Effect of power-law index on the shear plastic stress has been shown in this paper. By increasing grading 

parameter m, the normalized shear plastic stresses at the outer section decrease in a cylinder. The normalized 

tangential stress components at the outer edge are found to be higher than those at the inner edge. The magnitude of 

the tangential stress is higher than that of the radial stress. The absolute maximum radial plastic stresses occur at the 

inner edge because of the type of boundary conditions. By substituting 0M  in linear plastic stresses formula the 

perfect plastic stresses have been obtained. By substituting 
, , 0p p p

rr rr r rr rr      in linear plastic stresses formula 

the elastic stresses have been yielded.  

APPENDIX A 
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