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 ABSTRACT 

 Time-dependent creep analysis is presented for the calculation of stresses and 

displacements of axisymmetric thick-walled cylindrical pressure vessels made of 

functionally graded material (FGM). For the purpose of time-dependent stress 

analysis in an FGM pressure vessel, material creep behavior and the solutions of 

the stresses at a time equal to zero (i.e. the initial stress state) are needed. This 

corresponds to the solution of the problem considering linear elastic behavior of 

the material. Therefore, using equations of equilibrium, stress–strain and strain–

displacement, a differential equation for displacement is obtained and subsequently 

the initial elastic stresses at a time equal to zero are calculated. Assuming that the 

Magneto-hygro-thermoelastic creep response of the material is governed by 

Norton’s law, using the rate form of constitutive differential equation, the 

displacement rate is obtained and then the stress rates are calculated. Once the 

stress rates are known, the stresses at any time are calculated iteratively. The 

analytical solution is obtained for the plane strain condition. The pressure, inner 

radius and outer radius are considered to be constant and the magnetic field is 

uniform. Material properties are considered as power law function of the radius of 

the cylinder and the poisson’s ratio as constant. Following this, profiles are plotted 

for different values of material exponent for the radial, circumferential and 

effective stresses as a function of radial direction and time. The in-homogeneity 

exponent have significant influence on the distributions of the creep stresses. 

                                                          © 2017 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

  UNCTIOALLY graded materials (FGMs) are microscopically inhomogeneous composite materials, in 

which the material properties vary smoothly and continuously from one surface to the other (Xie, Dai & Rao 

[1]). The main advantage is that the mechanical properties vary continuously across the shell thickness, which 

eliminates stress discontinuities typical of composite laminates. Today, FGMs find engineering applications in 

aerospace structures, chemical and mechanical industries, etc (Levyakov & Kuznetsov [2]). Several studies have 
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been performed by researchers on the static behavior of FGM structures (Nejad & Fatehi [3], Nejad, Jabbari & 

Ghannad [4-5-6], Nejad, Rastgoo & Hadi [7]). 

Thick shells involving cylindrical pressure vessels, in recent years, are widely used in space vehicles, aircrafts, 

nuclear power plants and many other engineering application (Nejad, Jabbari, & Ghannad [8-9], Jabbari, Nejad & 

Ghannad [10-11]). Elastic, plastic and creep stress analysis of these components has attracted wide attention due to 

the combination of different material properties and loading conditions. Creep stresses in FGM thick cylindrical 

shells under thermal loading have been analyzed extensively with regard to the elastic material behavior in the past 

years. Attia, Fitzgeorge and Pope [12] investigated  the  residual  stresses  produced  in  cast  iron  cylinder by  the  

creep-relaxation  of  thermal  stresses. In this study a series of thick-hollow cylinders are subjected to a radial flow 

of heat by heating the bore and water-cooling the outer diameter for a chosen period of time, during which the 

thermal stresses are relaxed by creep. Weir [13] investigated creep stresses in pressurized thick walled tubes. 

Assuming the simply supported and fixed-end boundary conditions for the cylinders, Wah [14] developed a theory 

for the collapse of cylindrical shells under steady-state creep and under external radial pressure and high temperature 

(300 to 500 F.). Bhatnagar and Gupta [15] obtained solution for an orthotropic thick-walled internally pressurized 

cylinder by using constitutive equations of anisotropy creep and Norton’s creep law. Besseling [16] investigated the 

feasibility of a numerical analysis of nonstationary creep problems for thick-walled tubes under axially symmetric 

loading. Pai [17] studied the steady-state creep of a thick-walled orthotropic cylinder subjected to internal pressure. 

They observed that the creep anisotropy has a significant effect on the cylinder behavior particularly in terms of 

creep rates which may differ by an order of magnitude compared to an isotropic analysis. Sankaranarayanan [18] 

studied the steady creep behavior of thin circular cylindrical shells subjected to combined lateral and axial pressures. 

The analysis is based on the Tresca criterion and the associated flow rule. Assuming that the total strain is consist of 

elastic and creep components, Murakami and Iwatsuki [19] investigated the transient creep analysis of circular 

cylindrical shells on the basis of the strain-hardening and time-hardening theories. Murakami and Suzuki [20] 

developed a numerical analysis of the steady state creep of a pressurized circular cylindrical shell on the basis of 

Mises’ criterion and the power law of creep. Sim and Penny [21] studied the deformation behavior of thick-walled 

tubes subjected to a variety of loadings during stress redistribution caused by creep. Murakami and Iwatsuki [22] 

investigated the steady state creep of simply supported circular cylindrical shells with open ends under internal 

pressure by using Nortons’s law. Kashkoli and Nejad [23] investigated the effect of heat flux on creep stresses of 

thick-walled cylindrical pressure vessels by using Nortons’s law. Using finite-strain theory Bhatnagar and Arya [24] 

studied the creep behavior of a thick-walled cylinder under large strains. Murakami and Tanaka [25] investigated the 

creep buckling of clamped circular cylindrical shells subjected to axial compression combined with internal pressure 

with special emphasis on the concept of creep stability and the accuracy of the analysis. Jones and Sullivan [26] 

studied the advantages and limitations of a perturbation method of analysis for the creep buckling of shells by 

examining the particular case of a long cylindrical shell subjected to a uniform external pressure. Arya, Debnath and 

Bhatnagar [27] investigated the problem of creep in a thin circular cylindrical shell made of a homogeneous, 

incompressible and orthotropic material using a non-steady creep law. Creep damage simulation of thick-walled 

tubes using the theta projection concept was investigated by Loghman and Wahab [28]. They obtained a closed-form 

solution for steady state creep stresses in FGM cylinders. Yang [29] presented an analytical solution for the 

calculation of stresses in FGM for the elastic and creep behavior of the materials. This solution can be used to study 

the dependence of stress on temperature and time for FG structures. Finally, the analytical results were compared 

with FEM. Gupta and Pathak [30], studied thermo creep analysis in a pressurized thick hollow cylinder. Jahed and 

Bidabadi [31] presented a general axisymmetric method for an inhomogeneous body for a disk with varying 

thickness. An approximation has been employed during their solution algorithm. It means that they avoid 

considering the differentiation constitutive terms of governing equations for creep analysis. Chen, Tu, Xuan and 

Wang [32] studied the creep behavior of a functionally graded cylinder under both internal and external pressures. 

They observed that an asymptotic solution can be derived on the basis of a Taylor series expansion if the properties 

of the graded material are axisymmetric and dependent on radial coordinate. In order to investigate creep 

performance of thick-walled cylindrical vessels or cylinders made of functionally graded materials, You, Ou and 

Zheng [33] proposed a simple and accurate method to determine stresses and creep strain rates in thick-walled 

cylindrical vessels subjected to internal pressure. Based on the power law constitutive equation, Altenbach, Gorash 

and Naumenko [34] presented the classical solution of the steady-state creep problem for a pressurized thick-walled 

cylinder. In this paper they applied an extended constitutive equation which includes both the linear and the power 

law stress dependencies. Singh and Gupta [35-36-37-38] developed a mathematical model to describe the steady-

creep behavior of functionally graded composite cylinders containing linearly varying silicon carbide particles in a 

matrix of pure aluminum involving threshold stress-based creep law. The model developed is used to investigate the 

effect of gradient in distribution of SiCp on the steady-state creep response of the composite cylinder. Nejad and 
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Kashkoli [39] investigated time-dependent thermo-elastic creep response for isotropic rotating thick-walled 

cylindrical pressure vessels made of FGM, taking into account the creep behavior of the pressure vessels, as 

described in Norton’s model. 

Assuming total strains to be the sum of elastic, thermal and creep strains, Loghman, Arani, Amir and Vajedi [40] 

studied the time-dependent creep stress redistribution analysis of a thick-walled FGM cylinder placed in uniform 

magnetic and temperature fields and subjected to an internal pressure. Following Norton’s law for material creep 

behavior and using equations of equilibrium, strain displacement and stress-strain relations in the rate form and 

considering Prandtl-Reuss relations for creep strain rate-stress equation, they obtained a differential equation for the 

displacement rate and then calculated the radial and circumferential creep stress rates. Singh and Gupta [41] 

investigated the steady state creep in transversely isotropic functionally graded cylinder, operating under internal 

and external pressures. In this paper the effect of anisotropy on creep stresses and creep rates in the FGM cylinder 

has been analyzed and compared with an isotropic FGM cylinder. Assuming that the thermo-elastic creep response 

of the material is governed by Norton’s law, Kashkoli and Nejad [42] presented an analytical solution for the 

calculation of stresses and displacements of FGM thick-walled spherical pressure vessels. Dai and Zheng [43] 

presented the creep buckling and post-buckling analyses of the viscoelastic FGM cylindrical shell with initial 

deflection subjected to a uniform in plane load by adopting the Boltzmann linear superposition principle. Sharma, 

Sahay and Kumar [44] investigated the creep stresses in thick-walled circular cylinders under internal and external 

pressure, using transition theory, which is based on the concept of ‘generalized principal strain measure’. Jamian, 

Sato, Tsukamoto and Watanabe [45] investigated the creep analysis for a thick-walled cylinder made of functionally 

graded materials (FGMs) subjected to thermal and internal pressure. Singh and Gupta [46] studied the steady state 

creep behavior in a functionally graded thick composite cylinder subjected to internal pressure in the presence of 

residual stress. Hoffman’s yield criterion is used, to describe the yielding of the cylinder material in order to account 

for residual stress. Assuming plane strain condition, Nejad, Hoseini, Niknejad and Ghannad [47] presented an exact 

solution for the analysis of FGM rotating thick cylindrical pressure vessels subjected to a steady state creep 

condition. Norton's power law of creep is employed to derive general expressions for stresses and strain rates. 

Kashkoli, Tahan and Nejad [48-49] presented a theoretical solution for time-dependent thermo-elastic creep analysis 

of functionally graded (FG) and homogeneous thick-walled cylinders based on the first-order shear deformation 

theory. Sharma, Yadav and Sharma [50] investigated the creep behavior of a functionally graded cylinder in torsion 

under internal and external pressure which is subjected to thermal loading. Loghman, Shayestemoghadam and 

Loghman [51] studied the creep behavior of strains, stresses, and displacement rates in a thick-walled cylinder made 

of polypropylene reinforced by functionally graded (FG) multi-walled carbon nanotubes (MWCNTs) using Burgers 

viscoelastic creep model. Loghman and Atabakhshian [52] studied the time-dependent creep behavior of rotating 

cylinders made from exponentially graded material using Bailey-Norton creep constitutive model. The results show 

that using exponentially graded material significantly decreases creep strains, stresses and deformations of the EGM 

rotating cylinder. Ghorbanpour Arani, Kolahchi, Mosallaie Barzoki and Loghman [53] studied the history of 

stresses, deformation and electric potential of a thick hollow FGM rotating cylinder made of radially polarized 

anisotropic piezoelectric material, (e.g., PZT-7A), using a semi-analytical method base on Mendelson’s method of 

successive elastic solution. Aleayoub and Loghman [54] investigated the time-dependent creep stress redistribution 

analysis of thick-walled FGM spheres subjected to an internal pressure and a uniform temperature field. The results 

show that radial stress redistributions are not significant for different material properties. However, major 

redistributions occur for tangential and effective stresses. 

In this article, assuming that the Magneto-hygro-thermoelastic-creep response of the material is governed by 

Norton’s law, an analytical solution is presented for the calculation of stresses and displacements of FGM thick-

walled cylindrical pressure vessels. The governing coupled differential equations are exactly solved. The cylinder is 

subjected to internal and external pressure and uniform magnetic field. The temperature and moisture concentration 

distributions are obtained separately in an uncoupled hygro-thermal analysis by solving heat conduction and 

moisture diffusion equations. 

2    GEOMETRY , LOADING CONDITION, MATERIAL PROPERTIES AND CREEP CONSTITUTIVE  

MODEL  

A thick-walled, cylindrical vessel made of functionally graded material with an inner radius a and outer radius b 

with perfect conductivity is considered. Let the cylindrical coordinates of any representative point be  , ,r z  and 
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assume that the cylinder subjected to a radially changing of temperature  T r  and moisture concentration  M r . 

The cylinder is placed in a uniform magnetic field  0,0, zH H and subjected to internal pressure 
iP  and external 

pressure 
0P , and also an inertia body force due to the rotation of the cylindrical vessel with a constant angular 

velocity of  . The material properties are assumed to be radially dependent, In this study, Poisson’s ratio, v, is 

considered to be a constant and modulus of elasticity, E, density,  , thermal expansion coefficient,  , moisture 

concentration coefficient,  , thermal conductivity, Tk , moisture diffusivity coefficient, Mk and magnetic 

permeability,  , are assumed to obey the power-law variation as: 
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Here 
i  is the in-homogeneity constants determined empirically. The uniaxial creep constitutive model is the 

Norton’s law, 
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where r is the radial coordinate, c

e  and e are effective stress and effective strain, respectively and  B r  and 

 n r  are the radial-dependent material creep parameters as: 
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where 0 1,b b and 0n  are material constants for creep.  
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3    HEAT CONDUCTION AND MOISTURE DIFFUSION FORMULATION  

In the steady state case, the heat conduction equation for the one-dimensional problem in polar coordinates 

simplifies to, 
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where Tk is the thermal conductivity. It is to be noted that the thermal conductivity Tk  is also changed through the 

radial direction of the cylinder according to Eq. (6). We may determine the temperature distribution in the 

cylindrical vessel by solving Eq. (11) and applying appropriate boundary conditions. Eq. (11) may be integrated 

twice to obtain the general solution,  
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Applying these conditions to the general solution, we then obtain, 

 

4 4

4 4

4 4

1

2

i o

o i

T T
W

a b

T a T b
W

a b

 

 

 

 

 

 







 
 

 

 

 

(14) 

 

In modeling, the transient moisture diffusion equation is analogous to the transient heat conduction equation. It 

can be described by the following equation, 
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where the moisture diffusivity coefficient Mk
 
is also changed across the thickness of the cylinder according to Eq. 

(7). The general solution of the moisture diffusion equation is,  
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,

,

i

o

M M r a

M M r b

 


 
 

 

(17) 

 

Applying these conditions to the general solution, we then obtain, 
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4    FORMULATION OF THE MAGNETO-HYGRO-THERMOELASTIC CREEP ANALYSIS   

4.1 Solution for linear elastic behavior of FGM thick cylindrical pressure vessel 

For the stress analysis in an FGM thick cylindrical pressure vessel, having material creep behavior, the solutions of 

the stresses at a time equal to zero (i.e. the initial stress state) are needed. This corresponds to the solution of 

materials with linear elastic behavior. Assuming total strains to be the sum of elastic, thermal, moisture and creep 

strains then the stress-strain relation for axisymmetric plane strain condition in cylindrical coordinate may be written 

in terms of radial displacement as:  
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where r  and   are radial and circumferential stresses, respectively, u  is radial displacement and c

r  and c

  are 

radial and circumferential creep strains, respectively. Also, 
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The equation of the stress equilibrium inside the FGM cylindrical pressure vessel is, 
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where 
zF is the Lorentz’s force which can be written in terms of radial displacement as:  
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Substituting Eqs.(19),(20) and (32) into equilibrium Eq.(31), and assuming that ( 1, 2, ..., 7  ;  
i

i    ) the following 

differential equation for displacement is obtained, 
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Ignoring the creep strains in Eq. (33) and considering a uniform temperature field T and a uniform moisture field 

M the following differential equation for magnetothermoelastic analysis is obtained, 
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The general solution of the displacement u is, 
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The corresponding stresses are, 
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To determine the unknown constants 
1C  and 

2C  in each material, boundary conditions have to be used, which 

are, 
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These constants are written as follows, 
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(43) 

4.2 Solution for creep behavior of FGM thick cylindrical pressure vessel 

Considering the temperature and moisture fields to be steady the differential Eq. (33) containing creep strains may 

be rewritten in terms of creep strain rates as follows: 
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(44) 

 

Creep strain rates are related to the stresses and the material uniaxial creep constitutive model by the well known 

Prandtl-Reuss equations as: 
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where c

e  and e  are the effective creep strain rate and the effective stress respectively. Considering the case of 

plane strain ( 0c

z  ) and Norton’s law (Eq. (8)), the radial and circumferential strain rates can be written as follows, 

 

   0 13

4

nc

r e rB r    
    

 

(48) 

 

   0 13

4

nc

e rB r    
   

 

(49) 

 

Considering the Von Mises equivalent stress in the case of plane strain, 
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Then Eqs. (48) and (49) may be rewritten as follows: 
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Substituting Eqs. (51) and (52) into differential Eq. (44) the following differential equation is obtained, 
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The general solution of the displacement u  is, 
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The corresponding stress rates are, 
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(60) 

 

To determine the unknown constants 
1D  and 

2D  in Eq. (54), boundary conditions have to be used. Since inside 

and outside pressures do not change with time, the boundary conditions for stress rates at the inner and outer 

surfaces may be written as: 
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The unknown constants 1D  and 2D are as follows: 
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when the stress rate is known, the calculation of stresses at any time 
it  should be performed iteratively. 
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5    NUMERICAL RESULTS AND DISCUSSION     

In the previous sections, the analytical solution of creep stresses for FGM thick-walled cylindrical vessels subjected 

to uniform pressures on the inner and outer surfaces and uniform magnetic field were obtained. In this section, some 

profiles are plotted for the radial stress, circumferential stress, effective stress, radial stress rate and circumferential 

stress rate as a function of radial direction for different times after creep. An FGM thick-walled cylindrical vessel 

with creep behavior under internal and external pressure and uniform magnetic field is considered. Mechanical 

properties of the cylinder, such as modulus of elasticity, density, thermal expansion coefficient, moisture 

concentration coefficient, thermal conductivity, moisture diffusivity coefficient and magnetic permeability are 

assumed to obey the power-law variation. In-homogeneity constants   range from 2  to 2 . The following data for 

loading and material properties are used in this investigation. 
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The distributions of creep stress components r  and   and effective stress e  at zero time for values of 

1, 2    , are plotted in Figs. 1,2,3, respectively. It can be seen from Fig. 1 that the boundary conditions for radial 

stress at the inner and outer surfaces of the cylinder are satisfied for all material properties. As this figure shows 

maximum values of radial stress belong to 2     and the minimum values belong to 2  . According to Fig. 2 

and Fig. 3, circumferential and effective stresses for 2,1, 1    is tensile throughout thickness while for 2    is 

compressive. The absolute maximums of radial and circumferential stresses for 2, 1,1     occur at the inner edge, 

which means the maximum shear stress for 2, 1,1     which is  max 2r     will be very high on the inner 

surface of the vessel and can cause yielding to occur. 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Normalized radial stress versus dimensionless radius at 

zero time. 

  

 

 

 

 

 

 

 

 

 

Fig.2 

Normalized circumferential stress versus dimensionless 

radius at zero time. 
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Fig.3 

Normalized effective stress versus dimensionless radius at 

zero time. 

 

Radial and circumferential stress rates redistributions for different values of  ,  are shown in Figs.  4 and 5. Fig. 

4 shows that the radial stress rates for all values of  ,  are zero at the inner and outer surfaces of the cylinder which 

satisfy the boundary conditions. The maximum rate of change of radial stresses belongs to 2    and the minimum 

rate belongs to 2  . Therefore minimum changes in radial stresses with time will take place for the material 

identified by 2   as will be explained next in radial stress redistributions. It can be seen from Fig. 5 that, at the 

inner radius of the cylinder the circumferential stress rates increases as   decreases. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Radial stress rate versus dimensionless radius at zero time. 

  

 

 

 

 

 

 

 

 

 

Fig.5 

Circumferential stress rate versus dimensionless radius at 

zero time. 

 

Time-dependent creep stress redistributions for 2   are shown in Figs. 6-8. Fig. 6 shows the time-dependent 

radial stress from initial elastic at zero time to fourth selected time interval. There is an increase in the value of the 

radial stress as time increases. It also satisfies the boundary conditions at the inner and outer surfaces of the cylinder. 

Circumferential stress redistribution for this case 2   from initial elastic at zero time to fourth selected time 

interval is shown in Fig. 7. It is clear that the value of the circumferential stress increases as time increases. The 

effective stress along the radius is plotted in Fig. 8. It can be seen that the value of the circumferential stress 

increases as time increases and also the maximum change in the value of effective stress occur at the outer surface of 

the cylinder. It is noted that the maximum shear stress at the inner and outer surfaces of the vessel is increasing with 

time.  
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Fig.6 

Normalized radial creep stress redistribution from initial 

elastic at zero time to fourth selected time interval for the 

case 2.   

  

 

 

 

 

 

 

 

 

Fig.7 

Normalized circumferential creep stress redistribution from 

initial elastic at zero time to fourth selected time interval 

for the case 2.   

  

 

 

 

 

 

 

 

 

 

Fig.8 

Normalized effective creep stress redistribution from initial 

elastic at zero time to fourth selected time interval for the 

case 2.   

 

Figs. 9 and 10 show the radial and circumferential stress rates along the thickness of FGM cylinder, from initial 

elastic at zero time to fourth selected time interval for the case 2  . It can be seen from Figs. 9 and 10 that the 

rates of the radial and circumferential stress decreases as time increases. 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Radial stress rate redistribution from initial elastic at zero 

time to fourth selected time interval for the case 2.   
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Fig.10 

Circumferential stress rate redistribution from initial elastic 

at zero time to fourth selected time interval for the case 

2.   

 

Figs. 11-13 show the effects of adding internal pressure, angular velocity and inner surface temperature on 

effective stress for the case 2   after 20 years from creep. It can be seen from these figures that effective stress 

increases as internal pressure and angular velocity increase and inner surface temperature decreases. It must be noted 

that in these figures the external pressure is 0 0P MPa and outer surface temperature is 
0 25 .T C  

 

 

 

 

 

 

 

 

 

 

 

Fig.11 

The effect of adding internal pressure on effective stress 

for the case 2   after 20 years from creep. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.12 

The effect of adding angular velocity on effective stress for 

the case 2   after 20 years from creep. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13 

The effect of adding inner surface temperature on effective 

stress for the case 2   after 20 years from creep. 
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Temperature and moisture distributions of four different values of   is shown in Figs. 14 and 15.  

 

 

 

 

 

 

 

 

 

 

Fig.14 

Normalized temperature distribution of FGM thick walled 

cylindrical vessel for values of 1,  2    . 

  

 

 

 

 

 

 

 

 

 

 

Fig.15 

Normalized moisture distribution of FGM thick walled 

cylindrical vessel for values of 1,  2    . 

6    CONCLUSIONS 

In this article, assuming that the thermo-creep response of the material is governed by Norton’s law, an analytical 

solution is presented for the calculation of stresses of FGM thick-walled cylindrical pressure vessels. For the stress 

analysis in a cylinder, having material creep behavior, the solutions of the stresses at a time equal to zero (i.e. the 

initial stress state) are needed, which corresponds to the solution of materials with linear magnetohygrothermoelastic 

behavior. The analytical solution is obtained for the condition of plane strain. It is assumed that the material 

properties change as graded in radial direction to a power law function. To show the effect of inhomogeneity on the 

stress distributions, different values are considered for in-homogeneity constants. The governing coupled differential 

equations are exactly solved. The cylinder is subjected to internal and external pressure and uniform magnetic field. 

The temperature and moisture concentration distributions are obtained separately in an uncoupled hygrothermal 

analysis by solving heat conduction and moisture diffusion equations. For the stress analysis after creeping for a 

long time, the iterative procedure is necessary. It could be seen that the in-homogeneity constants have significant 

influence on the distributions of the creep stresses. The best materials is identified by 1, 2     in which the 

minimum shear stress distribution will occur throughout the thickness of the FGM cylinder. 
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