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 ABSTRACT 

 In this work, the problem of Rayleigh wave propagation is considered in the context of 

the theory of thermoelastic diffusion. The formulation is applied to a homogeneous 

isotropic thermoelastic half space with mass diffusion at the stress free, isothermal, 

isoconcentrated boundary. Using the potential functions and harmonic wave solution, 

three coupled dilatational waves and a shear wave is obtained. After developing 

mathematical formulation, the dispersion equation is obtained, which results to be 

complex and irrational. This equation is converted into a polynomial form of higher 

degree. The roots of this polynomial equation are verified for not satisfying the original 

dispersion equation and therefore are filtered out and the remaining roots are checked 

with the property of decay with depth. Phase velocity and attenuation coefficient of the 

Rayleigh wave are computed numerically and depicted graphically. Behavior of particle 

motion of these waves inside and at the surface of the thermoelastic medium with mass 

diffusion is studied. Some particular cases are also deduced from the present 

investigation.                                            © 2016 IAU, Arak Branch.All rights reserved. 

 Keywords : Rayleigh waves; Thermoelastic; Phase velocity; Attenuation coefficient; 

Diffusion. 

1    INTRODUCTION 

IFFUSION is defined as the spontaneous migration of particles from region of high concentration to the 

region of low concentration. It is not a tool, but rather it is a phenomenon which has to be dealt with. It has 

tremendous applications in geophysics [1]. Diffusion is used to form the base and emitter in bipolar transistors, 

integrated resistors and the source/drain regions in Metal Oxide Semiconductor (MOS) transistors, and dope poly-

silicon gates in MOS transistors [2]. 

Gekas, Öste, and Lamberg [3] established in their experiments on diffusion of nutrients in potato tissue by 

showing that nutrient movement is hindered by the structure of the tissue, in the similar basic way that atomic 

structure hinders diffusion in metals. The processes governing powder metallurgy and one type of ceramic material 

processing are greatly dependent on diffusional processes that combine distinct powdered grains into one cohesive 

material. The dependence of life processes on diffusion mechanisms could not be more prevalent. Diffusion occurs 

throughout the human body, and without it, cells and body tissue could not get important nutrients for survival, the 

eyes would dry out, and many medicines could not be absorbed into the body. 

Thermodiffusion in an elastic solid is due to the coupling of the fields of temperature, mass diffusion and that of 

strain. Podstrigach[4] was the first to consider the problem of thermodiffusion in classical elastic material and 
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investigated the elemental corollaries and differential equations. Podstrigach and Pavlina[5] extended the work of 

Podstrigach[4] of thermodynamical processes for an n-component solid solution. Podstrigach [6] also presented the 

diffusion theory of strain of an isotropic solid medium.  

Nowacki [7-9] developed the theory of thermoelastic diffusion using coupled thermoelastic model. Nowacki [10] 

derived the basic equations for generalized thermoelastic diffusion. Sherief and Saleh [11] developed the generalized 

theory of thermoelastic diffusion with one relaxation time which allows finite speeds of propagation of waves. 

Kumar and Kansal [12] derived the basic equations for generalized thermoelastic diffusion (G-L model) and 

discussed the Lamb waves. Sharma [13] and Sharma et al [14] investigated the plane harmonic generalized 

thermoelastic diffusive waves and elasto-thermodiffusive surface waves in heat conducting solids. Kumar and Gupta 

[15] studied the plane wave propagation and proved uniqueness and reciprocity theorem in thermoelastic diffusion 

medium with fractional order derivative. A two-dimensional problem for an infinitely long solid conducting circular 

cylinder in the context of generalized thermoelastic diffusion theory with one relaxation time was studied by Allam, 

Omar and Ramadan [16].  

Kumar and Kansal [17-18] discussed the propagation of Rayleigh waves with and without rotation in a 

homogeneous transversely isotropic, generalized thermoelastic diffusive half-space. Abouelregal [19] illustrated the 

effect of coupling parameter and phase-lags on Rayleigh waves in a thermoelastic solid half space. Sharma [20] 

studied the propagation of Rayleigh waves in a generalized thermoelastic medium for isothermal or insulated 

surface. Inspite of the above study the wave travelling along the free surface of thermoelastic half-space with mass 

diffusion such that the disturbance is largely confined to the neighbourhood of the boundary has not been 

considered. Therefore, Rayleigh wave propagation in thermoelastic half-space with mass diffusion is studied in this 

paper. The phase velocity, attenuation coefficient and path of surface particles of Rayleigh wave propagation are 

obtained from the secular equations. The resulting quantities are computed numerically and presented graphically. 

2    BASIC EQUATIONS   

The basic equations for a homogeneous isotropic elastic half space with thermoelastic diffusion in the absence of 

body forces, heat sources and mass diffusion sources are: 

The constitutive relations 

 

 1 22ij ij ij kke e T C          (1) 

 

0 1 0 0E kkT S C T T e aT C      (2) 

 

2 kkP e aT bC     (3) 

        
 

Equations of motion 

 

    2

1 2u u uT C                (4) 

 

Equation of heat conduction 

 
2

1 0 0E kkK T C T T e aT C      (5) 

 

Equation of mass diffusion
 

 

 2 2 2

2 u 0D Da T Db C C          (6) 

 

where  
 
are the Lame’s constants,

 
  is the density assumed to be independent of time, D is the diffusivity, P is 

the chemical potential per unit mass, C is the concentration, iu are the components of displacement vector u, K is the 

coefficient of thermal conductivity,
 EC is the specific heat at constant strain, 0T T   is small temperature 
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increment,   is the absolute temperature of the medium;
0T is the reference temperature of the body chose such that 

 0/ 1T T  , a and b  are respectively, the coefficients describing the measure of thermodiffusion and mass 

diffusion effects respectively, 
ij ije  are the components of the stress and strain respectively,

kke is the dilatation, S  

is the entropy per unit mass,  1 3 2 t     and  2 3 2 ,c t       is the coefficient of thermal linear 

expansion,
 c is the coefficient of  linear diffusion expansion. In the above equations, a comma followed by a suffix 

denotes spatial derivative and a superposed dot denotes the derivative with respect to time. 

3    FORMULATION AND SOLUTION OF THE PROBLEM  

We consider a homogeneous isotropic elastic half space under thermoelastic diffusion, initially at uniform 

temperature 
0T . The origin of the coordinate system  1 2 3x x x  is taken at any point on the plane horizontal surface 

with
3x  axis pointing vertically downward to the half space, which is thus represented by 

3 0x  . The surface 

3 0x  is subjected to stress free isothermal/isoconcentrated boundary. We choose the 
1x  axis in the direction of 

wave propagation in such a way that all the particles on a line parallel to the 
2x  axis are equally displaced. 

Therefore, all field quantities are independent of the 
2x  coordinate. For the two dimensional problem, we take 

 

 1 3 1 3 1 3u 0 , ( , , ), ( , , )u u x x t C x x t     (7) 

 

The displacement components 
1u  and 

3u are related to the potential functions as: 

 

4 4

1 3

1 3 3 1

u u
x x x x

      
    
   

 
 

(8) 

 

where 
4  is the potential function of shear wave. 

The general form of the potential function 

 

for combined dilatation in linear thermoelastic with mass diffusion 

is expressed as: 

 

1 2 3       (9) 

 

Making use of Eqs. (8) in (4)-(6) and with the aid of Eq. (7), we have 

 

  2

1 22 T C           (10) 

 
2 2

1 0 0 EK T T aT C C T        (11) 

 
4 2 2

2 0D Da T Db C C         (12) 

        
 

2

4 42

1
  

β
 

 

(13) 

 

Eq. (13) represents the propagation of transverse wave with velocity 





 . Real value of 
 
shows that 

transverse wave travels without attenuation in thermoelastic diffusion medium. For the propagation of harmonic 

waves in 
1 3x x  plane, we assume 
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    4 1 3 4

i tT C x x t T C e               (14) 

 

where  is the angular frequency of vibrations of material particles.  

Substituting the values of 
4T C    from Eq. (14) into the Eqs. (10)-(13) after simplification, we obtain 

 
6 4 2 0A B C D           (15) 

 
2

2

42

4

0
V




 
   
 

 
 

(16) 

             

where 

 

 

      

   

2

2

2 2

0 0 1 1 2 2 2 0 1

2 3 2 2 2

0 0 1

4 2

2

2

2

E E

E E

E

A DbK DK

B C Db K a DT DbK DT b a D C aT

C C C Db K a DT T

D C

  

             

       

 

   

         

       

 

 

 

 

 

and 
4V  is the velocity of transverse wave.

 

The general solution of Eq. (15) can be written as: 

 

1 2 3       (17) 

 

where the potentials ,i 1,2,3i   are solution of wave equations, given by 

 
2

2

2
0 1 2 3i

i

i
V




 
       
 

 
 

(18) 

         

Here 
1 2 3V V V  are the velocities of three longitudinal waves namely qP wave, qT wave and a qMD wave in 

descending order of their real part and are derived from the roots of quadratic equations in 2V , given by 

 
6 2 4 4 2 6 0DV C V B V A       (19) 

 

Here prefix “q” shows the coupling between elastic, thermal and diffusion fields. Also complex value of these 

velocities shows that these qP, qT and qMD waves are attenuated. 

On using Eqs. (17)-(18) in Eqs. (10)-(12) and with the aid of Eq.(14), we have 

 

   
3

1

1 i i i

i

T C n k 


      
 

(20) 

 

where 

 

  

  
  

  

2 2

0 2 1 1 0

4 2 2 2

0

2 2 2

2 2 0 1

4 2 2 2 2

0

1 2 3

i

i

E i i E

i E

i

E i i E i

DT a b V T
n

C V V C Db K a DT DbK

DK DV C aT
k i

C V V C Db K a DT DbK V

    

   

      

   

 


   

 
    

   
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For the propagation of plane harmonic waves with exponential decay in 
1 3x x plane, we take the displacement 

potentials as: 

 
1 3

1 2 3 4

jx q x
t

c

i jA e j




 
  

        

 

(21) 

 

where,  
2 2

42 2
1 1 2 3 1j

j

c c
q j q

V 
        

 

and C is the apparent phase velocity. 

 

3.1 Boundary conditions 

 

We consider the stress free isothermal and isoconcentrated surface, mathematically these can be written as: 

(i) Mechanical conditions 

 

33 0   (22) 

 

31 0   (23) 

           

(ii) Thermal condition for isothermal surface 

 
0T   (24) 

                 

(iii) Mass concentration condition for isoconcentrated surface 

 
0C   (25) 

                            

Making use the value of 
i  from Eq. (21) in the boundary conditions Eqs. (22)-(25) and with the aid of Eqs. (1), 

(7)-(9) and Eq. (20), we get a system of four homogeneous equations which can be written as: 

 
4

1

0ij j

j

d A


  
 

(26) 

 

where, 

 
2

2

1 1 2 2 3 4

2

24

14 24 4 34 44

2 2 1 2 3

2 1 0

j j

j j j j j j j j

n k
d d q d n d k j

h

q
d d q d d

h


  

 



               

      

 

 

 

            

The system of Eq. (26) have a non-trivial solution if the determinant of the coefficients of this system vanishes, 

which yield the dispersion equation for propagation of Rayleigh waves as: 

 

         1 1 2 2 3 1 1 2 2 3 42 2 2 2 4h h p h p h q p q p q q             (27) 

      

where 
2

3 1 1 3 1 2 2 1

1 22

2 3 3 2 2 3 3 2

n k n k n k n kc
h p p

n k n k n k n k

 
    

 
 and 

 
2

2
1 2 3j

j

j
V

 




       
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As Eq.(27) is an irrational, so cannot be solved through the algebraic methods. After three squaring and some 

algebraic manipulations, the equation is reduced to a polynomial form of degree 15, which can be written as follows: 

 
15

0

0j j

j

C h


  
 

(28) 

 

where the coefficients 
jC are defined as: 

 

   

       

       

15 1 14 2 13 3 12 4 11 5 10 6 9 7 1 8 8 1 2

7 9 2 3 6 10 3 4 5 11 4 5 4 12 5 6

3 13 6 7 2 14 7 8 1 15 8 9 0 16 9 10

2 2

0 1 2 1 0 1 1 2 0 1 1

, , , , , , , ,

, , , ,

, , , ,

4096 , ,

C Y C Y C Y C Y C Y C Y C Y F C Y F F

C Y F F C Y F F C Y F F C Y F F

C Y F F C Y F F C Y F F C Y F F

F p p F F D B F F E B

          

           

           

      

   

   

   

1 2 3 0 2 1 1 2 1 3

4 0 3 1 2 2 1 3 1 4 5 0 4 1 3 2 2 3 1 4

6 0 4 2 3 3 2 4 1 5 1 5 1 7 0 4 3 3 4 2 5 2

8 0 4 4 3 5 3 9 0 4 5 4 10 5

1 2 1 2 3 1 2 3 2

, ,

, ,

, ,

, , ,

2 , 2 ,

D B F F E B E B D B

F F E B E B E B D B F F E B E B E B E B

F F E B E B E B D B E B B F F E B E B E B B

F F E B E B B F F E B B F B

E D D E D D D E D

   

       

         

      

      

 

3 4 3

1 1 2 3 2 1 2 2 3 3 1 3 1 2 3

2 2 2

1 1 2 1 2 3 2 1 3 4 2 3 5 3

8 4 2 4 4 2 4

1 2 1 3 1 0 4 0 1 1 5 0 1 1 2

4 2

6 0 1 2 1 3 7 1 0 2 3

1 2 , 2,

D ,D ,D ,

B ,B 2 ,B 2 ,B 2 ,B ,

, 2 , 2 , 2 2 , 2 2 ,

2 2 2 , 2 2

D E D

N N N N N N N N N

Y S Y R S Y R W S Y W R W S Y W W R W S

Y W W W R W S Y W W W W R

           

  

       

     

        

      4 4

1 4 8 1 2 0 3 4 1 5

2 4

9 2 1 3 0 4 5 1 6 10 1 4 0 5 6 1 2 3

2 2

11 3 0 6 1 5 2 4 12 1 6 2 5 3 4 13 4 2 6 3 5

2

14 3 6 4 5 15 5 4 6 16 5

2 , 2 2 2 2 ,

2 2 2 2 ,Y 2 2 2 2 ,

Y 2 2 2 ,Y 2 2 2 ,Y 2 2 ,

Y 2 2 ,Y 2 ,Y 2

W S Y W W W W W R W S

Y W W W W W W R W S W W W W W R W W

W W W W W W W W W W W W W W W W W W

W W W W W W W W W

    

        

         

    

     

2

6 17 6

2 2

0 1 2 0 2 1 1 3 2 2 4 0 2 3 3 3 5 0 1 4

2 2

4 6 0 2 5 5 7 0 3 6 6 3 0 3

2

1 2 3 2 2 3 2 3 3 2 3

2 2

1 1 1 2 2 1 3 3 2 4 3 3

1 1 1

,Y ,

1024 , , , H , H ,

H , H , ,

, 1 2 2 , 2 ,

N ,V ,V ,V ,

H N

W

U p p W R H W R H W R U W R U U

W R U U W R U U W Q U N

U U U

V T T T T T N T

 

       





          

        

          

       



 

 

2 2

2 1 1 1 3 1 2 1 4 1 3 2 5 1 4 3

2 2

6 1 3 4 1 1 2 2 2 1 3 3 2 3

2 2 2 2 2 2

1 1 2 1 1 3 1 1 2 4 1 3 1 2

2

5 1 2 1 3 6 1 3 2 7 2 3

1 2

,H V N ,H V ,H V ,H V ,

H ,T 2 ,T 2 ,T 2 ,

R 2 ,R 2 ,R 2 2 ,R 2 2 ,

R 2 2 ,R 2 ,R 2 ,

8 , 8 2 ,

V V V

N V N N N N N N N

M S M Q S M Q Q S Q Q S M Q

Q Q M Q Q Q Q Q Q

N S N S R

   



       

      

       

    

       

     

 

3 1 2 1 1 2 3 1 1 2

22

3 2 1 2 3

2

2 2 2 2

1 2 1 3 2 2 1 2 1 2 1 1 2 2 3 2

16 ,Q 16 16 , 16 1 16 ,

4 16 16 , 2 2 , 2 4 , 4 2 ,

,G , 2 1 ,S , , (j 1,2,3).j

j

N R M G Q M G G

Q R G M S S R M S R SR M R S R

G p p p p R p p p p

 


  



         

           

 
               

 
 

 

 

 

 

In the fifteen roots of algebraic Eq. (28), some roots are those which are added while converting irrational Eq. 

(27) to the polynomial Eq. (28). These roots are identified for not satisfying the original dispersion Eq. (27). The 

remaining roots, which satisfy the Eq. (27) are again checked for the decay of the wavefield with increase in 
3x  i.e. 

as we move away from the surface. The roots which satisfy both the checks represent the existence and propagation 
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of Rayleigh waves in the elastic half space under thermoelastic diffusion. In this case only one root is obtained 

which satisfy both the checks. The value of phase velocity calculated from the root of Eq. (28) depends upon the 

frequency  ensuring that Rayleigh wave is dispersive in elastic half space under thermoelastic diffusion. The 

complex value of C shows that Rayleigh waves are attenuated. Also it shows that these waves are inhomogeneous 

waves, which decay as we move away from the surface. For the complex C, the positive imaginary parts of the 

vertical slowness  1 2 3 4
jq

j
c
     in Eq. (20) ensures the decay of these waves in the region 

3 0x     

The phase velocity and attenuation coefficient of Rayleigh wave is calculated by using the expression: 

Phase velocity 
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c h
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c h
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(29) 

 

Attenuation coefficient 
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 
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(30) 

3.2 Path of surface particles 

We shall now discuss the path of the particles at the surface
3 0x  .  

The displacement potentials Eq. (21) can be rewritten as: 

 
 1 3

1 1 2 3 4jkx t kx q

i jA e j
  

 
 

        (31) 

 

where

 

k
c




 

is the complex wave number and 
1

1 2 3 4
j

j

A
j

A
        are the solution of system of Eq. (26). 

where, 
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 
   

   
       

  
 

Substituting the value of  1 2 3 4i i      from Eq. (31) in Eq. (8) with the aid of Eq. (9), we have 

 

     10 0arg arg

1 3 0 0

kx tU W
u u U e W e e

   
    (32) 
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where  1 1 2 3 4I

j j

R

c
q j

c
 

 
       
 

. R and I denotes the real and imaginary part of the corresponding complex 

quantity. Similarly, from Eqs. (20) and (31), we have 

 

     10 0arg arg

0 0

kx tC
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 3 1 3 2 3 3 3 4

0 1 1 2 2 3 3 4 4
R R R Rk x q k x q k x k x

A n e n e n e n e
             (36) 

           

 

 3 1 3 2 3 3 3 4

0 1 1 2 2 3 3 4 4
R R R Rk x q k x q k x k x

C A k e k e k e k e
            (37) 

 

On the surface 
3 0x  , the Eq.(32) on retaining real parts leads to 

 

 

 

1

1

0 0

0 0

cos arg

sin arg

I

I

k x

k x

U U e U

W W e W





  


   

 

 

(38) 

 

where  R Ik k denotes the real (imaginary) parts of the complex wavenumber K. The parameter  Rk x t   is 

varied in  0 2 to show the path traced at depth 
3x . The parametric representation of curve shows that the surface 

particles trace elliptical path. 

4    NUMERICAL RESULTS AND DISCUSSION  

We now represent some numerical results for copper material, the physical data for which is given below: 
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The diffusion parameters are taken as: 
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The software Matlab 7.0.4 has been used to determine the values of phase velocity V and attenuation coefficient 
1Q
defined in previous section for different values of frequency

 
ranging from 2 Hz to 2 10 Hz . In the 

Figs.1-8, the numerical data is varied around their reference values, to depict their effect on the phase velocity, 

attenuation coefficient and particle motion of Rayleigh wave propagation in elastic half space under thermoelastic 

diffusion.  

Figs.1-4 show respectively the effect of t c, ,a,b  on the variation of phase velocity (V) with frequency ( ). In 

all these figs, phase velocity decreases with increase in frequency and shows negligible variation for 8 . At the 

same frequency limit, attenuation shows an opposite behavior, its values initially increases and then becomes 

stationary. In Fig.1 increase in the value of coefficient of linear thermal expansion also increases the value of phase 

velocity whereas decreases the attenuation. Fig.2 depicts that increase in the value of coefficient of linear diffusion 

expansion, decreases the value of phase velocity whereas increases the attenuation. In Fig.3 increase in the value of 

coefficient a, describing the measure of thermodiffusion effects, also increases the value of phase velocity whereas 

decreases the attenuation. It is clear from Fig.4, increase in the value of coefficient b,  which describes the measure 

of mass diffusion effects, also increases the value of phase velocity whereas decreases the attenuation.  

In Fig. 5-8, the particle motion (U,W) is computed at different depths, i.e. Rk z 0,50,100.  The effect of thermal 

and diffusion coefficients is observed on the polarizations of the material particles there. Fig. 5 depicts the effect of 

coefficient of linear thermal expansion t on the particle motion of Rayleigh wave. It is observed that increase in 

the value of t  increases the particle motion. Also particle motion tilts for value of 
5 1

t 3.78 10 K .     Fig. 6 
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depicts the effect of coefficient of linear diffusion expansion c on the particle motion of Rayleigh wave. It is 

observed that, particle motion is strengthening with increase in c  and tilts for 
4 1 3

c 5.98 10 Kg m    . Fig. 7 

shows the effect of coefficient describing the measure of thermodiffusion a
 
on the polarization of Rayleigh wave. It 

is noticed that, particle motion is expanding  and also slants for the value of 
4 2 2 1a 19.2 10 m s K .    Fig. 8 depicts 

the effect of coefficient describing the measure of massdiffusion i.e. b on the polarization of Rayleigh wave. Here 

also, increase in b
 
enhances the particle motion. It slants for 

5 1 5 2b 49 10 Kg m s .    

 

  
Fig.1 

Variation of phase velocity (V) (m/s) and attenuation (Q-1) with frequency () (Hz) for different values of t. 

 

  
Fig.2 

Variation of phase velocity (V) (m/s) and attenuation (Q-1) with frequency () (Hz) for different values of c. 

             

  
Fig.3 

Variation of phase velocity (V) (m/s) and attenuation (Q-1) with frequency () (Hz) for different values of a. 



611                      R.Kumar and V.Gupta 

 
 

© 2016 IAU, Arak Branch 

  
Fig.4 

Variation of phase velocity (V) (m/s) and attenuation (Q-1) with frequency () (Hz) for different values of b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Variation of Particle motion (U,W) with depth kRz for 

different values of t. 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Variation of Particle motion (U,W) with depth kRz for 

different values of c. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Variation of Particle motion (U,W) with depth kRz for 

different values of a. 
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Fig.8 

Variation of Particle motion (U,W) with depth kRz for 

different values of b. 

4.1 Particular cases 

If we take 
3 3 2

1 n 0 0k p     in the dispersion Eq. (27), we obtain the corresponding equation for the 

propagation of Rayleigh wave at the isothermal boundary of thermoelastic solid as: 

 

       1 2 1 2 32 2 2 4        h h p h q pq q   

  

which is similar to that obtained in Sharma [20] in absence of relaxation times. 

If we take 
1 1 2

1 0 0p p      in the dispersion Eq. (27), we obtain the corresponding equation for the 

propagation of Rayleigh wave in perfectly elastic solid as: 

 

 
2

1 42 4  h q q   

 

which is similar to that given in Ewing et al.[21]. 

5    CONCLUSIONS 

In the present work, propagation of Rayleigh waves is studied in a homogeneous isotropic thermoelastic half space 

with mass diffusion. Dispersion equations in form of complex irrational expression for Rayleigh wave propagation 

are obtained for isothermal and isoconcentrated surface. This equation is rationalized to a polynomial equation. 

Some of the roots of this polynomial equation are checked for not satisfying the original dispersion equation and 

thus are filtered out. The obtained roots are checked for their property of decay with depth. The dispersive character 

of Rayleigh waves and their inhomogeneous nature is ensured.  

The analysis of the graphs gives some concluding remarks: 

The phase velocity is found to be inversely proportional to the frequency while attenuation is directly 

proportional to the frequency. 

Increase in the value of thermal and diffusion coefficients strengthens the particle motion of Rayleigh wave. 
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