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 ABSTRACT 

 The free vibration analysis of the functionally graded cylindrical shell 

panels  with and without cutout is carried out using the finite element 

method based on a higher-order shear deformation theory. A higher-order 

theory is used to properly account for transverse shear deformation. An 

eight noded degenerated isoparametric shell element with nine degrees of 

freedom at each node is considered. The stiffness and mass matrices are 

derived based on the principle of minimum potential energy. The stiffness 

and mass matrices of the element are evaluated by performing numerical 

integration using the Gaussian quadrature. The effect of volume fraction 

exponent on the fundamental natural frequency of simply supported and 

clamped functionally graded cylindrical shell panel without a cutout is 

studied for various aspect ratios and arc-length to thickness ratios. Results 

are presented for variation of the fundamental natural frequency of the 

cylindrical shell panel with cutout size for simply supported and clamped 

boundary conditions. 

                                            © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 ECENTLY, a new concept involving tailoring of the internal microstructure of the composite materials is 

developed to achieve the required function. The term Functionally Graded Materials (FGM) was coined by the 

Japanese researchers.  These are heterogeneous in nature and thus the presence of different materials optimizes the 

responses of the structures undergoing severe loadings, reduces local stress concentrations, preservation of the 

structural strength and ductility. FGMs are developed for general use as structural components in extremely high 

temperature environments. FGMs in the form of shells find application in aerospace, automobile, medicine, sport, 

energy, sensors, defense, and optoelectronics. The free vibration of functionally graded shells is an important 

engineering problem. Many researchers studied the free vibration of functionally graded shells. Loy et al. [1] 

investigated the free vibration of simply supported FGM cylindrical shells. This is extended to cylindrical shells 

with different support conditions by Pradhan et al. [2]. The governing equations based on the classical shell theory 

are solved using Rayleigh-Ritz method. Yang and Shen [3] investigated the free vibration and parametric resonance 

of shear deformable functionally graded (FG) cylindrical shell panels. Patel et al. [4] carried out the free vibration 
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analysis of functionally graded elliptical cylindrical shells using a higher-order theory where the analysis is carried 

out using finite element formulation based on a higher order theory. The influence of non-circularity, radius-

thickness ratio, material profile index on free vibration frequencies and mode shape characteristics of shells are 

studied. Pradyumna and Bandyopadhyay [5] conducted the free vibration analysis of functionally graded curved 

panels using a higher-order finite element formulation. The effects of panel geometry parameters and boundary 

conditions are studied.  Matsunaga [6] has studied free vibration and stability of functionally graded circular 

cylindrical shells according to a 2D higher-order deformation theory. Modal transverse shear and normal stress are 

calculated by integrating 3D equations of motion in thickness direction satisfying stress boundary conditions at outer 

and inner surfaces. Zhao et al. [7] have presented thermo elastic and vibration analysis of functionally graded 

cylindrical shells. In this study, they have analyzed the static response and free vibration of functionally graded 

shells using element free Kp-Ritz method with properties varying along the thickness direction. Comparisons reveal 

that numerical results agree well with classical and finite element methods.  Tornabene and Erasmo [8] studied the 

free vibration of four parameters functionally graded parabolic panels and shells of revolution based on the first-

order shear deformation theory. Numerical results presented include the influence of the parameters of the power-

law distribution on the mechanical behavior of shell structures. Kiani et al. [9] presents thermoelastic free vibration 

and dynamic behavior of functionally graded doubly curved panels based on first-order shear deformation theory. 

Results are presented for spherical panels, cylindrical panels and hyperbolic paraboloidals.  Qu et al. [10] presented 

the general formulation for free, steady-state and transient vibration analysis of functionally graded shells of 

revolution subjected to arbitrary boundary conditions. Numerical examples are given for the free vibration of 

functionally graded cylindrical, conical and spherical shells.  Fadaee et al. [11] studied the free vibration analysis of 

Levy-type functionally graded spherical shell panel using a new exact closed-form solution. The strain displacement 

relations of Donnell and Sanders theories are used to obtain the exact solution. The effects of various stretching- 

bending couplings on the frequency parameters are discussed.  Malekzadeh et al. [12] investigated the free vibration 

of functionally graded cylindrical shell panels with a cutout under thermal environment using the three-dimensional 

Chebyshev-Ritz method. The effects of volume fraction index, different types of temperature distributions through 

the thickness, the size of cutout and geometrical parameters on the free vibration are studied. Ebrahimi and 

Najafizadeh [13] presented free vibration analysis of 2-Dimensional functionally graded cylindrical shells using 

equations of motion based on Love’s first approximation classical shell theory. Su et al. [14] presented a unified 

accurate solution for vibration analysis of arbitrary functionally graded spherical shell segments with general end 

restraints. The method is formulated by the Ritz procedure on the basis of the first-order shear deformation theory. 

The effects of the boundary conditions, power-law exponents, and shell segments on the free vibrations of the 

spherical shells are also investigated and parameter effects on frequency behaviors are illustrated. Ye et al. [15] 

studied the free vibration of laminated functionally graded spherical shells with general boundary conditions and 

arbitrary geometric parameters. The study is based on the 3D shell theory of elasticity and energy based Rayleigh-

Ritz procedure. Numerous vibration results for several laminated FG spherical shells with various boundary 

conditions are presented for different geometric parameters and power-law exponents.  Su et al. [16] presented the 

free vibration analysis of functionally graded open shells including cylindrical, conical and spherical ones with 

arbitrary subtended angle and general boundary conditions. The formulation is derived by the modified Fourier 

series in conjunction with Rayleigh-Ritz method according to the first-order shear deformation shell theory. 

Parametric studies are carried out for FGM open shells with respect to the boundary conditions, material profiles and 

geometrical parameters. Tornabene et al. [17] studied the free vibration of free-form doubly curved shells made of 

functionally graded materials using higher-order equivalent single layer theories. The natural frequencies and mode 

shapes of several structures are presented. Akbari et al. [18] considered free vibration analysis of functionally graded 

open conical panels based on first-order shear deformation theory. Parametric studies are conducted to study the 

influences of boundary conditions, semi-vertex angle, subtended angle , power law  index and thickness to radius 

ratio on natural frequencies and associated mode shapes. Bahadori and Najafizadeh [19] investigated free vibration 

analysis of 2-Dimensional functionally graded axi-symmetric cylindrical shell on Winkler-Pasternak elastic 

foundation by first-order shear deformation theory and using Navier differential quadrature solution methods. This 

mainly focuses on dynamic behavior of moderately thick functionally graded cylindrical shell based on first-order 

shear deformation theory. Tornabene et al. [20] have presented numerical and exact models for free vibration 

analysis of cylindrical and spherical shell panels. The paper shows a comparison between classical 2D and 3D finite 

elements, classical and refined 2D generalized differential quadrature (GDQ) methods and an exact three 

dimensional solution. Xie et al. [21] studied the free vibration of four parameters functionally graded spherical and 

parabolic shells of revolution with arbitrary boundary conditions. The first-order shear deformation theory is 

adopted to account for the transverse shear effect and rotary inertia.  Mirzaei and Kiani [22] studied the free 

vibration characteristics of functionally graded carbon nanotube reinforced composite cylindrical panels using first-
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order shear deformation theory. Numerical results are presented which show that natural frequencies of the panel are 

dependent on volume fraction of carbon nanotubes and their distribution through the thickness. Kiani [23] 

investigated the free vibration of carbon nanotube reinforced composite plate on point supports using Lagrangian 

multipliers. It is shown that volume fraction of carbon nanotubes and graded pattern influence the vibration 

characteristics of plates. Kiani [24] studied the free vibration characteristics of carbon nanotube reinforced 

composite spherical panels based on first-order shear deformation theory. Numerical results are presented which 

reveal the influence of boundary conditions, geometric parameters of the panel, volume fraction and graded pattern 

of carbon nanotubes. 

From the review of literature, it is obvious that most of the researchers considered the free vibration of 

functionally graded cylindrical and spherical shells without a cutout except by Malekzadeh et al. [12] who 

considered the free vibration of cylindrical shell panels with a cutout. In their paper, results are presented only for 

clamped functionally graded cylindrical shell panels with a cutout subjected to temperature distribution through the 

thickness. Hence, the objective of this investigation is to analyze the free vibration analysis of cylindrical shell panel 

with and without cutout for simply supported and clamped boundary conditions using the finite element method 

based on a higher-order shear deformation theory. A higher-order theory is used to properly account for transverse 

shear deformation.  An eight noded degenerated isoparametric shell element is used with nine degrees of freedom at 

each node. The effect of cutout size on the fundamental natural frequencies of functionally graded cylindrical shell 

panel is studied for simply supported and clamped boundary conditions. 

2    GOVERNING EQUATIONS 

Consider a functionally graded shell panel of uniform thickness as shown in Figs. 1and 2. The displacements along 

the local coordinate axes x, y and z at any point in the shell are assumed as: 

2 * 3 * 2 * 3 *
0 0 0 0 0y y x xu u z z u z v v z z v z w w           

      
         (1) 

 

The strains along the local coordinate axes x,y and z are given by 
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The stress-strain relations of a functionally graded shell at a distance z  from the mid-surface with respect to x, y 

and z axes are given by 
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The constitutive relationship for the shell may be written as: 

 

    F D   

   

   0 0 0 0 0 0

, , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , ,

T

x y xy x y xy x y xy x y xy x y x y x y

T

x y xy x y xy x y xy x y xy x y xz yz x y

F N N N M M M N N N M M M Q Q S S Q Q

K K K K K K            

       

         





 

[0] [0] [0][A ][B ][C ][D ]

[0] [0] [0][B ][C ][D ][E ]

[0] [0] [0][C ][D ][E ] [F ]

[0] [0] [0][ ] [D ][E ] [F ] [G ]

[A ][B ][C ][0] [0] [0] [0]

[B ][C ][D ][0] [0] [0] [0]

[C ][D ][E[0] [0] [0] [0]

ij ij ij ij

ij ij ij ij

ij ij ij ij

ij ij ij ij

pq pq pq

pq pq pq

pq pq pq

D 

]

 
 
 
 
 
 
 
 
 
 
 

 

        (6) 

 

where 

 

2
2 3

2

1

x

y

t
x x x x

y y y y

t
xy xy xy x xyy

N M N M

N M N M z z z dz

N M N M







 

 

 


 
 

    
 
 

 
 
 
 
 

          (7) 



Free Vibration of Functionally Graded Cylindrical Shell …                     676                           
 

© 2018 IAU, Arak Branch 

2
2

2

1

t

x x x

y

x z

y y yzt

Q S Q
z z dz

Q S Q










   
      

  
          (8) 

    
2

2 3 4 5 6

2

1, , , , , , ( , 1,2,A , , , , , 6),

t

ij ij ij ij ij ij ij ij

t

B C D E z z z z z z dz i jF G Q



   

    
2

2 3 4

2

1, , , ,A , , , , ( , 4,5)

t

pq pq pq pq pq

t

ijB C D z z z z dz p qE Q



   

         

3    FINITE ELEMENT FORMULATION 

An eight noded degenerated isoparametric shell element [25, 26] with nine degrees of freedom at each node is 

considered in the present analysis. The stiffness matrix and mass matrix of the element are derived using the 

principle of minimum potential energy. The geometry of the element is defined by the global co-ordinates X, Y and 

Z.  
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where Ni are the shape functions of the element. The displacements of any point in the element are expressed as: 
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where 
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3.1 Element stiffness matrix 

The shell strains of the element may be expressed in a matrix form 

    eB         (11) 

 

where  B is known as strain – displacement matrix and 
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The non-zero coefficients of  B are available in ref.[27]. The element stiffness matrix is given by 
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The element stiffness matrix is evaluated using 2   2 reduced integration technique of Gauss Quadrature. 

3.2 Element mass matrix 

The element mass matrix is given by 
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The matrices  N  and  P  are given by 
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The element stiffness matrix is evaluated using 3   3 reduced integration technique of Gauss Quadrature. 

3.3 Solution process 

The element stiffness and mass matrices are assembled to obtain the respective global matrices  K and  M . The 

natural frequencies are obtained from the condition  

    0K M         (14) 

 

This is a generalized eigen value problem and is solved by using the subspace iteration method [28]. 

4    RESULTS AND DISCUSSION 

The analysis presented in the previous sections is applicable for the free vibration of various types of functionally 

graded shells. In the present investigation, free vibration of functionally graded cylindrical shell panel with and 
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without a cutout is studied. The results are presented for functionally graded cylindrical shell panel with and without 

a cutout  ( / 5XR a  ) for simply supported and clamped boundary conditions. The following boundary conditions 

are used in the present investigation. 

Simply supported:    

 
* * *

0 0 0 0 0 0i i i Xi i i XiU V W U V         along edges AB and CD (Fig.1)        

 
* * *

0 0 0 0 0 0i i i yi i i yiU V W U V         along edges BC and AD (Fig.1)        

 

Clamped:  

 
* * *

0 0 0 0 0 0i i i Xi yi i i Xi yiU V W U V             along edges AB,BC,CD,AD (Fig.1)        

 

The following material properties are used in the investigation. 

 
3 370 , 0.3, 2707 / , 151 , 0.3, 3000 /m m m c c cE GPa v Kg m E GPa v Kg m                

 

 

 
 
 
 
 
 

 

Fig.1 

Shell geometry. 

  

 

 

 

 

 

 

Fig.2 

Material variation through thickness. 

 

 

Convergence study has been conducted and the results are shown in Table 1.  In the present investigation, a 

discretization consisting of 60 elements (Fig.3) is adopted.  The accuracy of the present finite element analysis is 

verified by considering the following problems.  

Free vibration of functionally graded cylindrical shell panel without a cutout for clamped boundary condition 

(Fig.4). The following material properties are considered for this problem.  

 
3 3322.2715 , 207.7877 , 0.24, 0.31776, 2370 / , 8166 /c m c m c mE GPa E GPa v v Kg m Kg m                

 

The non-dimensional fundamental frequencies obtained using the present finite element analysis are compared 

(Table 2) with those in reference [5]. 

Free vibration of functionally graded cylindrical shell panel with a cutout for clamped boundary condition 

(Fig.3). The following material properties are considered for this problem.  

 
3 3322.2715 , 207.7877 , 0.24, 0.31776, 2370 / , 8166 /c m c m c mE GPa E GPa v v Kg m Kg m                

 



Free Vibration of Functionally Graded Cylindrical Shell …                     680                           
 

© 2018 IAU, Arak Branch 

The non-dimensional fundamental frequencies obtained using the present finite element analysis are compared 

(Table 3) with those in reference [12]. 

Free vibration of simply supported isotropic homogeneous square plate with a square cut-out. The natural 

frequency parameter obtained using present FEM (Tables 4 and 5)) is compared with that available in literature. 

Free vibration of clamped isotropic homogeneous plate with a square cut-out. The fundamental natural frequency 

parameter obtained using present FEM (Table 6) is compared with that available in literature. 

Free vibration of CSCS rectangular isotropic homogeneous plate with a rectangular cut-out. The fundamental 

natural frequency parameter obtained using present FEM (Table 7) is compared with that available in literature. 

From the results presented in Tables 2-7, it is evident that the present finite element analysis is accurate and 

reliable.   
 

 

Table 1  

Convergence study: Non-dimensional fundamental natural frequency ' 2 /n n m ma t D    of cylindrical shell panel with a 

cutout (n=2). 3 2/12(1 )m m mD E t    

 

 

Table 2   

Comparison of non-dimensional frequency parameter ' 2 /n n m ma t D    for  a clamped functionally graded cylindrical shell 

panel. 3 2/12(1 )m m mD E t    

 

 

Table 3   

Comparison of non-dimensional fundamental frequency ' 2 /n n c ca t D   for clamped cylindrical shell panel with a cutout 

(R/a=5,a/b=1, n=0). 3 2/12(1 )c c cD E t    

Cutout to panel ratio (e/a or f/b) Present FEM Reference [12] 

0.1 33.886 34.677 

0.3 38.330 39.287 

0.5 57.689 58.619 

  

 

Table 4  

Comparison of natural frequency parameter ' 2 /n na t D   of simply supported isotropic homogeneous  square plate with a 

square cutout. a/t=100 , ν=0.3,
3 2/12(1 )D Et    

Source e/a= f/b=0.3 e/a= f/b=0.5 

Present FEM 19.6339 23.5856 

Mirzaei and Kiani [29] 19.6490 23.5641 

Liew et al. [30] 19.3910 23.4410 

Lam et al. [ 31] 19.3570 23.2350 

 

 

 

 

 

 

Number of elements '
n  

32 78.460 

48 77.256 

60 76.785 

80 76.696 

Source n = 0 n = 0.2 n = 2.0 n = 10.0 

Present FEM  74.2803 60.458  40.4876  35.0498 

Reference [5] 74.518 57.479 40.750 35.852 
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Table 5  

Comparison of natural frequency parameter ' 2 /n na t D   of simply supported isotropic homogeneous  square plate with  

a square cutout. a/t=100, ν=0.3, e/a=f/b = 0.4, 3 2/12(1 )D Et                    

Mode type Source '
n  

 

SS 

                     Present FEM 20.8919 

                     Mirzaei and Kiani [29] 20.9151 

                     Liew et al. [30 ] 20.7240 

 

AS 

                    Present FEM 41.4867 

                    Mirzaei and Kiani [ 29] 42.1561 

                    Liew et al. [30] 41.9070 

 

AA 

                    Present FEM 72.7916 

                    Mirzaei and Kiani [29] 71.9878 

                    Liew et al. [30] 71.4990 
SS: Double symmetric     AS: Anti-symmetric /symmetric      AA: Double anti-symmetric 

 

 

Table 6    

Comparison of fundamental natural frequency parameter ' 2 /n na t D    of square clamped isotropic homogeneous plate 

with a square cutout. a/t=100 , ν=0.3, 3 2/12(1 )D Et    

             Source                                                    e/a= f/b  

0.1 0.2 0.3 0.4 

         Present FEM 36.5129 37.2569 41.1020 65.6090 

         Mirzaei and Kiani [29] 36.3141 37.2017 40.9624 65.3050 

         Malekzadeh et al. [12] 36.7943 37.9162 41.6279 66.5457 

         Mundkur et al. [ 32] 36.5045 38.1073 41.7912 65.7150 

 

 

Table 7    

Comparison of fundamental natural frequency parameter ' 2 /n na t D    of CSCS isotropic homogeneous rectangular plate 

with a rectangular cutout. a/t=100, ν=0.3, e/a=f/b= 1/3 , a/b=9/8 3 2/12(1 )D Et    

Source '
n  

                                         Present FEM   34.3089 

                                         Mirzaei and Kiani [29]   31.2803 

                                         Liew et al.  [30]    32.4250 

                                         Lam et al. [31] 34.04 

                                         Aksu et al. [33]             33.22e, 33.83 
e: From experiment 

 

 

 

 

 
 
 
 
 
 

Fig.3 

Cylindrical shell panel with a cutout. 
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Fig.4 

Cylindrical shell panel without a cutout. 

 

 

The effect of volume fraction exponent  on the fundamental natural frequency of simply supported and clamped 

cylindrical shell panels without a cutout is shown in Tables 8 and 9. Fig.5-10 show the variation of the fundamental 

natural frequency ( * /n n  ) of simply supported functionally graded cylindrical shell panel with cutout size for 

aspect ratios 1, 2, 0.5 and arc length to thickness ratios 10 and 100 and for values of volume fraction exponent 0, 

0.2, 0.5, 1.0, 2.0, 5.0, 10.0. *
n

 
is the fundamental natural frequency with a cutout; n  is the fundamental natural 

frequency without a cutout. Fig.11-16 show the variation of the fundamental natural frequency ( * /n n  ) of  

clamped functionally graded cylindrical shell panel with cutout size for aspect ratios 1, 2, 0.5 and arc length to 

thickness ratios 10 and 100 and for values of volume fraction exponent 0, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0. Typical mode 

shapes are presented in Figs.17 and 18. From the results presented in Tables 8 and 9 and Figs. 5-16, the following 

are observed. 

The fundamental natural frequency of simply supported and clamped functionally graded cylindrical shell panels 

without a cutout decreases with the increase in the volume fraction exponent (Tables 8 and 9). 

 
Table 8 

Effect of volume fraction exponent ‘n’ on the fundamental natural frequency (Hz) of simply supported functionally graded 

cylindrical shell panel without cutout.    

(a/b) (a/t)                                                                                         n 

  0 0.2 0.5 1.0 2.0 5.0 10.0 

1 
10 1609.534 1537.922 1466.8113 1400.939 1342.1388 1282.0129 1243.3613 

  100 216.7255 207.1075 197.6846 189.409 182.5507 175.8648 170.1958 

2 
10 2968.82 2840.345 2712.067 2591.119 2477.883 2356.766 2284.351 

  100 432.0886 414.885 397.9604 382.6503 369.407 353.928 341.069 

0.5 
10 734.977 705.7786 677.245 651.210 627.953 600.5683 579.011 

 100 108.959 103.977 99.0289 94.6222 91.2112 88.0855 85.4358 

 

Table 9 

Effect of volume fraction exponent ‘n’ on the fundamental natural frequency (Hz) of  clamped functionally graded cylindrical 

shell panel without cutout.   

(a/b)  (a/t)                                                                                                n 

  0 0.2 0.5 1.0 2.0 5.0 10.0 

1 
10 2090.397 1994.918 1897.1597 1804.506 1722.501 1644.789 1600.451 

100 288.201 273.939 259.869 247.702 238.6089 230.9478 224.592 

2 
10 4025.685 3850.88 3667.308 3484.774 3309.485 3136.088 3051.112 

100 646.82 614.925 583.612 556.1658 535.3598 517.4432 503.273 

0.5 
10 1018.937 969.533 920.382 876.232 841.074 810.1365 788.497 

100 130.736 124.31 117.9669 112.479 108.2054 104.685 101.8077 

 

The fundamental natural frequency of simply supported functionally graded cylindrical shell panel with a/b = 1 

and a/t = 10 decreases up to cutout size to panel size ratio 0.1. Thereafter, it increases with the increase in cutout size 

to panel size ratio for various values of volume fraction exponent (Fig. 5). 

The fundamental natural frequency of simply supported functionally graded cylindrical shell panel with a/b = 1 

and a/t = 100 decreases with the increase in cutout size to panel size ratio up to 0.5 and then it increases with the 

increase in cutout size to panel size ratio for various values of volume fraction exponent (Fig.6). 

 



683                        K.S.Sai Ram et.al.                                                    
 

 

© 2018 IAU, Arak Branch 

 

 
 
 
 
 
 

 

 

Fig.5 

Variation of fundamental natural frequency of simply supported 

functionally graded cylindrical shell panel (a/b = 1, a/t = 10). 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.6 

Variation of fundamental natural frequency of simply supported 

functionally graded cylindrical shell panel (a/b = 1, a/t = 100). 

 

 

The fundamental natural frequency of simply supported functionally graded cylindrical shell panel with a/b = 2, 

0.5 and a/t = 10, 100 generally decreases up to  cutout size to panel size ratio 0.3 and then it increases with the 

increase in cutout size to panel size ratio for various values of volume fraction exponent (Figs.7-9). 

 

 

 
 
 
 
 
 

 

 

Fig.7 

Variation of fundamental natural frequency of simply supported 

functionally graded cylindrical shell panel (a/b = 2, a/t = 10). 

 

  

 

 

 

 

 

 

 

 

 

Fig.8 

Variation of fundamental natural frequency of simply supported 

functionally graded cylindrical shell panel (a/b = 2, a/t = 100). 
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Fig.9 

Variation of fundamental natural frequency of simply supported 

functionally graded cylindrical shell panel (a/b = 0.5, a/t = 10). 

 

The fundamental natural frequency of simply supported functionally graded cylindrical shell panel with a/b = 0.5 

and a/t = 100 increases up to cutout size to panel size ratio about 0.1. Thereafter, it decreases with the increase in 

cutout size to panel size ratio about 0.55. It increases again with further increase in cutout size to panel size ratio for 

various values of volume fraction exponent (Fig. 10). 

 

 

 

 

 

 

 

 

 

 

Fig.10 

Variation of fundamental natural frequency of simply supported 

functionally graded cylindrical shell panel (a/b = 0.5, a/t = 100). 

 

The fundamental natural frequency of clamped functionally graded cylindrical shell panel with a/b = 1, 2, 0.5 

and a/t = 10, 100 decreases up to cutout size to panel size ratio 0.1 and then increases with the increase in cutout size 

to panel size ratio for various values of volume fraction exponent (Figs. 11-15) except for a/b=0.5 and a/t=100. 

 

 

 
 
 
 
 
 

 

 

Fig.11 

Variation of fundamental natural frequency of clamped 

functionally graded cylindrical shell panel (a/b=1, a/t = 10). 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.12 

Variation of fundamental natural frequency of clamped 

functionally graded cylindrical shell panel (a/b=1, a/t = 100). 
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Fig.13 

Variation of fundamental natural frequency of clamped 

functionally graded cylindrical shell panel (a/b=2, a/t = 10). 

  

 

 

 

 

 

 

 

 

 

Fig.14 

Variation of fundamental natural frequency of clamped 

functionally graded cylindrical shell panel (a/b=2, a/t = 100). 

 

  

 

 

 

 

 

 

 

 

 

Fig.15 

Variation of fundamental natural frequency of clamped 

functionally graded cylindrical shell panel (a/b=0.5, a/t = 10). 

 

The fundamental natural frequency of clamped functionally graded cylindrical shell panel with a/b = 0.5 and a/t 

= 100 increases up to cutout size to panel size ratio about 0.1. Thereafter, it decreases with the increases in cutout 

size to panel size ratio about 0.35. It increases again with further increase in cutout size to panel size ratio for 

various values of volume fraction exponent (Fig. 16). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.16 

Variation of fundamental natural frequency of clamped 

functionally graded cylindrical shell panel (a/b=0.5, a/t = 100). 
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5    CONCLUSIONS 

In this investigation, the free vibration of functionally graded cylindrical shell panel with and without a cutout is 

studied using finite element method based on a higher-order shear deformation theory. An eight-noded degenerated 

isoparametric shell element with nine degrees of freedom at each node is considered. Results are presented for 

fundamental natural frequencies of the cylindrical shell panel with and without a cutout for simply supported and 

clamped boundary conditions. From the results presented, the following conclusions can be made. 

1) The fundamental natural frequency of simply supported and clamped functionally graded cylindrical shell 

panels without a cutout decreases with increase in volume fraction exponent for various values of aspect 

ratio, arc-length to thickness ratio. 

2) The fundamental natural frequency of simply supported and clamped functionally graded cylindrical shell 

panel generally decreases initially and then increases with the increase in cutout size for various values of 

volume fraction exponent except for the case a/b=0.5 and a/t=100. 

3) In the case of simply supported and clamped functionally graded cylindrical shell panels with a/b=0.5 and 

a/t=100, the fundamental natural frequency increases initially, then decreases and then increases with the 

increase in cutout size for various values of volume fraction exponent. 
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