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 ABSTRACT 

 In the present work the pull-in voltage of a micro cracked cantilever beam 

subjected to nonlinear electrostatic pressure was studied. Two mathematical 

models were employed for modeling the problem: a lumped mass model and a 

classical beam model. The effect of crack in the lumped mass model is the 

reduction of the effective stiffness of the beam and in the beam model; the crack 

is modeled as a massless rotational spring the compliance of which is related to 

the crack depth. Using these two models the pull-in voltage is extracted in the 

static and dynamic cases. Stability analysis is also accomplished. It has been 

observed that the pull-in voltage decreases as the crack depth increases and also 

when the crack approaches the clamped support of the beam. The finding of this 

research can further be used as a non-destructive test procedure for detecting 

cracks in micro-beams. 

                                                       © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 ICRO electromechanical systems (MEMS) are systems that consist of small-scale electrical and mechanical 

components designed for specific purposes. MEMS devices have attracted attentions in recent years because 

of their advantages such as light weight, small size, low-energy consumption and high accurate performance and 

also simple construction and their suitability with micro-fabrication technology. The micro-cantilever beams are 

widely used in micro-electromechanical systems. The micro-cantilever beams are the main part of Micro-actuators 

such as Capacitive Micro-switches. The electrostatic actuators are deformable condensers and often made of two 

parts: one deformable electrode and one or more fixed electrodes. Application of voltage between the fixed 

electrodes and deformable electrode induces electrostatic forces that result in deformation of deformable electrodes 

[1]. The electrostatic actuation is used greatly as a provoking in electrostatic actuators such as capacitive micro-

switches, resonate sensor and optical scanner [2]. Elata and Bamberger [3] studied the dynamic response of 

electrostatic actuators with multiple DOF that are driven by multiple voltage sources. Zhang and Zhao [4] used the 

one-mode analysis method to find out the pull-in voltage and displacement. They showed that for low axial loading 

range, this method shows a little difference in the established multi-mode analysis on predicting the pull-in voltage. 

Rezazadeh et al. [5] studied the static behavior of a fixed-fixed and cantilever micro-beam using both of the lumped 

and distributed models to the DC voltage. By the use of step by step linearization method (SSLM) they solved the 
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governing static equation and then they offered the closed-form solution for calculation of pull-in voltage. Pull-in 

instability as an inherently nonlinear and crucial effect continues to become increasingly important for the design of 

electrostatic MEMS and NEMS devices and ever more interesting scientifically [6]. Choi and Lovell [7] calculated 

numerically the static deflection of micro-beam using a shooting method. Their model consists of electrostatic force 

and mid-plane stretching force. Chowdhury et al. [8] proposed the closed-form solution for pull-in voltage in micro 

cantilever beams too.  

When the rate of voltage variation is not negligible, the effect of inertia has to be considered. The pull-in 

instability related to this situation is called dynamic pull-in instability and the critical value of voltage, 

corresponding to the dynamic instability, is called dynamic pull-in voltage. Chao et al. [9] have investigated DC 

dynamic pull-in instability for a generalized clamped-clamped micro beam based on a continuous model and 

bifurcation analysis. Krylov [10] has investigated the dynamic pull-in instability of micro beam subjected to 

nonlinear squeeze film damping using a reduced order model. Silicon and Silicon-based micro-beams are the most 

frequently used in MEMS devices such as pressure sensors, accelerometers, RF micro switches and so forth. These 

micro-beams are often subjected to destructive mechanical and chemical environments. In spite of a decade of 

investigation on fatigue failure of silicon-based materials, failure mechanism of micro-scale thin silicon micro-

beams is not fully studied [11]. Silicon is a brittle material at room temperature. In the absence of hydrostatic 

confining pressures to suppress fracture, silicon display no dislocation activity, even at high stresses [12] thus silicon 

display no time-dependent cracking when subjected to cyclic loading conditions. However, experimental results 

have shown otherwise. Silicon-based micro-beams degrade and fail under cyclic loading condition in ambient air 

and at room temperature [13, 14]. Crack initiation and growth have also been reported in micro-sized silicon films 

even in the absence of pre-cracks under fatigue loading [13]. Fatigue failure mechanism of silicon-based microfilms 

has been described by two distinct methodologies in the literature [11]. In first methodology, the microfilms of 

silicon subjected to cyclic tension/compression loading undergo fatigue and could ultimately fail as a result of 

damage produced by compressive reversals, rather than environment stress corrosion cracking. The second 

mechanism suggests that the fatigue of silicon-based microfilms occurs through a process of sequential, 

mechanically induced oxidation and environmentally assisted cracking of the surface layer of material that forms 

upon reaction with atmosphere that is termed as reaction-layer fatigue. This progressive accumulation of fatigue 

damage is accompanied with a decrease in the stiffness of microfilms of silicon materials. 

Motallebi et al. [15] studied the effects of the open crack on the static and dynamic pull-in voltages of 

electrostatically actuated micro-beams. They solved the governing static and dynamic equations by Galerkin-based 

Reduced Order Model. Each single-side open crack in the micro-beam is modeled by a massless rotational spring 

and the cracked mode shapes and corresponding natural frequencies are calculated by considering the boundary and 

patching conditions and using transfer matrix methods. Their results show that the existence defects such as crack, 

leads to reduction of the stiffness of micro-beam and consequently decreases the natural frequencies. Sourki and 

Hoseini [16] investigated the analysis for free transverse vibration of a cracked micro-beam based on the modified 

couple stress theory within the framework of Euler–Bernoulli beam theory. The cracked beam is modeled by 

dividing the beam into two segments connected by a rotational spring located at the cracked section. In this 

investigation, the influence of diverse crack position, crack severity, material length scale parameter as well as 

various Poisson’s ratio on natural frequencies is studied. Transverse vibration of cracked nano-beam has been 

studied based on modified couple stress theory by Tadi Beni et al. [17]. They modeled the crack discontinuity by a 

rotational spring and found that the effects of the crack parameter and crack location on transverse frequency of the 

cracked nano-beam are quite significant. Nonlocal cracked-rod model is used to analysis the torsional vibrations of a 

carbon nano-tube with a circumferential crack by Loya et al. [18]. In their work, the cracked rod is modeled by 

dividing the cracked element into two segments connected by a torsional linear spring whose stiffness is related to 

the crack severity. Barr and Christides [19] derived the differential equation and associated boundary conditions for 

a uniform Euler-Bernoulli beam containing a pair of symmetric cracks using Hu-washizu principle. They introduced 

the effect of crack in the form of perturbation in the stresses, strains, displacements and momentum fields as a local 

function which assumes an exponential decrease with the axial distance from the crack. Measuring the flexural 

vibrations of a cracked cantilever beam and comparing their results with the analytical results of Rizos et al. [20], 

they were able to detect the location and depth of the crack in the beam. Chondros et al. [21] developed continuous 

cracked beam vibration theory for the vibration of Euler-Bernoulli beams. The Hu-Washizu-Barr variational 

formulation was used to develop the differential equation and boundary conditions of the cracked beam. Behzad et 

al. [22] presented a new linear theory for bending stress-strain analysis of a cracked beam. Li [23] proposed an exact 

approach for free vibration analysis of a non-uniform beam with an arbitrary number of cracks and concentrated 

masses. Binici [24] proposed a new method to obtain the Eigen frequencies and mode shapes of beams containing 
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arbitrary number of cracks and subjected to axial force. The author supposed that the cracks introduce local 

flexibility and are modeled as rotational springs.  

The general issue is the susceptibility of the silicon-based micro-beams to expose the micro-cracks. The 

formation of micro-cracks would gradually change the resonant frequency and electrical resistance of micro-devices, 

degrade the sensor output and, most seriously, lead to the failure of MEMS devices [25]. So, modeling the effect of 

cracks on mechanical behavior of micro-beams is worthy of investigation. It worth pointing out that, in 

microstructures, the size effect cannot be interpreted implicitly by beam models based on classical (macro) elasticity 

theories due to lack of material length scale parameters. Then, higher order continuum (nonlocal) theories, which 

contain additional material length scale parameters besides the classical material constants (Lame) have been 

proposed to predict the size dependence of these nano/micro-structures. Mostly generally known higher order 

theories are the micro-polar (Cosserat) elasticity, nonlocal theory of Eringen, strain gradient elasticity and couple 

stress theories [26]. The silicon is the most common material in the MEMS/NEMS devices. Sadeghian et al. [27] 

experimentally showed that the size-dependent mechanical properties for a silicon beam are significant as the beam 

thickness approaches nano-meter scale. Therefore, as the scales of the structure in this study are considered in the 

range of micro, the material length scale can be neglected, in other words,  1 0  (I refers to length scale parameter) 

[28]. Therefore, the effective elasticity modulus can be considered equal to the classic modulus of silicon. Free 

vibration of edge cracked functionally graded micro scale beams based on the Modified couple stress theory 

investigated by Akbas [29]. The cracked beam is modeled as a modification of the classical cracked-beam theory 

consisting of two sub-beams connected by a massless elastic rotational spring. They concluded that the crack 

location and crack depth play an important role in the vibration response of the FG micro beams. Torabi and 

Dastgerdi [30] published an analytical method for free vibration analysis of Timoshenko beam theory applied to 

cracked nano-beams using a nonlocal elasticity model. They obtained frequencies and vibration mode of cracked 

nano-beams.  

In spite of many efforts for investigating the behavior of cracked beams, there are a few studies on the behavior 

of micro-cracked beam devices in literature. Then, this paper is devoted to the investigation of the behavior of micro 

cracked beams under electro-statically actuation. A massless rotational spring model has been used to describe the 

local flexibility induced by the crack in the beam. The mode shape function of per segment of the beam has been 

derived using the fundamental solutions and recurrence formulas. The main advantage of this method is that it is 

applicable for a non-uniform beam with any number of cracks and any kind of boundary conditions. Static and 

dynamic analyses have been performed for extracting the deflection of the beam and also, the pull-in voltage, the 

voltage in which the system becomes unstable. On the other hand, a lumped mass model has been derived for the 

system for the purpose of verification of the results. Stability analysis has been accomplished using both the 1DOF 

and the beam model. The results have been compared, in the special case of a beam without any crack, with those 

cited in the literature showing good agreement. It has been concluded that the pull-in voltage decreases with the 

crack depth increase. On the other hand, when the crack approaches the clamped end of the beam, the pull-in voltage 

experiences further decrease. The results of the present investigation can also be used as set points for a non-

destructive testing procedure for detecting crack in a micro-cantilever beam. 

2    MODEL DESCRIPTION AND ASSUMPTIONS   

In order to analyze the effects of an edge crack on the mechanical behavior of a MEMS switch, a cantilever micro-

beam subjected to a nonlinear electrostatic pressure is considered (Fig. 1). 

 

 

 

 

 

 

 

 

 

Fig.1 

An electrostaticlly-actuated micro cantilever beam with an 

edge crack. 
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The micro-beam is considered to be isotropic and homogenous with a length L , width b and thickness h. The 

micro-beam has a crack with a depth a  at the position 
cx x . 

The micro-beam is considered to be suspended over a stationary electrode (substrate) and is subjected to an 

actuation voltage V. Initial gap between the micro-beam and the stationary electrode is 
0g . When a voltage is 

applied to the micro-beam and substrate, the attractive electrostatic force pulls the micro-beam toward the stationary 

electrode. When the voltage is increased, the distance of the two beams is decreased. As the voltage is reached to a 

critical value which is known as the pull-in voltage, the movable beam abruptly collapses to the substrate. 

  The electrostatic actuation exerted on the capacitor introduces an electric energy 
eW  and complementary 

energy *

eW [1]:  

 
22

* 0

0 0 0
0

,
2 2( )

q q q

e e

AVq q
W Vdq dq W qdV

C C g w


    

  
 

     (1) 

 

In which the following relations are used 
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The electrostatic attraction force 
eF  between the movable plate and fixed ground plate can be obtained by 

differentiating the energy stored in the capacitor structure with respect to the deflection of the movable plate as: 
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In Eq. (3), A b L   is the capacitor surface and 
0   is the permittivity of the dielectric medium and 

eF  is the 

total value of the electrostatic force. Severity of this force per unit length of the micro-beam is written as: 
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The governing equation for the dynamic behavior of the micro-cantilever beam, subjected to non-uniform 

electrostatic force, can be expressed as: 
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     (5) 

 

The beam is considered wide when 5b h . Wide beams exhibit plane-strain conditions and therefore, effective 

modulus E  becomes 2(1 )E  , where E  and v  are the Young’s modulus and Poisson’s ratio, respectively. A 

beam is considered narrow, when 5b h  . For this case effective modulus E  becomes E . I is the moment inertia 

of the cross-section,    is the density,  
0  and 

0g is the dielectric constant of the gap medium and the initial gap, 

respectively.  

3    SOLUTION OF THE PROBLEM  

Eq. (5) is a nonlinear differential equation which must be solved with an iterative numerical procedure. For this to be 

achieved, we applied two steps for our solution. At first by applying step by step linearization method (SSLM), the 

nonlinear governing equation is reduced to an ordinary differential equation in each step of solution then for solving 

these ordinary differential equations Galerkin procedure was employed. Using free flexural vibration shape 



607                               Crack Influences on the Static and Dynamic Characteristic.…                         
 

 

© 2018 IAU, Arak Branch 

functions for micro cracked cantilever beam, which satisfy the boundary conditions, the static and dynamic solution 

is investigated. 

3.1 Derivation of the shape functions for a cracked beam 

In this part, at first the shape functions of a cracked beam are extracted and using these shape functions the 

displacement of the micro beam and static and dynamic pull-in voltage of the system are calculated. 

The following assumptions are considered for the cracked beam:  

-    The beam is slender.  

-    The crack is considered to be stationary open edge narrow notch with parallel faces.  

-    The deformations are supposed to be small.  

-    The plane strain assumption has been used. 

-    The material is assumed to be linear elastic. 

-    It is assumed that the crack faces do not contact in the loading process.  

For Euler-Bernoulli beam the differential equation of free flexural vibration of an un-cracked beam is:  
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     (6) 

 

Eq. (6) can be solved using the separation of variables technique of the form: 
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Substituting Eq. (7) in Eq. (6) yields: 
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In Eq. (8), ω is the circular natural frequency of the transverse vibration. The general solution for Eq. (8) can be 

written in terms of some constants representing the boundary conditions of the beam at x=0:  
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     (9) 

 

In Eq. (9),   is the non-dimensional length parameter ( )x L , and the parameters (0),  (0),  (0),  (0)Y Y Y Y    

correspond to the boundary conditions. These relations are given as: 
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where (0),  (0),  (0)M Q  are slope, moment and shear force at 0  , respectively. The functions 

( ),  ( ),  ( ),  ( )A B C D   
 
are non-dimensional functions which are selected linearly independent. They must 

satisfy the following conditions: 
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Eq. (8) can be solved to yield the following forms for the above mentioned functions [24]: 
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In which
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  . Due to the presence of the crack, the deflection of the beam should be presented 

with two different functions 
1 2( ),  ( )Y Y  .  The expression for the first part of the beam (before the crack) is as 

follows: 
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The boundary conditions at 0 
 
can be used to reduce Eq. (13) to a form which includes only two of initial 

parameters. A model of massless rotational spring is adopted for the crack to describe the local flexibility due to the 

presence of the crack [24, 31- 32]. According to this method, it is required that continuity of displacement, moment, 

and shear force to be satisfied. Also jump condition for the slope at the position of the crack needs to be satisfied due 

to the presence of the rotational spring. The continuity conditions of the beam at the crack position can be expressed 

as:  
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 Jumping condition of the slope is as: 
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In Eq. (15),  
1C  is the non-dimensional flexibility of the rotational spring representing the effect of the crack at 

the location 
c . For a one sided open crack, 

1C  is given in the following form [28-29]: 
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In Eq. (16), a is the depth of the crack and h  is the depth of the beam section and L  refers to the length of the 

beam. In order to satisfy the jump condition of the slopes (Eq. (15)), and the continuity of shear at the crack location, 

the following expression needs to hold [24]: 
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It can be seen that when 
c   then (0) 0,  (0) 1,  (0) 0,  (0) 0.B B B B     

 
It means that all the conditions 

at the crack location are satisfied. This method is very general and it could be used for any number of cracks. If we 

focus our study on the cantilever beam with a single edge crack (Fig. 1), application of the boundary conditions at 

the starting point of the beam yield the mode shape functions for each segment in the following form: 
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The boundary conditions corresponding to the free end of the beam are as follows: 
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Applying Eqs. (19) on (18), leads to:  
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Non-trivial solution of the set of Eqs. (20) can be obtained by putting the determinant of the coefficient matrix 

equal to zero. The resulting equation gives the Eigen frequencies of the cracked beam and also the shape functions 
for each segment of the beam.  

3.2 Static analysis  

In this section we proposed solution method with introducing the crack effect in the static solution. This method 

consists of two stages: at first, the step by step linearization method (SSLM) is applied to the nonlinear differential 

equation and then the Galerkin based weighted residual method is used to discretize the resultant linear differential 

equation.  For using this method, the variations of parameters are considered in the following form [35]: 
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In Eq. (22),  ( )x  is an unknown function which should be determined in each step: 
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Considering Taylor series expansion of the electrostatic force in Eq. (24) about the static equilibrium position in 

step i, i.e.,  
iw  results in: 
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g w g w g w

  
  



  
    

   (25) 

 

It can be noted that in this expansion, only two terms of the series is considered. Substituting Eqs. (22), (23) and 

(24) in Eq. (25) yields: 

 
2 2 24 4 4

0 1 0 1 0 11

4 4 4 2 2 3

0 1 0 0

( )
( )

2( ) 2( ) ( )

i i ii i

i i i

bV bV bVd w d w d x
EI EI EI x

dx dx dx g w g w g w

  
  



    
    

   (26) 

 

Subtracting Eq. (23) from Eq. (26) leads to the following linear differential equation: 

 
2 2 24

0 1 0 1

4 3 2

0 0

( )( )
( )

( ) 2( )

i i i

i i

bV b V Vd x
EI x

dx g w g w

 
  

 
   

   (27) 

 

Now, for solving this equation, Galerkin weighted residual method is utilized. In this method, the solution is 

approximated as: 

 

1

( ) ( )
N

n n

n

x a x 



 

   (28) 

 

In this equation ( )n x  are the shape functions for the cracked beam, as derived in Eq. (18). 'na s
 
are unknown 

coefficients which should be determined. Substituting the approximated solution into Eq. (27), leads to the following 

residual: 

 
2 2 2
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1 3 2
1 10 0
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N N
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n ni i

bV b V V
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g w g w

 
  

 


  

 
 

 
   (29) 

 

Based on the Galerkin weighted residual method, 
na  can be determined in such a manner the weighted integral 

of the problem vanishes: 

 

1
0

0,     m=1,2,..,N
l

m R dx 
 

   (30) 

 

Applying Eq. (29) on Eq. (30) leads to: 

 

1

;    m=1,2,..,N
N

mn n m

n

K a F

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   (31) 

 

where 
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,
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 

   
     

    
  

 
   (32) 

 

Eq. (31) is a set of N equations which can be solved to give N unknowns 
na .

 
After finding ' ,na s  

 
one can 

compute ( )x
 
and as a result ( )w x  in each step of DC voltage application.

 

3.3 Dynamic analysis 

In this section the instability of dynamic pull-in is studied, when a step DC voltage is applied on the cracked beam. 

The geometric parameters of the problem are 
c100 ,  x 0,L m   and 1.5a m . The dynamic equation of the 

deflection of the beam subjected to electrostatic step DC voltage is as follows: 
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24 2

0

4 2 2

02( )

dcbVw w
EI A

x t g w




 
 

    
   (33) 

 

For convenience, the following non-dimensional parameters are introduced (denoted by hats): 

 
4

0

ˆˆ ˆ,  ,  ,  
w x t bhL

w x t T
g L T EI


   

 
    

 

Applying the non-dimensional parameters on Eq. (33) leads to: 

 
24 2

 

4 22

ˆ ˆ

ˆˆ ˆ2(1 )
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
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 
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   (34) 

where: 

 
4

0

3 3

0

6 L

Eh g


 

 
    

 

Next, we generate a reduced-order model by discretizing Eq. (34) to a finite-degree-of-freedom system 

consisting of ordinary-differential equations in time. The un-damped linear mode shapes of the straight micro 

cracked beam can be used as the base functions in the Galerkin procedure. To this end, we express the deflections 

as: 

 

0

ˆ ( , ) ( ) ( )
N

n n

n

w x t U t x

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   (35) 

 

where ( )nU t  is the 
thn  generalized coordinate and ( )n x   is the 

thn  linear un-damped mode shape of the straight 

micro cracked beam. Substituting Eq. (35) in Eq. (34) yields: 
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2
0 0
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N N
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V
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   (36) 

 

Multiplying Eq. (36), by ( )m x  and integrating the outcome from 0x   to 1 yield the reduced-order model. 
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1 1
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   (37) 

 

or in a more convenient form: 

 

( ) ( )mn n mn n mM U t K U t F 

 

   (38) 

 

where 
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1 1
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Now, Eq. (38) can be integrated over time by various integration methods such as Runge-Kutta method. 
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4    LUMPED MODEL ANALYSIS    

Because of complexity of the model of the air-gap capacitor, which makes it unsuitable for quick design 

calculations, it would be attractive to have a simple model to predict the static and dynamic behavior of the micro 

beam with sufficient accuracy. A lumped spring-mass system is proposed for studying the micro-beams [36]. 

Herein, the lumped mass model is employed for verifying the continuous model results and instability analysis of 

the system. 

An appropriate way for the determination of equivalent spring constant (
effk ) could be defined as the spring 

constant of a beam subjected to uniform load 
0q . The pull-in voltage can be easily derived based on the balance of 

spring force and electrostatic force.  According to Fig. 2 at the static equilibrium position the electrostatic force is 

balanced with spring force, i.e.: 

 
2

0

2

02( )
eff

AV
k x

g x




  
   (39) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Lumped model for micro cracked cantilever beam. 

 

 

where x  parameter in this equation is related to the displacement of the 1DOF system at the applied voltage. This 

cubic equation can be solved respect to x . This equation is solved by [1, 37-38] to give the critical values that are 

called pull-in voltage and pull-in position in following form: 

 
3

0

0

0

8 2
   ،   

27 3

eff

PI PI

k g
V x g

A
 

 
   (40) 

 

with the above procedure equivalent stiffness 
effk  for intact cantilever beam is given by the following relation [38-

40]: 

 
3

2

3
eff

Eb h
k

L

 
  

   
   (41) 

 

But for the micro cracked cantilever beam the finite element method is employed to determine the stiffness of the 

beam. The crack is supposed to be located at the support and the properties of the micro beam are given in Table 1. 
 

Table 1  

Material properties and Geometry of the micro-beam (single-crystal silicon). 

Young’s modulus (E) 169GPa 

Density (ρ) 2331Kg/m3 

Poisson’s ratio (v) 0.06 

Length (L) 100μm 

Width (b) 50μm 

Thickness (h) 3μm 

Initial gap (g0) 1μm 

Permittivity of air 8.85 PF/m 
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The resultant equivalent stiffness for different crack depths at 0x   position is listed in Table 2. 

 
Table 2  
Equivalent stiffness for lumped model of a cracked cantilever beam with 100 ,  0cL m x  . 

Crack depth 0a m  0.5a m  1a m  1.5a m  

effk  148.02 144.1707 132.926 120.036 

4.1   Stability analysis and phase portrait for 1DOF model 

A powerful method to understand the behavior and stability of a dynamical system is through the so-called phase 

portrait method. The equation of motion of the micro beam in the lumped model actuated by a step DC voltage can 

be written as follows: 

 
2

2

02( )
eff eff

AV
m x k x

g x


 

  
   (42) 

 

where A b L    is electrode area on the microstructure. For convenience, the non-dimensional parameters are 

introduced: 
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where T  is the time period of 1DOF model. Applying these changes of variables to Eq. (42) yields: 
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where 

0

3

02 eff

A

g k


 

 

    

 

In order to analyze the stability of the model, at first we calculate the fixed points of the system. For convenience 

we drop hats in Eq. (43). Letting 
1x x  and 

2x x , Eq. (43) is written in state-space as follows: 

 

1 2x x

            

2

2 12

1(1 )

V
x x

x


 


 

   (44) 

 

The equilibrium points are obtained setting the Eq. (44) equal to zero. Therefore: 

 

2 0x 

            

3 2 2

1 1 12 0x x x V   

       

   (45) 

 

Solving Eq. (45) gives three solutions for
1 11 12 13( ,  ,  )x x x x . From these solutions 

11 12,  x x  is in interval [0,  1]  

but 
13x  is negative and so, it is physically impossible solution. In this step, to analysis the stability, the Jacobian of 

Eq. (44) is calculated:  

 

2

3

1

0 1

2
1 0

(1 )

x F V

x



 
 

   
  

                   

   (46) 

 

The characteristic equation can be obtained as follows: 
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0x F I  

                   

   (47) 

 

where I  is the diagonal identity matrix. Eq. (47) yields a characteristic algebraic equation for  , which is solved to 

yield the eigenvalues of the system as: 

 

2

1,2 3

1

2
1

(1 )

V

x


   


                   

   (48) 

 

The variation of eigenvalues versus applied voltage is shown in the next chapter and then the stability of the 

system is analyzed. 

5    RESULTS AND DISCUSSIONS  

To show the numerical results of the analysis presented in previous sections, a micro-beam with specifications 

introduced in Table 1. is considered.  

5.1 Static pull-in voltage using 1DOF model 

The displacement versus applied voltage is shown in Fig. 3. As Fig. 3 shows, for a given applied voltage there exists 

three equilibrium positions (fixed points), the first is a stable centre, the second is unstable saddle node and the third 

is a mathematically stable center but physically impossible. The impossibility of the third stable solution refers to 

the existence of the substrate, which restricts the amplitude of the micro beam motion. 

In simple terms, the pull-in voltage 
PIV  can be defined as the voltage at which the restoring spring force can no 

longer balance the attractive electrostatic force. As can be seen (Fig. 3) in micro cracked beam with increasing the 

crack depth, pull-in voltage decreases. It is obvious that with increasing crack depth, the stiffness of the beam at the 

tip point of the micro beam is decreased. This decreasing of stiffness leads to instability voltage (pull-in voltage) 

decrease (Fig. 3). 

On the other hand, as is seen from the Fig. 3, when no crack exists the results coincide with those of Younis [38]. 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Variation of non-dimensional displacement versus non-

dimensional voltage. 

5.2 Static pull-in voltage using beam model 

In this section, solution of Eq. (24) for different states of depth and location of the crack is illustrated. The resultant 

pull-in voltages for a crack lying at 
cx 0.5  with different lengths are given in Table 3. 

 
Table 3  
Pull-in voltage versus depth of the crack locating at 0.5cx  . 

Crack depth 0 m  0.5 m  1 m  1.5 m  

( )PIV V  38.20 38.2 38 37.8 
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It is seen that the result for the beam without any crack ( 0a  ) is the same as that reported by Osterberg [41]. 

Another example has been considered for the case of  0cx  . Table 4. shows the pull-in voltages for different crack 

depths. Again it is seen that the pull-in voltage for a beam without any crack is exactly the same as that reported by 

Osterberg [41]. 

 
 

Table 4  

Pull-in voltage versus depth of the crack locating at 0cx  . 

Crack depth 0 m  0.5 m  1 m  1.5 m  

( )PIV V  38.20 37.7 36.2 34.4 

 

The non-dimensional tip deflection of the cantilever beam versus voltage is shown in Fig. 4. In this case, the 

crack is located at 0cx  . It can be seen as the crack depth increases, the pull-in voltage decreases. Fig. 4 clearly 

shows that our results for a beam without crack are in good agreement with those of Joglekar and Pawaskar [42]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

The tip deflection of the cantilever beam as a function of the 

applied voltage. 

 

Finally, a constant crack depth is considered and the location of the crack is changed. It is observed from Table 

5. as the crack approaches the support, the pull-in voltage decreases as a result of stiffness decrease. 

 
 

Table 5  

Pull-in voltage versus position of crack when depth of crack is 1.5a m . 

Position crack 1cx   0.75cx   0.25cx   0cx   

( )PIV V  38.20 38.2 36.5 34.4 

 

To validate the proposed model, the pull-in voltage is compared with the results cited in the literature for an un-

cracked beam. Table 6. shows the results of this comparison. As it is seen the result of present work is in good 

agreement with the others.  

 
 

Table 6  

Comparison of the static pull-in voltage with those cited in the literature in the absence of crack. 

Common parameters: E=169GPa, w=50μm , h=3μm, g0=1μm (VPI is in V)   

Present work without crack VPI=38.2 

Joglekar and Pawaskar [42] VPI =38.34 

Osterberg  with FE analysis [41] VPI =38.2 

Osterberg  with 2D model [41] VPI =37.9 

Chowdhury et al. [8] VPI =37.84 

 

For further validating the results, the 1DOF model and the beam model results are compared in Fig. 5. 
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Fig.5 

Comparison of the distributed model and 1 DOF model. 

 

It is seen that the results agree relatively well with each other. Noteworthy is that for smaller cracks the pull-in 

voltage predicted by the lumped model mass model is the same as that obtained from the beam model, however, for 

longer cracks the results become different. Generally speaking, the beam model results are more reliable for finding 

the deflection and the pull-in voltage. 

5.3 Stability analysis 

In this section, the lumped mass model is employed to study the stability of the system. The variations of 

eigenvalues versus applied voltage are shown in Fig.6.  Regarding Fig. 6 (a), it can be seen when the voltage 

increases from 0 up to a certain value, the eigenvalue 
11( )x   is pure imaginary for all values of applied voltages 

indicating neutrally stable fix point. For a larger solution (
12x ) it is clear that the eigenvalues are located on the 

right-half of the complex plane (Fig. 6 (b)). This indicates that this fix point is an unstable saddle point. 

At last, the third eigenvalue 
13( )x  is pure imaginary (Fig. 6 (c)) and this means that this solution is stable but 

physically impossible. This is because the non-dimensional amplitude in this case is greater than one (
0x g ), 

which is physically impossible. 

 

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Solution for eigenvalues. a) Solution for eigenvalue x11. b) 

Solution for eigenvalue x12. c) Solution for eigenvalue x13. 
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The dynamical behavior of the coupled system corresponding to different initial conditions for a specific crack 

length ( 100 ,  0.5,  1.5cL m x a m    ) is shown in the phase portrait of Fig. 7 in three states (it should be noted 

that the response for x greater than 1 is not possible physically): 

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

Fig.7 

Phase diagram of the 1DOF model. a) V=0. b) V<VPI. c) V=VPI. d) V>VPI. 

 

Fig. 7 (a) shows the phase diagram of the pure mechanical model. When no voltage is applied, there exists only 

one stable center equilibrium position at zero ( 0x  ). The system is stable for any initial conditions. 

If the applied voltage is less than the pull-in voltage (
PIV V ), the system will be stable near the equilibrium 

position and will oscillate in a non-linear way. If the initial displacement is large enough, the plate will come closer 

to substrate. It can be seen that even when voltage is below the pull-in voltage, the problem may become unstable. 

As shown in Fig. 7(b), as the applied voltage approach to a critical value, saddle-node bifurcation is happened. The 

voltage corresponding to the saddle node bifurcation point is well-known as the static pull-in voltage in MEMS 

Literature [43] (Fig 7 (b)). 

For a voltage higher than the pull-in voltage 
PIV V  any initial condition leads to instability and the solution 

becomes divergent (Fig. 7 (c), 7 (d)).  

5.4 Dynamic pull-in analysis of the beam model 

In the preceding section it is assumed that the DC bias voltage increases slowly to a desired value to avoid the 

dynamic effect due to the voltage. If the bias voltage is applied within a period smaller than the characteristic time, 

the dynamic effect due to DC voltage is not negligible and plays an important role. If we solve Eq. (38) for a 

specific crack length 100L m , 0.5cx  ,
 

1.5a m . The time history and the phase portrait are obtained as 

shown in Fig. 8 and 9, respectively. 
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Fig.8 

Time variations of the maximum amplitude of the cracked 

beam due to application of different voltages. 

 

  

 

 

 

 

 

 

 
 

 

 

 

Fig.9 

Phase diagram of the system for different applied voltages. 

 

 

Fig. 8 shows that in applied voltages less than 31.15 V, the system has harmonic response versus time, the fact 

that is verified with the phase diagram (Fig. 9) which shows that in these cases there is a limit cycle for the system. 

However, as the applied voltage increases to 31.15 V, the system ceases to have a cyclic behavior and instead it 

experiences very large amplitude which means the instability of the system. So, this voltage is the dynamic pull-in 

voltage. Lee [37] represents that the pull-in voltage resulted from the dynamic analysis of an un-cracked beam is 

91% of the static pull-in voltage of the same beam. Interesting is that the dynamic pull-in voltage of a cracked beam 

(31.15 V) is the same percent of the static pull-in voltage (34.4 V) of the same cracked beam. 

6    CONCLUSIONS 

In this paper the effect of crack on the static and dynamic pull-in phenomena has been investigated. This study 

shows that with the increase of the crack depth and also approaching the crack to the base point of the beam, the 

static and dynamic pull-in are happened in low voltages as compared with the case of an un-cracked beam. On the 

other hand, it was shown that for a cracked beam, especially for longer cracks, the lumped mass model predicts 

erroneous results and the beam model analysis is necessary instead. The results of this research can also be used for 

detecting a crack in a beam as a non-destructive testing procedure.  
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