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 ABSTRACT 

 The present investigation is concerned with the deformation of thermoporoelastic half 

space with incompressible fluid as a result of inclined load of arbitrary orientation. The 

inclined load is assumed to be linear combination of normal load and tangential load. 

The Laplace and Fourier transform technique are used to solve the problem. The 

concentrated force, uniformly distributed force and a moving force in time and 

frequency domain are taken to illustrate the utility of the approach. The transformed 

components of displacement, stress, pore pressure and temperature change are obtained 

and inverted by using a numerical inversion techniques. The variations of resulting 

quantities are depicted graphically. A particular case has also been deduced. 

                                                 © 2016 IAU, Arak Branch.All rights reserved. 

 Keywords : Inclined load;Time and frequency domain; Laplace and fourier transform.  

1    INTRODUCTION 

 OROELASTISITY is the mechanics of poroelastic solids with pores filled with fluid. Mathematical theory 

of poroelastisity deals with the mechanical behaviour of fluid saturated porous medium. Pore fluid generally 

includes gas, water and oil. Due to different motions of solid and fluid phases and complicated geometry of pore 

structures, it is very difficult to study the mechanical behaviour of a fluid saturated porous medium. The discovery 

of fundamental mechanical effects in saturated porous solids and the formulation of the first porous media theories 

are mainly due to Fillunger [1] ,Terzaghi [2,3 ,4] and their successors. 

Based on the work of Von Terzaghi [2,3], Biot [5] proposed a general theory of three dimensional consolidation. 

Taking the compressibility of the soil into consideration, the water contained in the pores was taken to be 

incompressible. Biot [6,7] developed the theory for the propagation of stress waves in porous elastic solids 

containing a compressible viscous fluid and demonstrated the existence of two types of compressional waves (a fast 

and a slow wave) along with one share wave. Biot’s model was broadly accepted and some of his results have been 

taken as standard references and the basis for subsequent analysis in acoustic, geophysics and other such fields.                         

For the thermoporoelastisity problems, coupled thermal and poro-mechanical processes play an important role in 

a number of problems of interest in the geomechanics such as stability of boreholes and permeability enhancement 

in geothermal reservoirs. A thermoporoelastic approach combines the theory of heat conduction with poroelastic 

constitutive equations and coupling the temperature fields with the stresses and pore pressure.    

Rice and Cleary [8] presented some basic stress-diffusion solutions for fluid saturated elastic porous media with 

compressible constituents. There exists a substantial literature treating the extension of the well known isothermal 
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theory to account for the effects of thermal expansion of both the pore fluid and the elastic matrix [eg. Schiffman[9], 

Bowen[10], Noorishad [11]]. 

McTigue [12] developed a linear theory of fluid saturated porous thermoelastic material and this theory allows 

compressibility and thermal expansion of both the fluid and solid constituents. He presented a general solution 

scheme in which a diffusion equation with temperature dependent source term governs a combination of the mean 

total stress and the fluid pore pressure. 

Kurashige[13]  extends the Rice and Cleary [8] theory to incorporate the heat transportation by a pore fluid flow 

in addition to the effect of difference in expansibility between the pore fluid and the skeletal solid and presented a 

thermoelastic theory of fluid-filled porous materials. This theory shows that the displacement field is completely 

coupled with the pore pressure and temperature field in general, however, for irrotational displacement; the first 

field is decoupled from the last two, which are still coupled to each other. This pore pressure-temperature coupling 

involves nonlinearity.     

Abousleiman and Ekbote [14] obtained the solutions for the inclined borehole in a porothermoelastic 

transversely isotropic medium.  Bai [15] studied the fluctuation responses of porous media subjected to cyclic 

thermal loading. Bai and Li [16] obtained the solution for cylindrical cavity in a saturated thermoporoelastic 

medium. 

Jabbari and Dehbani [17] considered the classical coupled thermoporoelastic model of hollow and solid cylinders 

under radial symmetric loading conditions and presented a unique solution. Ganbin et al. [18] obtained the solution 

in saturated porous thermoviscoelastic medium, with cylindrical cavity that is subjected to time dependent thermal 

load by using Laplace transform technique. Gatmiri et al. [19] presented the two-dimensional fundamental solutions 

for non-isothermal unsaturated deformable porous medium subjected to quasi- static loading in time and frequency 

domain. Li et al. [20] presented the study state solutions for transversely isotropic thermoporoelastic media in three 

dimensions.    

Jabbari and Dehbani [21] considered the quasi- static porothermoelasticity model of hollow and solid sphere and 

obtained the displacement, temperature distribution and pressure distribution due mechanical, thermal and pressure 

source. Liu et al. [22 ] studied the relaxation effect of a saturated porous media using the two dimensional 

generalized thermoelastic theory. Belotserkovets and Prevost [23] obtained an analytical solution of 

thermoporoelastic response of fluid-saturated porous sphere. 

Bai [24] derived an analytical method for the thermal consolidation of layered saturated porous material 

subjected to exponential decaying thermal loading. Mixed variation principal for dynamic response of thermoelastic 

and poroelastic continua was discussed by Apostolakis and Dargus [25]. Hou, et al. [26] discussed the three 

dimensional Green’s function for transversely isotropic thermoporoelastic biomaterial. Jabbari et al. [27] presented 

the thermal buckling analysis of functionally graded thin circular plate made of saturated porous material and 

obtained the closed form solutions for circular plates subjected to temperature load. 

Liu and Chain [28] discussed a micromechanical analysis of the fracture properties of saturated porous media. 

He et al. [29] studied the dynamic simulation of landslide based on thermoporoelastic approach. Nguyen et al. [30] 

discussed the analytical study of freezing behaviour of a cavity in thermoporoelastic medium. Wu et al. [31] 

presented a refined theory of axisymmetric thermoporoelastic circular cylinder.                                                        

Kumar and Ailawalia [32, 33] studied the response of moving inclined load in orthotropic elastic half-space and 

micropolar elastic half-space with voids respectively . Kumar and Rani [34] studied the general plane strain problem 

of thermoelastic half-space with voids as a result of inclined load due to different sources.  Sharma [35] investigated 

the deformation in a homogeneous isotropic thermodiffusive elastic half-space as a result of inclined load by 

assuming the inclined load as a linear combination of normal load and tangential load. Stress-strain state of a 

inclined elliptical defect in a plate under biaxial loading was discussed by Ostsemin and Utkin [36]. Stress-strain 

state of an elastic half plane under a system of inclined piecewise - linear loads was studied by  Bogomolov and 

Ushakov [37]. 

In the present paper, the investigation is concerned with the deformation of thermoporoelastic half space with 

incompressible fluid as a result of inclined load of arbitrary orientation. The inclined load is assumed to be linear 

combination of normal load and tangential load. The components of displacement, stress, pore pressure and 

temperature change are obtained in time and frequency domain. Numerical inversion technique is applied to obtain 

the resulting quantities in a physical domain. The resulting quantities are shown graphically to depict the effect of 

porosity  

The result of the problem may be applied in the field of engineering and geophysical problems involving 

temperature change. The physical applications are encounter in the context of problems like ground explosion, oil 

industries etc. This problem is also useful in the field of geomechanics, where the interest is about the various 

phenomenon occurring in the earthquakes and measuring the components of displacement, stress, pore pressure and 

http://www.sciencedirect.com/science/article/pii/S0020722511001200
http://link.springer.com/search?facet-creator=%22A.+N.+Bogomolov%22
http://link.springer.com/search?facet-creator=%22A.+N.+Ushakov%22
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temperature change due to the presence of certain sources. Also the present investigation is useful to study the 

deformation field around mining tremors and drilling into the crust of the earth.  It also contributes to the theoretical 

consideration of the seismic sources because it can account for the deformation fields in the entire volume 

surrounding the sources region.  

2    BASIC EQUATIONS   

Following Jabbari and Dehbani [38], the basic equations are 
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where u


 is the displacement component, p is the pore pressure,   is the bulk mass density, 1 sC

C
     is the 

Biot’s coefficient, 
3(1 2 )s

s

s

C
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
  is the coefficient of volumetric compression of solid grain, with 

sE  and 
s  

being the elastic modulus and Poisson’s ratio of solid grain, 
3(1 2 )

C
E


  is the coefficient of volumetric 

compression of solid skeleton, with E and v being the elastic modulus and Poisson’s ratio of solid skeleton, 
0T  is 

initial reference temperature, 
3 s

C


   is the thermal expansion factor, 

s  is the coefficient of linear thermal 

expansion of solid grain, 3( ( ) )w sY n n      and ( )p w s sn C C C     are coupling parameters, 
w  and 

wC  are  the coefficients of linear thermal expansion and volumetric compression of pure water, n is the porosity, k is 

the hydraulic conductivity, 
w  is the unit of pore water and 

0

(1 ) s s w wn C n C
Z

T

  
   is coupling parameter, 

w and 
s  are densities of pore water and solid grain and 

wC  and 
sC  are heat capacities of pore water and solid 

grain and K is the coefficient of heat conductivity. 

3    FORMULATION OF THE PROBLEM    

We consider homogeneous, isotropic, poroelastic thermal conducting half space 3 0x    of a rectangular Cartesian 

coordinate system 1 2 3( , , )x x x   having origin at the surface 3 0x    and 3x  – axis pointing vertically downward in the 

medium has been taken. We take an inclined load 0F , per unit length, is acting along the interface on 1x  axis and its 

inclination with 3x
 
axis is  . The complete geometry of the problem is shown in the Fig. 1(a), 1(b),1(c),1(d) and 

1(e). 
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Fig.1 

a) Inclined load on the fluid saturated thermoporoelastic half space. b) Components of the inclined load. c) Concentrated force 

on the fluid saturated thermoporoelastic half space. d) Uniformly distributed force on the fluid saturated thermoporoelastic half 

space.e) Moving force on the fluid saturated thermoporoelastic half space. 

 

For two dimensional problem, we assume the displacement vector u


 as: 

 

1 3( ,0, )u u u


  
(5) 

 

For further consideration it is convenient to introduce the dimensionless quantities defined as:  
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where *  is a constant having the dimensions of frequency.      

The displacement components 1u  and 3u  are related to the potential functions 1 3 1 3( , , ), ( , , )x x t x x t   as: 
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Making use of (5) on (1)-(3) and using the dimensionless quantities given by (6), on the resulting quantities and 

with the aid of (7), after suppressing the prime, yield 
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We define the Laplace and Fourier transforms as follows: 
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Applying Laplace and Fourier transforms defined by (12) and (13) on Eqs. (8)-(11) and eliminating p  and T  

from resulting equations, we obtain 
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Solving (14) and (15) and assuming that , , p   and 0T  as 
3x    we obtain the value of , , p   and 

T as: 
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The displacement components 
1u  and 

3u  are obtained with the aid of (12)-(13) and (16)-(17) as: 
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4    BOUNDARY CONDITIONS   

The boundary conditions at 
3 0x   are 
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where 1 2,P P  are the magnitudes of the forces and 
1( , )F x t  is a  known function of 1x and t.                                                                                                                                               

Applying Laplace and Fourier transforms defined by (12) and (13) on (22) and with the aid of (4),(6) along with  
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Substituting the values of 
1 3, ,u u p  and T from (20),(21) and (16) in the boundary condition (23) and with help 

of (24) and (25), after some simplifications, we obtain 
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and 
1 2 3 4, , ,     are obtained by replacing 

1 2[ , ,0,0]TP P   in  . 

5    APPLICATIONS  

5.1 Inclined loads 

For an inclined load
0F , per unit length, we have 

 

1 0 2 0cos , sinP F P F    (29) 

 

Using (29) in Eqs. (26)-(28), we obtain the corresponding expression for stresses, pore pressure and temperature 

in case of inclined load on the surface of half space. 

5.1.1 Time domain 

The expressions of stress component, pore pressure and temperature change are in transformed variable in which 

1( , )F x t is an unknown function. A different class of sources is represented by setting, 

 

1 1 1( , ) ( ) ( )F x t F x t  (30) 

 

where ( ) ( )t H t  ,where ()H  Heaviside unit step function , 1 1( )F x is a known function and takes two types of 

value representing the two different sources as, 
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Concentrated force: 

 

1 1 1( ) ( )F x x  (31) 

 

 where ()  is the Dirac-delta function.                      

Uniformly distributed force: 

 

1 1 1 1( ) ( ) ( )F x H x a H x a     (32) 

 

Applying the Laplace and Fourier transform defined by (12) and (13) on (30), with the aid of (31) and (32), yield 

 

( , ) 1/F s s   (33) 

 

For concentrated force, and 

 

( , ) [(2sin ) / ]F s a s    (34) 

 

For distributed force.                                                   

Moving force: 

 

1 1( , ) ( ) ( )F x t x t t     (35) 

 

where v is the uniform speed of the impulsive force at 
3 0x  . 

Applying the Laplace and Fourier transform defined by (12) and (13) on (35), we obtain 

 

( , ) 1/( )F s s i    (36) 

 

The expression for stress component, pore pressure and temperature change can be obtained for concentrated 

force, distributed forces and moving force by replacing ( , )F s  from (33),(34) and (36) in (26)-(28). 

5.1.2 Frequency domain 

In this case, we assume the time harmonic behaviour as, 

 

1 3 1 3 1 3 1 3( , , , )( , , ) ( , , , )( , ) i tu u p T x x t u u p T x x e    

 

In frequency domain, we take 

 

( ) i tt e    (37) 

 

The expressions for stresses, pore pressure and thermal source in frequency domain can be obtained by replacing 

s by i  in the expressions of time domain along with ( )s  to be replaced by i te   for concentrated and distributed 

force. 

The solution due to impulsive harmonic force, moving with uniform dimensionless speed v at 3 0x   is obtained 

by replacing 1( , )F x t  with 1( )x t   , whose Fourier transform is i te  . 

5.2 Special case  

In the absence of porosity effect, the boundary conditions reduce to 
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(38) 

 

and we obtain the corresponding expressions for stress components and temperature change  in thermoelastic elastic 

half space as: 
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where 
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and 
5 6 7, ,    are obtained by replacing 

1 2[ , ,0]TP P   in  
10 .     

The results obtained in (39)-(41) are similar if we solve the problem in thermoelastic half space due to inclined 

load of arbitrary orientation.                                                                         

5.3 Inversion of the transform 

The transformed  stresses, pore pressure and temperature are functions of the parameters of the Laplace and Fourier 

transforms s and   respectively and hence are of the form 
3( , , )f x s . To obtain the solution of the problem in the 

physical domain, we invert the Laplace and Fourier transforms by using the method described by Kumar et al. [39]. 

6    NUMERICAL RESULTS AND DISCUSSION  

With the view of illustrating the theoretical results and for numerical discussion we take a model for which the value 

of the various physical parameters is taken from Jabbari and dehbani [38]: 
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The variation of normal stress 33 , tangential stress 31 , pore pressure p and temperature change T for 

incompressible fluid saturated thermoporoelastic medium (FSPM)  and empty porous thermoelastic medium (EPM) 

are shown in Figs. 2-25 due to concentrated force (CS), uniformly distributed force (UDS), and moving force. In all 

these figures, solid line (      ), solid line with central symbol (- o - o -) and   solid line with central symbol (- x – x -) 

corresponds to the variations at 
0 0 00 ,45 ,90  respectively. Similarly small dashed line (------), small dashed line 
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with central symbol (- o - o -) and small dashed line with central symbol (- x – x -) correspond to the variations at 
0 0 00 ,45 ,90  respectively. The computation is carried out at 

3 1x   for the range 10 10x   . All the results are 

shown for one value of dimensionless width 1a   and one value of dimensionless velocity 1V  .                                                                                                                               

6.1 Time domain 

Figs. 2-13 show the variations due to concentrated force, uniformly distributed force and moving force respectively.  

Fig.2 shows the variation of normal stress component 
33  for both FSPM and EPM. The value of

33 for FSPM 

increases in the range 10 3x   for 0 00 , 45  and then oscillates with large magnitude, whereas for 090    

first increases and then decreases 
1x   increases. The value of

33  for EPM, first increases in the range 10 2.2x   

and then oscillates with small magnitude when 0 00 ,45  and for 090   its value converges near the boundary 

surface. 

Fig.3 shows the variation of tangential stress component 
31  for both FSPM and EPM. The value of

31 for FSPM 

oscillates for all values of   with large magnitude as 1x   increases, while for EPM, the value of
31 decreases in the 

range 10 2.2x   and then oscillates with small magnitude for all values of   as 1x  increase.  

Fig.4 and Fig.8 show the variation of pore pressure p for FSPM. The value of p for FSPM first decreases in the 

range 10 3.2x   when 0 00 ,45   and increases in the range 13.2 9x   and then decreases as 1x   increases 

whereas for extreme angle, with small initial increase, the value of p decreases in the range 11.5 4x    and then 

increases as 1x   increases. 

Behaviour of temperature T for FSPM and EPM is shown in Fig.5. The value of T for FSPM, when 0 00 ,45  , 

increases in the range 10 3.2x   and then oscillates whereas, for extreme angle, the value of T oscillates about the 

origin as 1x  increases. For EPM, the value of T decreases as 1x  increases when 0 00 ,45   whereas for 090  , it 

decreases in the range 10 2.1x 
 
and then converges near the boundary surface as 1x  increases. 

Fig.6 depicts the variation of normal stress component 
33  for both FSPM and EPM. The value of

33 for FSPM 

increases in the range 10 3x   for 0 00 ,45  and then oscillates with large magnitude whereas for 090   it 

increases and then decreases as 1x  increases. In case of EPM, the value of
33  , when 0 00 ,45  first increases in 

the range 10 2.2x   and then oscillates about the origin and for 090  its value first increases and then 

converges near the boundary surface. 

Fig.7 shows the variation of tangential stress component 
31  for both FSPM and EPM. The value of 

31  for 

FSPM increases in the range 10 2x   for initial angle and increases in the range 10 2.5x   for intermediate and 

extreme angles and then oscillates with large magnitude as 1x  increases. In case of EPM, the value of 
31  decreases 

in the range 10 2x   and then oscillates with small magnitude for all values of   as 1x  increases. 

Fig.9 shows the variation of temperature T for both FSPM and EPM. The value of T for FSPM increases in the 

range 10 3.5x   for initial and intermediate angles and then oscillates whereas for extreme angle its value 

oscillates as 1x  increases. In case of EPM, the value of T decreases exponentially for initial and intermediate angles 

and converges near the boundary surface for extreme angle as 1x  increases. 

Fig.10 depicts the variation of tangential stress component
 33 for both FSPM and EPM. The value of 33 for 

FSPM increases in the range 10 3x   for 
0 00 ,45  and then oscillates with large magnitude whereas for 

090  first increases and then decreases as 1x  increases. The value of
33  for EPM, when 

0 00 ,45  first 

increases in the range 10 2.2x   and then oscillates about the origin and for 090     its value first increases and 

then converges near the boundary surface as 1x   increases. 

The variation of tangential stress component 
31  for both FSPM and EPM is shown in Fig.11. The value of 

31  

for FSPM increases in the range 10 2x   for initial angle and increases in the range 10 2.5x   for intermediate 

and extreme angles and then oscillates with large magnitude as 1x  increases. In case of EPM, the value of 31  
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decreases in the range 
10 2x   and then oscillates with small magnitude for intermediate and extreme angles 

whereas for initial angle its value converges near the boundary surface as
1x increases. 

Fig.12 shows the variation of pore pressure p for FSPM. The value of p when 0 00 ,45   for FSPM first 

decreases in the range 10 4x    and increases in the range 14 9x    and then decreases as 1x   increases whereas 

for extreme angle, the value of p decreases in the range 10 4x    and then increases as 1x increases. 

Behaviour of temperature T for FSPM and EPM is shown in Fig. 13. The value of T for FSPM increases in the 

range 10 3.5x   for 0 00 ,45  and then oscillates whereas for extreme angle its value oscillates about the origin 

as 1x  increases. In case of EPM, the value of T decreases gradually for 0 00 ,45   and converges near the boundary 

surface for 090  as 1x  increases. 
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Fig.2 

Variation of normal stress 33   w.r.t distance 1x due to 

concentrated force.   
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Fig.3 

Variation of tangential  stress 31  w.r.t distance 1x  due to 

concentrated force. 

  

0 2 4 6 8 10
Distance x1

-0.5

0

0.5

1

1.5

2

P
o

re
 P

re
ss

u
re

 p

FSPM()

FSPM()

FSPM()

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Variation of pore pressure p w.r.t distance 1x  due to 

concentrated force. 
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Fig.5 

Variation of temperature T w.r.t distance 1x  due to 

concentrated force. 
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Fig.6 

Variation of normal stress 33 w w.r.t distance 1x due to 

distributed  force.   
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Fig.7 

Variation of tangential  stress 31  w.r.t distance 1x  due to 

distributed force. 
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Fig.8 

Variation of pore pressure p w.r.t distance 1x  due to 

distributed force.   
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Fig.9 

Variation of temperature T w.r.t distance 1x  due to  

distributed force. 
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Fig.10 

Variation of normal stress 33 w w.r.t distance 1x due to 

moving  force.   
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Fig.11 

Variation of tangential  stress 31  w.r.t distance 1x due to 

moving  force. 
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Fig.12 

Variation of pore pressure p w.r.t distance 1x due to moving 

force. 
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Fig.13 

Variation of temperature T w.r.t distance 1x due to  moving 

force. 

6.2 Frequency domain 

Figs.14-25 show the variations due to concentrated force, uniformly distributed force and moving force respectively.  

Behaviour of normal stress component 
33  for FSPM and EPM is shown in Fig. 14. The value of 

33  for FSPM, 

when 0 00 ,90   oscillates oppositely in the range 10 5.5x   and then shows the same behaviour whereas for 

intermediate  angle its value oscillates about the origin as 1x  increases. In case of EPM, the value of 
33  increases 

in the range 10 2.2x   and then oscillates with large magnitude whereas for initial angle its value oscillates about 

the origin as 1x  increases. 

Fig.15 depicts the variation of tangential stress component 
31  for both FSPM and EPM. The value of 

31  for 

intermediate and extreme angles, for FSPM, oscillates oppositely whereas for initial angle its value oscillates with 

large magnitude as 1x  increases. In case of EPM, with small initial decrease, the values of 
31  converges near the 

boundary surface for 00  whereas for
0 045 ,90  , the values of 

31  decreases in the range 10 4.3x   and then 

oscillates as 1x increases.  

Fig.16 and Fig.20 show the variation of pore pressure p for FSPM. The value of p for FSPM, when
0 00 ,90  , 

oscillates oppositely whereas for 045  with small initial increase its value decreases in the range 11.5 5.5x  , 

increases in the range 15.5 8.5x  and then decreases as 1x  increases. 

Behaviour of temperature T for FSPM and EPM is shown in Fig.17. The value of T for FSPM, when 0 00 ,90  , 

oscillates oppositely whereas for 045   its value oscillates about the origin as 1x  increases. In case of EPM, for 

all value of , the value of T increases in the range 10 4.1x  , decreases in the range 14.1 7.1x  and then 

increases as 1x  increases. 

Fig.18 depicts the variation of normal stress component 
33  for both FSPM and EPM. The value of

33 , for 

FSPM, when 00    decreases in the range 10 1.2x   and then oscillates whereas for 
0 045 ,90   its value, for 

both FSPM and EPM, first increases and then oscillates as 1x  increases and when 00   in case of EPM, its value 

first increases and then oscillates as 1x  increases. 

Fig.19 shows the variation of tangential stress component 31  for both FSPM and EPM. The value of 31  for 

intermediate and extreme angles, for FSPM, oscillates oppositely whereas for initial angle its value oscillates with 

large magnitude as 1x  increases. In case of EPM, with small initial decrease, the values of 
31  converges near the 

boundary surface for 00  whereas for
0 045 ,90  , the values of 

31  decreases in the range 10 4.3x   and then 

oscillates as 1x  increases. 

Behaviour of temperature T for FSPM and EPM is shown in Fig. 21. The value of T for FSPM, when
0 00 ,90  , 

oscillates oppositely whereas for 045   its value oscillates about the origin as 1x  increases. In case of EPM, for 
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all value of , the value of T increases in the range
10 4.1x  , decreases in the range

14.1 7.1x  and then 

increases as 
1x  increases. 

Behaviour of normal stress component 
33  for FSPM and EPM is shown in Fig. 22. The value of

33 , for FSPM, 

when 00  decreases in the range 
10 1.2x   and then oscillates, whereas for 0 045 ,90  , its value, for both 

FSPM and EPM, first increases and then oscillates as 
1x  increases and when 00   in case of EPM, its values first 

increases and then oscillates as 
1x  increases. 

Fig.23 depicts the variation of tangential stress component 
31  for both FSPM and EPM. The value of 

31  for 

all values of    oscillate with small magnitude as 
1x  increases. In case of EPM, when

0 045 ,90  , the values of 

31  decreases in the range 10 4.2x   and then oscillates whereas for 00  with small initial decrease its value 

oscillates as 
1x  increases.    

Fig.24 shows the variation of pore pressure p for FSPM. The values of p for FSPM oscillates with large 

magnitude for  0 00 ,90 
 

and when 045  , with small initial increase, its value decreases in the range 

11.6 5.5x  , increases in the range 15.5 8.5x  and then decreases as 1x  increases. 
 

Behaviour of temperature T for FSPM and EPM is shown in Fig. 25. The value of T for FSPM, when 0 00 ,90  , 

shows the opposite behaviour whereas, for 045  , with small initial increase, its value decreases in the 

range 11 5.2x 
 
and then oscillates as 1x  increases. In case of EPM, for all values of   , the value of T increases 

in the range 10 4.2x 
 
and then oscillates as 1x  increases.  
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Fig.14 

Variation of normal stress 33 w.r.t distance 1x due to 

concentrated force (frequency domain). 

  

0 2 4 6 8 10
Distance x1 

-40

-20

0

20

40

T
a

n
g
e

n
tia

l s
tr

e
ss

 


 

FSPM()

FSPM()

FSPM()

EPM()

EPM()

EPM()

 

 

 

 

 

 

 

 

 

 

 

 

Fig.15 

Variation of tangential  stress 31  w.r.t distance 1x due to 

concentrated force (frequency domain). 
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Fig.16 

Variation of pore pressure p w.r.t distance 1x due to 

concentrated force (frequency domain).   
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Fig.17 

Variation of temperature T w.r.t distance 1x due to 

concentrated force(frequency domain). 
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Fig.18 

Variation of normal stress 33  w.r.t distance 1x due to 

distributed  force(frequency domain).     
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Fig.19 

Variation of tangential  stress 31 w.r.t distance 1x due to 

distributed force(frequency domain).  
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Fig.20 

Variation of pore pressure p w.r.t distance 1x due to 

distributed force (frequency domain). 
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Fig.21 

Variation of temperature T w.r.t distance 1x due to  

distributed force(frequency domain). 
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Fig.22 

Variation of normal stress 33 w w.r.t distance 1x due to 

moving  force(frequency domain).      
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Fig.23 

Variation of tangential  stress 31 w.r.t distance 1x due to 

moving  force(frequency domain). 
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Fig.24 

Variation of pore pressure p w.r.t distance 1x due to 

moving force (frequency domain).     
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Fig.25 

Variation of temperature T w.r.t distance 1x due to  moving 

force (frequency domain). 

 

7    CONCLUSIONS 

Analysis of displacement, stress, pore pressure and temperature change due to concentrated force, uniformly 

distributed force and a moving force due to inclined load in time and frequency domain is a significant problem of 

continuum mechanics. Integral transform technique has been used which is applicable to wide range of problems in 

thermoporoelasticity.  

The present investigation is concerned with the deformation of thermoporoelastic half space with incompressible 

fluid as a result of inclined load of arbitrary orientation. The components of displacement, stress, pore pressure and 

temperature change are obtained in thermoporoelastic medium due to the various sources by using the Laplace and 

Fourier transforms. Appreciable porosity effect and effect of change in angle of inclination of inclined load are 

observed on the components of normal stress, tangential stress, pore pressure and temperature change. 

It is observed that for time domain the value of 33 31, , ,p T  for FSPM oscillates with large magnitude as 

compared to the values for EPM. Also on the point of application of concentrated force, distributed force and 

moving force, the porosity effect increases the values of 
31  and  p while reverse behavior is observed in the values 

of 
33 and T. In frequency domain, it is observed that the trends of variations of stresses, pore pressure and 

temperature change on the application of concentrated force, distributed force and moving force are similar in nature 

with significant difference in their magnitude.  

All the field quantities are observed to be very sensitive towards the angle of inclination and porosity parameter. 

Angle of inclination and porosity parameters have oscillatory effects on the numerical value of the physical 

quantities. The result obtained as a consequence of this research work should be beneficial for researchers working 

on thermoporoelastic solids. The present study presents a more realistic model for further investigation. 
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