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 ABSTRACT 

 A problem of reflection and transmission of a plane shear wave incident at a 

corrugated interface between transversely isotropic inhomogeneous and visco-

elastic half-spaces is investigated. Applying appropriate boundary conditions 

and using Rayleigh’s method of approximation expressions for reflection and 

transmission coefficients are obtained for the first and second order 

approximation of the corrugation. Further, closed form formulae of these 

coefficients are presented for a corrugated interface of periodic shape (cosine 

law interface). Numerical computations for this particular type of corrugated 

interface are performed and a number of graphs are plotted to illustrate the 

effect of different parameters of the both half-spaces on the reflection and 

transmission coefficients. It is found that these coefficients depend upon the 

amplitude of corrugation of the boundary, angle of incidence and frequency of 

the incident wave and are strongly influenced by the anisotropy, 

inhomogeneity and visco-elasticity of the half-spaces. Some special cases are 

also derived.                                ©2018 IAU, Arak Branch. All rights reserved. 

 Keywords: SH-waves; Visco-elastic; Inhomogeneity; Anisotropy; Corrugated 

boundary.  

1    INTRODUCTION 

 HE study of seismic waves generated from an earthquake origin provides the most trustworthy information 

about the complex internal structure of the Earth. The phenomena of reflection and refraction of seismic waves 

at the interface between two dissimilar media is a fundamental issue in many areas such as geophysics, seismology, 

earthquake engineering, non-destructive evaluation, etc. In the propagation of seismic waves through layered media, 

the boundaries play crucial role. Wave propagation in elastic medium with non-parallel boundaries is an important 

topic for geophysicists and seismologists to understand and predict the seismic activities at continental margins and 

mountain roots. SH-waves are seismic waves that cause horizontal shifting of the earth during the earthquake. The 

particle motion of SH-type waves forms a horizontal line perpendicular to the direction of propagation. 

Seismic waves generated due to earthquakes require moving through many irregular geological structures like 

mountains roots, mountain basins, salt, ore bodies, etc. which do alter their nature of propagation. Also, it is well 

known fact that the Earth crust is not perfectly homogeneous and isotropic throughout; various forms of anisotropy 

and inhomogeneity always exist. The presence of inhomogeneity and anisotropy drastically affect the seismic wave 

propagation. Moreover, the discontinuities present in the Earth crust between the layers produce the reflection and 
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transmission of SH-waves through the layers. Keeping this type of geophysical case in mind, in the present study a 

corrugated boundary between a visco-elastic solid half-space and a transversely isotropic inhomogeneous solid half-

space is considered and the reflection and transmission of SH-waves are discussed. 

An approximate method of solving problems of sound and electromagnetic waves scattering from a sinusoidal 

surface with small amplitude and slope was first given by Rayleigh [1]. In this method the equation of the interface 

is expressed in Fourier series and by using the appropriate boundary conditions of the problem, the unknown 

coefficients in the solutions are determined for any order of approximation. Afterward researchers of different areas 

used this method to interpret reflection and transmission phenomena of waves from non-flat boundaries. Using 

Rayleigh’s method many problems concerning reflection and refraction phenomena of elastic waves at a corrugated 

interface between two uniform elastic half-spaces were solved by Asano [2-4]. Abubakar [5] and Dunkin and 

Eringen [6] studied the problem of reflection of body waves from a rough surface of a semi-infinite elastic solid. 

Abubakar [7, 8] studied the reflection and refraction of SH-waves at an irregular boundary between two uniform 

elastic solid half-spaces. Kaushik and Chopra [9] derived the reflection and transmission coefficients of plane SH-

waves at a plane boundary between anisotropic and visco-elastic half-spaces. Gogna and Chander [10] investigated 

the reflection and refraction of shear waves at an interface between heterogeneous anisotropic elastic and visco-

elastic half-spaces. Later researchers attempted different problems of reflection and transmission of seismic waves at 

a corrugated boundary between two different elastic solid half-spaces by using Rayleigh’s method considering either 

vertical heterogeneity or both vertical and lateral heterogeneity. Gupta [11] analysed reflection and transmission of 

SH-waves in laterally and vertically inhomogeneous media at an irregular boundary. Kumar et al. [12] studied 

reflection and refraction of SH-waves at a corrugated interface between two different anisotropic and vertically 

heterogeneous elastic solid half-spaces. Tomar and Kaur [13] analysed reflection and transmission of SH-waves at a 

corrugated interface between two laterally and vertically heterogeneous anisotropic elastic half-spaces. Kaur et al. 

[14] attempted problem of reflection and refraction of SH-waves at a corrugated interface between two laterally and 

vertically heterogeneous visco-elastic solid half-spaces. 

In last few years, noticeable amount of work considering the effect of irregular boundaries of different types in 

the propagation of seismic waves are done by Chattopadhyay and co-authors [15-18]. Chattopadhyay et al. [15] 

discussed the dispersion equation of SH-waves in a monoclinic layer over a semi-infinite elastic medium with an 

irregularity of rectangular type. Chattopadhyay et al. [16] studied reflection and refraction phenomena of plane 

quasi-P waves at a corrugated interface between distinct triclinic elastic half-spaces. Chattopadhyay et al. [17] 

studied the shear wave propagation in a visco-elastic layer over a semi-infinite visco-elastic half-space having 

irregularity of parabolic and triangular notch type in the visco-elastic layer. Chattopadhyay et al. [18] discussed 

dispersion of SH-waves in an irregular non-homogeneous self-reinforced crustal layer over a semi-infinite self-

reinforced medium. Kumar et al. [19] investigated reflection and refraction of plane waves at an imperfect boundary 

of two different fibre-reinforced transversely isotropic thermo-elastic solid half-spaces under hydrostatic initial 

stress. Recently, Prasad et al. [20] studied reflection and refraction of SH-waves through non planar interface 

between visco-elastic and fibre-reinforced solid half-spaces. Some more recent works related to seismic waves of 

different types in heterogeneous, anisotropic and visco-elastic media with different geometries are considered by 

Kakar [21], Kumar et al. [22] and Vaishnav et al. [23].   

In the present investigation, using Rayleigh’s method of approximation, an attempt is made to consider the 

reflection and refraction of SH-waves at a corrugated interface between transversely isotropic inhomogeneous 

elastic solid and linear visco-elastic solid half-spaces. Formulae for reflection and transmission coefficients are 

obtained for the first and second order approximation of the corrugation. Further, the reflection and transmission 

coefficients for a periodic type interface are obtained in closed form for first order approximation and various graphs 

are drawn to show the effect of frequency and angle of incidence of the wave, corrugation of the interface and 

anisotropy, inhomogeneity and visco-elasticity factors of the half-spaces on the reflection and transmission 

coefficients. 

2    FORMULATION OF THE PROBLEM, BASIC EQUATIONS AND THEIR SOLUTIONS 

Geometry of the problem is shown in Fig. 1. Cartesian x and y axes are taken on the horizontal plane and the z  axis 

is vertically downward. A visco-elastic solid half-space 
2 ( 0)H z    over a transversely isotropic 

inhomogeneous solid half-space 
1 (0 )H z    separated by a corrugated interface given by z   is considered.  
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Fig.1 

Geometry of the problem. 

Here   is taken to be a periodic function of x  and independent of y, whose average value is zero. In Fourier 

series   is represented as follows: 
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where andn n  
 are Fourier coefficients, n is the series expansion order and i  is the imaginary unit.  

Introducing the constants , andn nh c s  as follows:  
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The special case, in which the geometry of the interface is expressed by one cosine term, that is, cosh px   

(obtained by putting 0, 2,3,4,...n n n     ) the amplitude and the period of the corrugation are given by h and 

2 p  respectively. 

The lower half-space 
1H  is characterised by elastic constants M  and N, density 

1  and the horizontal and 

vertical shear wave velocities: 
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(4) 

 

The upper half-space 
2H  has density

2 , complex frequency dependent shear modulus  , and complex 

frequency dependent shear wave velocity   .  

Let the variations of elastic parameters in the medium 
1H  be defined by 
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z
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(5) 

 

where 
0 0 0, ,M N   are constants and a  is the inhomogeneity parameter having dimension of length.  

The equation of SH-wave propagation in a transversely isotropic, inhomogeneous elastic medium with zero body 

forces can be written as: 
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(6) 

 

where 
1v  denotes the  displacement in y-direction.  

Consider the time harmonic wave and let 

 

1 ( ) ( )exp( )v X x Z z i t  (7) 

 

where   is the angular frequency. Using Eq. (7) in Eq. (6), we get, 
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where sin hb     is the x-component of the wave number given by Gupta [24] and   is the angle between the 

wave normal and the positive direction of the z-axis. 

Putting Z Z M  in the second equation of (8), we get 
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(10) 

 

For a wave propagating in the positive direction of x-axis, the solution of Eq. (8) is given by 
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where 0 0, andA A B  are constants. 

Consider a plane SH-wave of unit amplitude and period 2  , incident at the interface z   from the lower 

half-space
1H  then with the help of Eqs. (11) and (7) we can write 

 

 1 0

0

1 sin
exp( ) exp( ) exp

cosh( ) h

x
v qz B qz i t

M z a






   
     

   
 

 

(12) 

 

For the linear visco-elastic medium equation of motion is given by 
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and 2v  denotes the y-component of the displacement. 
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The solution of Eq. (13) is given by (Schoenberg [25]) 
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(15) 

 

where  
 is the complex angle of propagation. 

Since the interface is corrugated, the reflection and refraction phenomena will be affected and following waves 

will be generated at the corrugated interface due to the incident SH-wave: 

In the medium
1H :  

(i) A regularly reflected wave making an angle   with z-axis 

(ii) A spectrum of nth order of irregularly reflected waves at angle 
n
  in the left side of regularly reflected 

wave 

(iii) A similar spectrum of irregularly reflected waves at angle 
n
  in the right side of regularly reflected wave. 

In the medium
2H :  

(i) A regularly refracted wave making an angle    with z-axis 

(ii) A spectrum of nth order of irregularly refracted waves at angle 
n
  in the left side of regularly refracted 

wave 

(iii) A similar spectrum of irregularly refracted waves at angle 
n
  in the right side of regularly refracted wave. 

Total displacement 
1v  in the lower medium 

1H  is the sum of the displacements due to incident, regularly 

reflected and all irregularly reflected waves: 
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where  
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0
B  is the amplitude of the regularly reflected SH-wave, 

n
B

  and 
n

B
  are the amplitude of the irregularly reflected 

SH-waves with angle of reflection 
n


  and 

n


   respectively. 

Similarly, the total displacement 
2v  in the upper medium 

2H  is the sum of the displacements due to regularly 

transmitted waves and all irregularly transmitted waves: 
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where 
0D  is the amplitude of the regularly refracted wave, 


 is the angle which the refracted wave makes with the 

normal, 
n

D

 and 

n
D
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 are the amplitudes of the irregularly refracted waves with refracted angles 
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The angles   and  
 are connected by Snell’s law (Kaushik and Rana [26]): 
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Also by Spectrum theorem (Asano [2]) we have the following relations between the angles of the regular waves 

and the corresponding irregular waves: 
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3    BOUNDARY CONDITIONS 

The constants 
0B , 

0D , 
nB  , 

nD  , 
nB   and 

nD   can be determined with the help of boundary conditions satisfied at 

the interface z  ,  i.e. continuity of displacements and stresses (Gupta [11]): 

(i) 
1 2v v  

(ii) 1 1 2 2v v v vN
M

z M x z x
        
      

      
 

 

where    denotes the derivative of  with respect to x. 

Placing the values of 
1 2andv v  given by Eqs. (16) and (18) into these boundary conditions and making use of 

relations (5), (20) and (21), we get 
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4    SOLUTION FOR FIRST ORDER APPROXIMATION 

For working out the approximate solutions, it is assumed that the corrugation of the surface z   is so small that 

the terms of order higher than   may be neglected. Thus for first order corrugation, 
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using Eqs. (4), (5), (10), (14) and (20)  
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Eq. (25) gives the reflection coefficient 
0B  of SH-wave at a plane interface between transversely isotropic 

inhomogeneous and visco-elastic half-spaces, whereas the coefficient 
0D  is related to the transmission coefficient 

0T  by the relation 0 0 0T M D . 

Equating the coefficients of exp( )inpx  for nB 
 and nD 

 on both sides of the Eqs. (22) and (23), we have 
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(30) 

 

Similarly, equating the coefficients of exp( )inpx  for 
nB   and 

nD   on both sides of the Eqs. (22) and (23), we get 

 

 0 0 0 01n n n nB M D B q i M D r        (31) 
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(32) 

 

Solving Eqs. (29)–(30) and (31)–(32), one can obtain the coefficients nB 
, 

nB  , nD 
 and 

nD   for the first order 

approximation. nB 
 and 

nB   are the reflection coefficients of the irregularly reflected waves and as in the case of 

regular waves the transmission coefficients 
nT   and 

nT   of the irregularly refracted waves are given by the relation 

0n nT M D   and 
0n nT M D  . 

5    SOLUTION FOR SECOND ORDER APPROXIMATION 

For the solution of second order approximation the terms containing the third and higher powers of   are 

disregarded so that 

 
2( )

exp( ) 1
2

q
iq iq
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(33) 

 

Using Eqs. (1) and (33) into Eqs. (22) and (23), and comparing the terms independent of x, the coefficients of  

exp( )inpx , and those of exp( )inpx  separately on both sides of the equations thus obtained, we get 
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(38) 

 

 

By solving the above system of equations one can obtain the reflection and transmission coefficients of the 

reflected and refracted waves for the second order approximation. 
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6    REFLECTION AND REFRACTION COEFFICIENTS FOR SIMPLE HARMONIC BOUNDARY 

Now we shall evaluate the reflection and refraction coefficients for an interface of simple harmonic type. Putting 

1 10, ( 1); 2n n n h          in Eq. (1), the equation of the boundary surface is given by cosh px   and the 

amplitude and period of the corrugation in this case are given by h and 2 p  respectively. Putting 1n   in Eqs. 

(29), (30), (31) and (32) and solving the resulting equations the coefficients for the considered case for the first order 

approximation are obtained as follows: 

                                                      

 

where      

 

 

1B   and 
1B   are the reflection coefficients of the irregularly reflected waves for the first order approximation  

when the interface is simple harmonic type and the transmission coefficients 
1T   and 

1T   of the irregularly refracted 

waves in this case are given by the relation 1 0 1T M D   and 1 0 1T M D  . 

7    DISCUSSION OF PARTICULAR VISCO-ELASTIC MATERIALS 

In this section Voigt visco-elastic material and Maxwell’s visco-elastic material are taken into consideration. 

7.1 Voigt visco-elastic material 

If we take the half-space 2H  as Voigt’s visco-elastic material then   and    will be given by 

 

 

where   is the elastic modulus of the spring,   is the viscosity of the dashpot and  
1 2

0 2    is the zero 

frequency shear wave speed. In this case the values of
 1Q , 2Q , 1R  and 2R  of Eq. (28) are given by 
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where   

 

7.2 Maxwell’s visco-elastic material 

Taking the half-space 
2H  as Maxwell’s visco-elastic material   and    can be expressed as follows: 

 

 

where   is the elastic modulus of the spring ,   is the viscosity of the dashpot and  
1 2

2     is the infinite 

frequency shear wave speed. The values of
 1Q , 

2Q , 
1R  and 

2R  are given by 

 

 

where             

 

8    PARTICULAR CASES 

a) When the inhomogeneity of the half-space 
1H  is removed: 

In this case 
1 0a   and the problem reduces to the problem of reflection and transmission of SH-waves at a 

corrugated interface between transversely isotropic and visco-elastic solid half-spaces. 

b) When the anisotropy and inhomogeneity of the half-space 
1H  are removed: 

In this case, we have 1M N   , 1h v    , 
1 0a   and the problem  reduces to the problem  of reflection 

and transmission of SH-waves at a corrugated  interface between  isotropic and visco-elastic solid half-spaces. 

c) When the inhomogeneity of the half-space 
1H  and viscosity of the half-space 

2H  are removed: 

In this case, we have 
1 0a  , 

2 2 0Q R  , 0   and the problem  reduces to the problem  of reflection and 

transmission of SH-waves at a corrugated  interface between transversely isotropic and uniform elastic solid half-

spaces. 

d) When the anisotropy and inhomogeneity of the half-space 1H  and viscosity of the half-space 2H  are 

removed: 

In this case, we have 1M N   , 1h v    , 
1 0a  , 0   and the problem  reduces to the problem  of 

reflection and transmission of SH-waves at a corrugated  interface between  two uniform elastic half-spaces of 

different material properties (Asano [3]). 

e) When the corrugation of the interface, anisotropy and inhomogeneity of the half-space 1H  and viscosity of 

the half-space 2H  are removed: 
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In this case, we have 0  , 1M N   , 1h v    , 
1 0a  , 0   and the problem  reduces to the 

problem  of reflection and transmission of SH-waves at a plane boundary between two uniform elastic half-spaces of 

different material properties (Savarensky [27]) 

9    NUMERICAL RESULTS AND DISCUSSION 

In order to examine the effect of frequency and angle of incidence of the wave, irregularity of the boundary and 

different parameters of the both the half-spaces on the behavior of reflection and transmission of plane SH-wave 

when it incident obliquely at a corrugated interface between the two medium, we have computed the modulus of 

reflection and transmission coefficients numerically for an interface of simple harmonic type given by cosh px  . 

We have taken Voigt’s material as visco-elastic material and calculation are done for reflection and transmission 

coefficients for different values of inhomogeneity, anisotropy, visco-elasticity factors and frequency. For numerical 

illustrations following values are used (Gubbins [28]).  

For the lower half-space: 

 

 

For the upper half-space: 

 

 

Moreover, unless otherwise stated the others relevant parameters and values are taken as: 

 

 

The variations of modulus of reflection and transmission coefficients of regular and irregular waves for different 

values of anisotropy factor, inhomogeneity parameter, frequency etc., are shown through Figs. 2 to 7. In the Figs. 2-

7 we have used the notations B, T, B1, T1, B2,  and T2  respectively for modulus of the coefficients 

0 0 1 1 1, , , ,B T B T B  
 and 1T 

, and hereafter we shall use the same. 

Figs. 2(a-f) show the variation of B, T, B1, T1, B2 and T2  respectively with angle of incidence for different 

values of the inhomogeneity parameter h a . Curve labelled as 2, 3 and 4 corresponds for 

0.005, 0.010 and 0.015h a  respectively, whereas curve 1 corresponds to the case when the lower half-space is 

homogeneous. We observe that the effect of inhomogeneity on all the coefficients except T1  is more at higher 

values of angle of incidence, whereas the effect of inhomogeneity on T1  is high at lower value of angle of 

incidence. In case when the lower half-space is homogeneous B attains its maximum value at 90   and all other 

coefficients attains their minimum value at 90  , whereas in the inhomogeneous case points for maximum value 

of  B and minimum value of all other coefficients lies prior to 90  . Higher is the value of inhomogeneity factor 

lower is the value of angle of incidence for maximum or minimum values. Also at these points moduli of all the 

coefficients change their nature from increasing to decreasing and from decreasing to increasing. Besides these 

points of maxima and minima there also exist angles at which curves sharply change their nature. 
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(a) 

 
(b) 

  

  
(c) 

 
(d) 

  

 
(e) 

 
(f) 

Fig.2 

Modulus of reflection and refraction coefficients versus angle of incidence demonstrating the effect of inhomogeneity parameter. 
 

Figs. 3(a-f) show the effect of anisotropy factor  0 0N M   of the lower half-space on the modulus of 

different coefficients. Curves labelled as 2, 3, 4 and 5 corresponds to 1.5, 2, 2.5 and 3  , whereas curve 1 

corresponds to isotropic case. We see that anisotropy factor has significant effect on the moduli of all the 

coefficients. It is noticeable that the effect of anisotropy factor on B at angle where B  attain its maximum value and 

the effect of anisotropy factor on the modulus of all other coefficients at angle where they attains their minimum 

value is nil. It is also observed that anisotropy factor has no effect on the modulus of reflection and transmission 

coefficients of regularly reflected and transmitted waves at 0  . 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

  

 
(e) 

 
(f) 

Fig.3 

Modulus of reflection and refraction coefficients versus angle of incidence demonstrating the effect of anisotropy parameter 

( 10 2

0 3.99 10 /mM N  ). 

 

Figs. 4(a-f) show the effect of the parameter    of the visco-elastic half-space on the modulus of the different 

coefficients. We observe that modulus of the reflection coefficients of regularly and irregularly reflected waves 

increase with increase in the value of   , whereas modulus of the transmission coefficients of regularly and 

irregularly refracted waves decreases with increase in the value of   . As in Fig. 3 it is noticed that the effect of 

the parameter    on B  at angle where B attain its maximum value and the effect of parameter     on the 

modulus of all other coefficients at angle where they attains their minimum value is nil. 
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(e) 

 
(f) 

Fig.4 

Modulus of reflection and refraction coefficients versus angle of incidence demonstrating the effect of parameter   . 

 

Figs. 5 and 6 depict the effect of dimensionless frequency parameter 
0h   sayf  on the modulus of 

reflection and transmission coefficients of regular and irregular waves. Figs. 5 (a-f) show the variation of these 

coefficients with angle of incidence for different values of f. Curves labelled as 1, 2 and 3 corresponds to 

0.02, 0.03 and 0.04f   respectively. We observe that, except for higher angle of incidence modulus of all the 

coefficients except transmission coefficient of the regularly refracted waves increase with increase in frequency. 

Modulus of all the coefficients change their nature from increasing to decreasing and from decreasing to increasing 

at some higher values of  . Higher the frequency, higher is the value of   at which curves change their nature. 

Figs. 6(a-f) show the variation of modulus of all coefficients with frequency for different values of angle of 

incidence. Dotted curves correspond to the case when the lower half-space is homogeneous, whereas solid curves 

correspond to inhomogeneous case. We see that as the frequency increases the effect of inhomogeneity decreases. 
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(e) 

 
(f) 

Fig.5 

Modulus of reflection and refraction coefficients versus angle of incidence demonstrating the effect of frequency parameter 

0( )f h  . 
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(f) 

Fig.6 

Variation of modulus of reflection and transmission coefficients with frequency 0( )f h   for different values of angle of 

incidence (solid curve: inhomogeneous case, dotted curve: homogeneous case). 
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Figs. 7(a-d) show the variation of modulus of reflection and transmission coefficient of irregularly reflected and 

transmitted waves for different value of p. We observe that except for B2  the effect of p is high at lower value of 

angle of incidence. We also note that the parameter p has no effect on these coefficients at that value of   where the 

curve changes their nature.  

 

 
(a)  

(b) 

  

  
(c) 

 
(d) 

Fig.7 

Modulus of reflection and refraction coefficients versus angle of incidence demonstrating the effect of parameter p. 

10    CONCLUSIONS 

Using Rayleigh’s method of approximation reflection and transmission coefficients of a plane SH-wave incident at a 

corrugated boundary between transversely isotropic inhomogeneous and visco-elastic solid half-spaces are obtained 

for first and second order of approximation of corrugation. Further, these coefficients are obtained for an interface of 

periodic type for first order of approximation of corrugation. It is concluded that: 

(i) The reflection and transmission coefficients of the irregularly reflected and refracted waves are 

proportional to the amplitude of the corrugated interface and are strongly influenced by the period of the 

corrugation. 

(ii) The reflection and transmission coefficients of the irregularly reflected and refracted waves are very small 

in comparison to that of the regular waves. 

(iii) Reflection and transmission coefficients are strongly influenced by inhomogeneity and anisotropy factors 

of the lower half-space and the parameter   of the upper visco-elastic half-space. Modulus of all the 

coefficients except transmission coefficient of the regularly refracted waves increase with increase in the 

value of   , whereas transmission coefficient of the regularly refracted waves decreases with increase in 

the value of   . In case the lower half-space is homogeneous, modulus of the reflection coefficient of the 

regularly reflected waves attain its maximum value at 90  , whereas modulus of all other coefficients 

attain their minimum value at 90  . But in the non-homogeneous case, the angle of incidence for 

maximum value of modulus of the reflection coefficient of the regularly reflected and minimum value of 

modulus of all the other coefficients are less than 90 . This angle depends on the inhomogeneity of the 

lower half-space. Higher the value of inhomogeneity parameter, lower is the value of angle of incidence for 

maxima of modulus of the reflection coefficient of the regularly reflected waves and minima of modulus of 
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all the other coefficients. It is also observed that at this particular angle anisotropy factor of the lower half-

space, the parameter   of the upper visco-elastic half-space and the period of the corrugation have no 

effect on the modulus of the different coefficients. Furthermore, the effect of the anisotropy factor of the 

lower half-space on the modulus of the reflection and transmission coefficients of the regularly reflected 

and refracted waves is nil at 0  . 

(iv) It is found that the reflection and transmission coefficients are influenced by the frequency parameter. 

Except for higher angle of incidence modulus of all the reflection and transmission coefficients except 

transmission coefficient of regularly refracted waves increases with increase in frequency, whereas 

transmission coefficient of regularly refracted waves decreases with increase in frequency. 
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