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 ABSTRACT 

 In this article, electro-thermo nonlocal nonlinear vibration and instability of 

viscous-fluid-conveying double–walled boron nitride nanotubes (DWBNNTs) 

embedded on Pasternak foundation are investigated. The DWBNNT is 

simulated as a Timoshenko beam (TB) which includes rotary inertia and 

transverse shear deformation in the formulation. Considering electro-

mechanical coupling, the nonlinear governing equations are derived using 

Hamilton’s principle and discretized based on the differential quadrature 

method (DQM). The lowest four frequencies are determined for clamped-

clamped boundary condition. The effects of dimensionless small scale 

parameter, elastic medium coefficient, flow velocity, fluid viscosity and 

temperature change on the imaginary and real components of frequency are 

also taken into account. Results indicate that the electric potential increases 

with decreasing nonlocal parameter. It is also worth mentioning that decreasing 

nonlocal parameter and existence of Winkler and Pasternak foundation can 

enlarge the stability region of DWBNNT.                                                             

 © 2017 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 ORON nitride nanotubes (BNNTs) show great promise for their mechanical and thermal properties. BNNTs, 

apart from having high mechanical, electrical and chemical properties, present more resistant to oxidation than 

carbon nanotubes (CNTs). Hence, they are used for high temperature applications [1,2]. Also, BNNTs are more 

stable both thermally and chemically [3]. Because of these unique properties, BNNTs have received much attention 

amongst researchers. It has therefore found multiple applications for BNNTs including mechanical reinforcements 

and composites, batteries, fuel cell components, transistors and biosensors. The dynamical behaviors of micro/nano 

structures conveying fluid have been widely reported in the literature. It is noted that most nanodevices can be 

modeled as a beam [4]. Therefore, investigating the mechanical behaviors of these structures is important in the 

design of the nanodevices. Single and multi-walled TB models were developed by Wang et al. [5] for the free 

vibration of CNTs with various end conditions. They concluded that TB model should be used for a better prediction 

of the frequencies. Nonlocal free vibration problem for micro/nanobeams modeled as a TB theory was studied by 

Wang et al. [6]. They proposed that the nonlocal effect is more significant at short CNTs. Lu et al. [7] used nonlocal 

______ 
*
Corresponding author. Tel.: +98 31 55912450; Fax: +98 31 55912424. 

E-mail address: aghorban@kashanu.ac.ir (A.Ghorbanpour Arani). 

B 

mailto:aghorban@kashanu.ac.ir


681                       A.Ghorbanpour Arani et al. 

 
 

© 2017 IAU, Arak Branch 

beam elasticity theory for vibrational properties of CNTs and concluded that nonlocal parameter had a significant 

effect on the dynamic properties of the beams. Based on the TB theory, Chang and Lee [8] analyzed the effects of 

flow velocity on the vibration frequency and mode shape of the fluid-conveying single walled carbon nanotube 

(SWCNT). Their Results indicate that the real component of frequency of a higher mode is always larger than that 

of a lower mode for different flow velocities. Using DQM, Ke et al. [9] studied nonlocal nonlinear free vibration of 

embedded double walled carbon nanotubes (DWCNTs) based on the TB theory. They found that an increase in the 

spring constant of elastic medium leads to higher linear and nonlinear frequencies but lower nonlinear frequency 

ratio. Using the nonlocal elasticity theory, Mohammadimehr et al. [10] demonstrated the torsional buckling of a 

DWCNT embedded on Winkler and Pasternak foundations.  

They studied the effects of the surrounding elastic medium, the van der Waals (vdW) forces between the inner 

and the outer nanotubes on the critical torsional buckling load and showed that the shear constant of the Pasternak 

type increases the nonlocal critical torsional buckling load. Wang et al. [11] developed a micro scale TB model 

based on strain gradient elasticity theory. Their numerical results reveal that the size effect is only significant when 

the beam thickness is comparable to the material length scale parameter. Based on the TB theory and Young–

Laplace equation, surface effects on the elastic behavior of static bending nanowires were studied by Yan and Jiang 

[12]. They showed that the surface effects on the stiffness of nanowires are more prominent for slender nanowires. 

Asghari et al. [13] developed a nonlinear TB model based on the modified couple stress theory and concluded that 

modeling beams based on the nonlinear and non-classical couple stress formulations results in stiffer behavior than 

linear and classical formulations. 

A new analytically nonlocal TB model is established by Yang et al. [14] for the analysis of the wave propagation 

in a DWCNTs beam with the nonlocal effects. Their results show that the nonlocal effect on the wave propagations 

is more significant. Lei et al. [15] investigated the vibrational frequency of DWCNTs, while accounting for surface 

effects, using the nonlocal TB model. Their results show that the vibrational frequency is significantly affected by 

the nonlocal parameter, vibration mode and aspect ratio. Based on the nonlocal TB theory and transfer function 

method, the transverse vibration of the SWCNT-based micro-mass sensor is analyzed by Shen et al. [16]. They 

showed that the nonlocal TB model is more adequate than the nonlocal Euler-Bernoulli beam (EBB) model for short 

SWCNT sensors. 

None of the researches mentioned above, have considered smart structures such as BNNTs. Recently, 

considerable attention has been given to investigate the dynamical characteristic of piezoelectric nanotubes. Surface 

effect on the vibration and buckling behaviors of piezoelectric nanobeams was investigated by Yan and Jiang [17]. 

They also analyzed the electromechanical coupling and bending behaviors of piezoelectric nanowires considering 

surface effect. Electro-thermo-mechanical buckling of BNNTs in a polyvinylidene fluoride (PVDF) was investigated 

by Salehi and Jalili [18] who showed that applying direct and reverse voltages to BNNT changed buckling loads for 

any axial and circumferential wave-numbers. Ghorbanpour Arani et al. [19,20, 21] illustrated the electro-thermal 

vibration and buckling behavior of DWBNNTs embedded in an elastic medium using non-local piezo-elastic 

cylindrical shell theory. They investigated the effects of parameters such as Winkler spring constant, Pasternak shear 

constant, electric field, and temperature change on the dimensionless natural frequency. It should be pointed out that 

none of the above mentioned studies have considered the nonlinear higher order terms of strains and electro-

mechanical coupling which can enhance the accuracy of the results. 

Vibration, buckling and wave propagation in BNNTs has been a topic of great interest in nanomechanics. Due to 

the lack of study on the nonlinear vibration and instability of   DWBNNTs conveying fluid, the present work is 

motivated on the use of piezoelasticity theory to study the electro-thermo nonlinear vibration and instability 

response of viscous-fluid-conveying DWBNNTs embedded in a Pasternak foundation. The DWBNNT is modeled as 

a TB model which is better than the EBB, since the effects of shear deformation and rotary inertia is considered. The 

couple governing equations are discretized using DQM. The divergence and flutter instability of DWBNNT for the 

first four modes of resonance frequencies are discussed. Furthermore, the effects of dimensionless small scale, 

Pasternak foundation, flow velocity, fluid viscosity and temperature change on the frequency and critical fluid 

velocity are considered. 

2    NONLOCAL PIEZOELASTICITY THEORY 

Applying an electric field to a piezoelectric material will yield a strain proportional to the displacement field, and 

vice versa. According to the nonlocal piezoelasticity theory [21], the constitutive equation includes stress  ij  and 
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strain 
klε  tensors on the mechanical side, as well as flux density mD ,  temperature change T and field strength kE  

vectors on the electrostatic side, may be combined as follows [22, 23] 

 

2 2
0(1 ( ) ) ij ijkl kl mij m ije a c h E T        

(1) 

 

2 2
0(1 ( ) ) S

m mij ij k ijmk
e a D h E T       

(2) 

 

where , , ,ijkl mij ij ijc h   and S
mk

  are the elastic stiffnesses, the piezoelectric module, stress-temperature 

coefficients, pyroelectric constants and  the dielectric permittivity constant. Also, 0e a  denotes the small scale 

effect. It is also noted that the electric field E can be written in terms of electric potential    as: 

 
E    (3) 

3    MATHEMATICAL MODELING 

A schematic diagram of a viscous-fluid-conveying embedded DWBNNT modeled as a TB is shown in Fig. 1 in 

which geometrical parameters of length L, inner radius 1R , outer radius 2R  and thickness h are also indicated. 

 

          

 

 

  

 

 

 

 

 
Fig.1 

A DWBNNTs conveying viscous fluid embedded in an 

elastic medium modeled as the nonlocal Timoshenko 

nanobeam. 

 

 Using TB theory, displacement fields are assumed as [9]: 
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where ,i iU V  and iW  denote the longitudinal, circumferential and transverse displacements of the middle surface, 

respectively. Also, 
i  is the rotation of beam cross-section and t is time. It is noted that 1,2i   represent the inner 

and outer nanotubes. Using the above equation, the nonlinear strain–displacement von Karman relations are 

considered as: 
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According to the assumption of TB model, the constitutive relations of DWBNNT can be written as: 
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(8) 

 

where 11 11 11 11,x xC h      and x  is the thermal expansion. Using Eqs. (5) and (6), the total electrostatic energy 

of DWBNNT can be expressed as: 
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(9) 

 

where ,xi xiN M  and xiQ  denote the resultant force, bending moment and transverse shear force, respectively, 

which can be defined as: 
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(10) 

 

The kinetic energy of DWBNNT can be written as follows: 
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(11) 

 

The work done due to the flowing viscous fluid, surrounding elastic medium and vdW forces can be written as: 
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(12) 

 

where fluidF  can be obtained by the well-known Navier–Stokes equation as follows [24]: 

 

2

f

dV
P V

dt
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(13) 

 

In which P, f  and   are the static pressure, mass density and viscosity of the flowing  fluid, respectively. 

Also, as can be seen in Fig. 2, velocity field ( , )x zV V V  for the fluid conveying through the inner nanotube for 

beam model are defined as [25]:  
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Fig.2 

A schematic of nanobeam conveying viscous fluid. 
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where fU is the constant velocity of fluid. Hence, substituting Eqs. (14) and (15) into Eq. (13) yields: 
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The left side of these equations represents the external force on the nanotube walls due to viscous fluid  
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According to the above relations, kinetic energy of  flow fluid is given as follow: 
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(17) 

 

The second term of Eq. (12) is related to vdW force which can be expressed as: 

 

1 2 1( )q c w w   (18) 
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where, c is the vdW interaction coefficient. The three term of Eq. (12) is related to the elastic medium. Based on the 

Winkler and Pasternak foundations, the effect of the surrounding elastic medium on the outer nanotube is written as 

follows [10]: 

 

 2
2 2Elastic medium W GF k w k w     

 

(20) 

 

where Wk  and 
Gk  are Winkler's spring modulus and Pasternak's shear modulus of elastic medium, respectively. 

Using Hamilton’s principle, the variation form of the equations of motion for the DWBNNT can be written as: 
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(21) 

 

where  tube fluidK K K  . Substituting Eqs. (9), (11) and (12) into Eq. (21) and using the fundamental lemma of 

the calculus of variation, yields the motion equations for viscous-fluid-conveying embedded DWBNNTs as follows: 
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Using Eqs. (7), (8) and (10), the resultant force, bending moment and transverse shear force can be written as:  
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where 
sK is shear form factor. The dimensionless parameters for DWBNNTs can be introduced as follows: 
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Substituting Eqs. (30) to (33) into Eqs. (22) to (29), one obtains the following governing equations in terms of 

the mechanical and electrical displacements as: 
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(41) 

4    SOLUTION BY DQM 

As can be seen, the motion equations are nonlinear which could not be solved analytically. Hence, DQM is 

employed which in essence approximates the partial derivative of a function, with respect to a spatial variable at a 

given discrete point, as a weighted linear sum of the function values at all discrete points chosen in the solution 

domain of the spatial variable.  Let F  be a function representing , ,i i iu w   and i with respect to variable   in the 

following domain of ( 0 L  ) having N   grid points along these variable. The nth-order partial derivative of 

( )F  with respect to   may be expressed discretely [26] at the point ( )i as: 
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where ( )n

ikA  is the weighting coefficients associated with nth-order partial derivative of ( )F   with respect to   at 

the discrete point i  whose recursive formulae can be found in. A more superior choice for the positions of the grid 

points is Chebyshev polynomials as expressed in [26]. According to DQM, mechanical clamped and free electrical 

boundary conditions at both ends in each layer of DWBNNT may be written as: 
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Applying these boundary conditions into the governing Eqs. (34-41) yields the following coupled assembled 

matrix equations 

 

      0,
b b b

d d d

d d d
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d d d
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(45) 

 

where bd and dd represent boundary and domain points. The    K , C  and  M  are the stiffness, damping and mass 

matrices, respectively. For solving the Eq. (45) and reducing it to the standard form of eigenvalue problem, assume 

that the solution of Eq. (45) has the following form 
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where 
bD  and 

dD  are complex vectors indicating displacements and not depending on time and  is frequency of 

system. By introducing the new vector, we have 
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Substituting Eq. (47), it is possible to rewrite Eq. (45) as: 
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Eq. (48) can be transformed into 
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Eq. (47) and (49) can be written in the following standard eigenvalue form 

 

    Z A Z ,   (50) 

 

In which the state vector Z and state matrix  A  are defined as: 
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where  0  and  I  are the zero and unitary matrices, respectively. However, the frequencies obtained from the 

solution of Eq. (46) are complex due to the damping existed in the presence of the viscous fluid flow. Hence, the 

results are containing two real and imaginary parts. The real part is corresponding to the system damping, and the 

imaginary part representing the system natural frequencies. 

5    NUMERICAL RESULTS AND DISCUSSION 

In order to obtain the nonlinear frequency and critical fluid velocity for a viscous-fluid-conveying DWBNNT 

embedded in the Pasternak foundation, a computer program based on the DQM was written, where the effect of 

dimensionless parameters such as nonlocal parameter, ( en ), temperature gradient, ( T ), Winkler, (
WK ) and 

Pasternak,( 
Gk ) modules as well as viscosity of fluid (  ), were investigated. For the purpose of illustration, the 

DWBNNT dimensions and its mechanical, electrical and thermal properties have been listed in Table 1. 
 

Table 1  

Material properties of DWBNNT [10,18, 28] 

Thickness 0.075t nm  

Elastic modulus 1.8E Tpa  

Poisson ratio 0.34   

Density 
33.4870 /gr cm   

Piezoelectric coefficient 0.95 /11h C m  

Dielectric coefficient 
81.28 10 ( / )

11
s F m    

Thermal expansion in x direction 61.2 10 (1/ )kx
   

Inner radius  11.431R nm  

Outer radius  12.312R nm  

 

Figs. 3 and 4 show the imaginary and real components ( Im( )  and Re( ) ) of dimensionless frequency versus 

the dimensionless flow velocity (
fu ) for the first four modes of resonance frequencies, respectively. It is noted that 

Im( )  is the resonance frequency and Re( )  is related to the damping. Generally, the system is stable when the real 

part of the frequency remains zero and it is unstable when the real and imaginary parts of the frequency become 

positive and zero, respectively. It can be seen that the Im( )  generally decreases with increasing 
fu . For zero 

resonance frequency, DWBNNT becomes unstable and the corresponding fluid velocity is called the critical flow 

velocity.  
 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Imaginary part of dimensionless frequency versus 

dimensionless fluid velocity for the first four modes of 

DWBNNT.  
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Fig.4 

Real part of dimensionless frequency versus dimensionless 

fluid velocity for the first four modes of DWBNNT.   

 

As can be seen, the critical fluid velocity correspond to the first mode is reached at  1.91fu  . This physically 

implies that the DWBNNT losses its stability due to the divergence via a pitchfork bifurcation while the second, 

third and fourth modes are still stable. Thereafter, for the fluid velocity within the range 1.91 2.53fu  , the 

Re( )  of the first mode is positive, which the system becomes unstable. Afterwards, the Im( )  of the first and 

second modes combines to each other in the region of 2.64 3.08fu  . This physically implies a single coupled-

mode between the first and the second modes occurs which is unstable with flutter instability. Also, this 

phenomenon may be observed in different modes for higher velocities. For example, a coupled-mode between the 

second and the third modes takes place in the range of  3.11 3.59fu  . Meanwhile, it should be noted that the 

DWBNNT becomes unstable at second, third and fourth modes when 2.63, 3.11f fu u   and 3.65fu   

respectively. It should also be noted that, the divergence and flutter instability which obtained from the Figs. 3 and 4 

are the same as observations made by [29]. 

Figs. 5 and 6 demonstrate the imaginary and real components of frequency versus the flow velocity for different 

values of nonlocal parameter ( en ) in dimensionless form, respectively for the first mode. It is noted that 0en   is 

corresponding to the classical TB model. As can be seen, the resonance frequency is significantly affected by the 

en . It is observed that the Im( )  and critical fluid velocity of DWBNNT increase with decreasing of en . Hence, 

the small scale effect can enlarge the stability region of DWBNNTs. This is perhaps due to the fact that increasing 

the en  decreases interaction force between nanotube atoms, and that leads to a softer structure. 

 

 

 

 

 

 

 

 

 
 

Fig.5 

The effect of dimensionless small scale parameter on the 

imaginary part of dimensionless frequency. 

  

 

 

 

 

 

 

 

 

Fig.6 

The effect of dimensionless small scale parameter on the 

real part of dimensionless frequency. 
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Figs. 7 and 8 illustrate the influence of elastic medium, including Winkler and Pasternak modules, on the Im( )  

against 
fu for the first mode. As can be seen, existence of Winkler and Pasternak foundation, enlarge the stability 

region of DWBNNT and increase the resonance frequency. This is perhaps because the beam stiffness increases. It 

is also concluded that the effect of Pasternak foundation on the resonance frequency and critical fluid velocity is 

higher than Winkler foundation. 

 

 

 

 

 

 

 

 

 
Fig.7 

The effect of elastic medium on the imaginary part of 

dimensionless frequency. 

  

 

 

 

 

 

 

 

 

Fig.8 

The effect of elastic medium on the real part of 

dimensionless frequency. 

 

Figs. 9 and 10 illustrate the imaginary component of dimensionless frequency versus dimensionless flow 

velocity for different values of temperature change in the cases of high and low temperature, respectively. As can be 

observed from this figure the resonance frequency and critical fluid velocity decrease with increasing of the 

temperature change at high temperature state. The reason is that a larger temperature change results in more 

reduction in the nanobeam stiffness. This phenomenon reverses at low (room) temperature state. It should be noted 

that, this is the same as observations made by [30]. 

 

 

 

 

 

 

 

 

 

 

 
Fig.9 

The effect of the temperature change at high temperature 

state on the dimensionless resonance frequency. 
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Fig.10 

The effect of the temperature change at low temperature 

state on the dimensionless resonance frequency. 

 

Figs. 11(a) and 11(b) indicate the effect of viscous fluid on the imaginary and real components of frequency in 

dimensionless form, respectively. It is seen that the effect of viscosity on the dimensionless frequency may be 

negligible. On the other hands, viscosity of fluid increases the dimensionless frequency very little. This is because 

increasing viscous parameter increasing shear force on the nanotube. Compared to the work of Wang and Ni [24] 

who modeled the carbon nanotubes conveying viscous fluid as a continuum structure using the classical EBB theory, 

in this work, nonlocal vibration of DWBNNT conveying viscous fluid is investigated. However, the results obtained 

in the present study from Figs. 11(a) and 11(b) are the same as those expressed in Ref. [24]. 
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Fig.11 

a)The effect of fluid viscosity on the imaginary part of dimensionless frequency. b)The effect of fluid viscosity on the real part 

of dimensionless frequency. 

 

Figs. 12 and 13 depict the electric potential along length of nanotube for various fu  and en , respectively. 

Obviously, electric potentials are constant at the both ends of the beam, satisfying the constant electrical boundary 

conditions. It can be seen from Figs. 12 and 13 that the electric potential decreases with increasing en , while it 

increases with increasing fu . Since, according to specific characteristic of piezoelectric materials, as fu increases 

and en  decreases, stress and deformation of nanotube increase and subsequently electric potential becomes higher. 

 

 

 

 

 

 

 

 

 

 
Fig.12 

Distribution of electric potential along length of nanotube 

for various dimensionless small scale parameter. 
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Fig.13 

Distribution of electric potential along length of nanotube 

for various dimensionless fluid velocity. 

 

Imaginary part of dimensionless frequency versus dimensionless flow velocity have been compared for three 

models in Fig. 14. DWBNNT conveying fluid has been analyzed using EBB theory in Ref. [31] and cylindrical shell 

model in Ref. [32]. This comparison shows the accuracy of result for three models in which TB theory (present 

work) is stronger than EBB theory due to consider the shear stress. Also Fig. 14 approves that the result of TB 

theory is closer to cylindrical shell model in comparison with EBB theory. 
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Fig.14 

Comparison the results for three models. 

6    CONCLUSIONS 

Based on the piezoelasticity theory, electro-thermo nonlocal nonlinear vibration and instability of viscous-fluid-

conveying DWBNNTs embedded in a Pasternak foundation were investigated. The DWBNNT was modeled as a TB 

and the vdW forces between the inner and the outer nanotubes were considered. Using DQM the derived governing 

equations were discretized, and solved to obtain the nonlinear frequency and critical fluid velocity with clamped 

boundary conditions. The divergence and flutter instability of DWBNNT for the first four modes of resonance 

frequencies were discussed. The results indicated that decreasing nonlocal parameter and existence of Winkler and 

Pasternak foundation can enlarge the stability region of DWBNNT. Furthermore, increasing the temperature change 

at high temperature state, decreases the resonance frequency, while this phenomenon was reverse at low (room) 

temperature change. Meanwhile, the electric potential decreases with increasing nonlocal parameter, while it 

increases with an increase of flow velocity. It is also worth mentioning that the effect of fluid viscosity on the 

frequency was not considerable which was verified when compared with the results obtained by [24]. 
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