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 ABSTRACT 

 In this paper, a numerical solution has been developed for hollow circular 

cylinders made up of orthotropic material which is subjected to twist 

using micro polar theory. The effect of twisting moment and material 

internal length on hollow thick-walled circular cylinder made up of micro 

polar orthotropic material is investigated. Finite difference method has 

been used to exhibit the influence of shear moduli and material internal 

length on shear stresses and couple stresses. It is found that the effect of 

small characteristic length on shear stresses is negligible and couple 

stresses present its significance when characteristic length is large in 

solid particle. The behavior of couple stresses are nonlinear for large 

internal length while for small internal length couple stresses are linear in 

nature except near the free boundaries. Torsion in hollow cylinder made 

up of micro polar orthotropic play vital role in the presence of cracks and 

holes. Therefore, torsional analysis of hollow cylinder plays important 

role in the field of biomechanics.  

                                          © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE classical theory of elasticity consider material continua as simple point continua with points having three 

degrees of freedom of displacement. Such a model may be insufficient to describe the behavior of solid 

materials endowed with an internal structure, as in the case of block structure  granular materials [1] and biological 

tissues [2] etc. Therefore, Eringen [3, 4] introduced the micro polar theory to study the concept of length of scale in 

microstructure. Due to introduction of internal length, the new measure of deformation has been introduced. In 

addition to three degree of freedom of displacement, the micro polar theory owns three additional independent 

degree of freedom related to the rotation of each particle which need not coincide with the macroscopic rotation of 

the continuum at the same point. Many engineering materials exhibit micro behavior i.e. honeycombs, trusses and 

platelet composites etc. Moreover, materials like soils, human bones and polyfoams are also considered as micro 

polar material. Altenbach [5], Gauthier and Jahsman [6] and Merkel et al. [7]. Roman and Lev  [8] presented the 

finite element modeling of bending of micro polar elastic plates and obtained numerical results for plates of different 

shapes, including shapes with rectangular holes, under different loads. Hadjesfandiari and Dargush [9] investigated 

solution for two and three dimensional isotropic materials based on and couple stress theory and established a 
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unique solution for displacement, rotation, and couple stresses. In addition to this, Hadjesfandiari and Dargush [10] 

analyzed different continuum mechanics theories such as couple stress theory, micro polar and strain-gradient 

theories. Taliercio and Veber [11] studied the effect of micro polar theory in orthotropic material with central axis of 

symmetry. They discussed three different cases for hollow cylinder under different conditions i.e. firstly, they 

analyzed hollow circular cylinder subjected to internal and external pressure with unlimited length. Secondly, they 

studied finite length hollow circular cylinder under the restriction of relative rotation of the base about its axis and 

finally, they analyzed twist in circular cylinder with axisymmetric configuration. They observed that results obtained 

for micro polar cylinder subjected to radial pressure are not significantly different from classical orthotropic 

cylinder. However, in case of twist the significant difference between classical and micro polar solutions has been 

observed. Further, Taliercio [12] presented analysis of twist in hollow solid cylinder made of linearly isotropic 

micro polar materials. Sharma et al. [13] studied torsion of a functionally graded thick-walled circular cylinder 

under internal and external pressure subjected to thermal loading using Seth transition theory.  

In this paper, we have extended the work of Taliercio and Veber [14] for cylinder made up of orthotropic micro 

polar material and finite difference numerical algorithm has been used for analyzing shear stresses and couple 

stresses. A parametric study has been carried out to show the influence of different parameters i.e. characteristics 

length and material constants with a fixed orientation in hollow circular cylinders. Results have been discussed 

numerically with the help of graphs.  

2    MATHEMATICAL FORMULATION 

Consider a thick-walled hollow circular cylinder made up of orthotropic micro polar material whose internal and 

external radii are a and b respectively as shown in Fig. 1. A cylindrical coordinate system ,r 
 
and z  has been used 

where z lies in the longitudinal direction while r and   lies in transverse direction of the cylinder.  

 

  

 

 

 

 

 

 

 
 

Fig.1 

Hollow circular cylinder subjected to torsion. 

 

 

The body forces and body moments are neglected, while the mechanical properties are assumed to be same 

throughout the cylinder. One end of the cylinder is assumed to be fixed at 0z   while the other end of the cylinder 

i.e. z L  (length of hollow cylinder) is rotating about z-axis with the fixed angle of twist   as shown in Fig. 1. In 

3-dimensional continuum mechanics, six degree of freedom is required for each material point, three due to 

displacements and three due to rotations. Therefore, the component of macro displacement u  and micro-rotation   

in curvilinear cylindrical coordinate  , ,r z  for the second axially-symmetric problem depends on the space 

variables r and z, expressed as [15, 16] 

 

 0, , 0, , 0, ,r z r zu u r z u r z             (1) 

 

where , ,r zu u u  are radial, circumferential and axial components of displacement respectively, while , ,r z   are 

radial, circumferential and axial components of micro-rotation and  r is an unknown function to be determined.  
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2.1 Basic equations 

We have used deformation and constitutive equations given by Eringen [3, 17] on micro polar theory of elasticity. In 

the cylindrical coordinate system, the compatibility equations (micropolar strains and micro polar curvature in micro 

materials) are expressed as [11] 

 

 , ,, , 1,2,3 ,ij j i ijk k ij j ie u e i j       (2) 

 

where , , ,ij ij j je u 
 
are micro polar strains, micro-curvatures, displacements and micro-rotations respectively. In 

cylindrical coordinate system, these equations are explicitly expressed as: 
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(3) 

 

In this paper, we have considered second planar axially-symmetric problem therefore, Eq. (3) using Eq. (1) 

reduced to the form  
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(4) 

 

The general constitutive equations in terms of stress, strain, couple stress tensors and micro curvatures are 

expressed as: 

 

 , , , , 1,2,3ij ijhk hk ij ijhk hkT A e M B i j h k    (5) 

  

where
ijhkA and 

ijhkB  are fourth order elasticity tensors.  

Due to two fold symmetry of orthotropic micro polar materials, we get the following relationship in material 

constants i.e. 
21 12 31 13 32 23 54 45 76 67 98 89, , , , , .A A A A A A A A A A A A        

Therefore, the stress-strain equations for orthotropic materials are written as: 
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(6) 

 

Due to symmetry of micro polar materials, we get
 21 12 31 13 32 23 54 45 76 67 98 89, , , , ,B B B B B B B B B B B B      .  

Therefore, the constitutive equations for couple stresses and micro curvatures are expressed as: 
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(7) 

 

where 
ijA and  , 1,2,3,...,9ijB i j   are known as orthotropic micro polar material constants. Using Eqs. (4), (6) 

and (7) can be written as: 
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In the absence of body force and moment force, the equilibrium equations are expressed as: 

 

 , ,0, 0, , 1,2,3 ,ij i ij i jhk hkT M e T i j     (9) 

 

where
 

,ij ijT M are stresses, couple stresses and 
jhke  is called permutation tensor. In curvilinear cylindrical system, 

equilibrium equations in the absence of body force and body moment are written as [11] 
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Using Eq. (8) in Eq. (10), we have 
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Substituting Eq. (8) in Eq. (11), we will obtain a second order differential equation in terms of stress function 

 r  expressed as: 

 

           2 2 3

11 11 22 67 66 77 23 13 77 67'' ' 2B r r B r r B r A A A r r B B r A A               (12) 

 

Since thick-walled circular cylinder considered is hollow therefore, the boundary conditions for Eq. (12) are 

defined as: 

 

=0rrM  at r a  and  =0rrM
 
at  r b , (13) 

 

where 
rrM is couple stress, a and b are internal and external radii of the circular hollow cylinder. 
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Boundary conditions in terms of stress function  r can be written as: 
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To normalize the differential Eq. (11), the following components are defined in non-dimensional form as: 
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where r is radius of the cylinder, 
77A is shear modulus  and 

il  is the internal length of micro orthotropic material. 

Boundary value problem defined in Eqs. (12) and (14) in non-dimensional form can be written as: 
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and 
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(16) 

 

The torsion in the cylinder is given by  

 

 or z zz

A

T rT M dA    

(17) 

 

The boundary value problem given by Eqs. (15) and (16) has been solved with the finite difference algorithm. 

After computing function ,  we determined shear stresses and couple stresses using Eq. (8).  

3    RESULTS AND NUMERICAL DISCUSSION 

To illustrate the influence of material parameters and internal length on twisted hollow circular cylinder, Figs. 2(a)-

(b) have been drawn between stress function and radii ratio.  

Fig. 2(a) shows the effect of internal length ratio i on the stress function for fixed value of orthotropic material 

constants. It is noticed that stress function is linear throughout the radii with different slopes and changes in value of 

stresses is noticeable when values of internal length ratio switches from 0.1i 
 
to 1i  .  

Fig. 2(b) shows the effect of material constants 66 0.2, 0.5, 0.7, 1A  . It has been observed that stress function is 

very close to zero at the internal radii and approximately linear for 66 1A  . With the decrease in value of 66A , 

stress function moves away from zero at internal radii and behavior of stress function is linear throughout the radii. 

To observe the effect of orthotropic material constants with different material internal lengths on shear stresses, 

curves have been drawn between radii ratio and shear stresses. 
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(a) 

 

 
(b) 

Fig.2 

Stress function: (a) influence of internal length 0.01, 0.1, 1, 10i   (b) influence of material constant 66 0.2, 0.5, 0.7, 1A  . 

 

Figs. 3(a)–(c) have been drawn between radii ratio and shear stresses  z  to shows the influence of materials 

constant 66 0.2, 0.5, 0.7, 1A   on shear stresses with fixed internal length 1, 0.1, 0.01.i   Fig. 3(a) shows the effect 

of material constant 66 0.2, 0.5, 0.7, 1A   with 1i   on shear stresses. It is noticed that shear stresses are 

maximum for 66 1A   and minimum for 66 0.2A  . Also, these stress decreases with the decrease in internal length 

as can be seen in Fig. 3(b). With the change in internal length from 0.1i   to 0.01i  , it is noticed from Fig. 3(c) 

that the effect of material constant is negligible.  

To show the effect of material constant 11B  and 22B on shear stresses respectively, the larger value of i  
is 

considered as can be seen from Figs. 3(d)-3(e). From Fig. 3(d), it has been observed that shear stresses are nonlinear. 

These stresses are maximum at internal surface for 11 0.2B   and at external surface for other values of 11B . It has 

been observed from Fig. 3(e) that shear stresses are linear in nature and are maximum at external surface for all 

values of 22B  except for 22 0.2B   for which these shear stresses are minimum. Fig. 3(f) shows the influence of 

different internal lengths with fixed material constants. With the decrease in internal length, shear stresses decreases.  

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 
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(e) 

 
(f) 

Fig.3 

Shear stress 
z : (a) influence of 66A with internal length 1i   (b) influence of 66A with internal length 0.1i   (c) influence 

of 
66A with internal length 0.01i   (d) influence of 

11B with internal length 1i   (e) influence of 
22B with internal length 

1i   (f) influence of internal length 
i  with 66 0.5A  . 

 

As material is micro polar, so
z  is not symmetric to

z  therefore, Figs. 4(a)-(d) have been drawn between 
z  

and radii ratio to observe the effect of internal length and orthotropic micro polar material constants on shears 

stresses.  

Figs. 4(a)-(c) shows the sensitivity of material constant 66A  with different values of material internal 

lengths 1, 0.1, 0.01i   on shear stresses. From Fig. 4(a), it is observed that shear stresses are maximum at external 

surface for 66 1A  . It has also been observed that with the decrease in internal length from 0.1i   to 0.01i  , 

there is very small effect of material constant 66A  on shear stresses as can be seen from Figs. 4(b) and 4(c). From 

Fig. 4(d), it has been noticed that shear stress
z are maximum at external surface and theses shear stresses 

z are 

high as compared to shear stresses 
z . Also, it is noticed that shear stress

z is maximum for 66 1A 
 
while shear 

stress
z is maximum for 66 0.2A  . 

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

Fig.4 

Shear stress z : (a) influence of 66A with internal length 1i   (b) influence of 66A with internal length 0.1i   (c) influence 

of 66A with internal length, 0.01i   (d) influence of internal length i with 66 0.5.A   
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Radial couple stresses have been drawn in Figs. 5(a)–(e) to show the influence of material constant
 66A  with 

1, 0.1, 0.01i   on couple stresses. It is observed from Fig. 5(a) and 5(b) that couple stress increases with the 

change in internal length from 1i   to 0.1i  . Also, it is noticed that the behavior of radial couple stresses at 

66 0.5, 0.7, 1A   is opposite to 66 0.2A  . It has been observed from Fig. 5(c) that radial couple stresses are constant 

for small internal length 0.01i   except near the boundary of the cylinder. From Fig. 5(d), it is found that radial 

couple stresses are compressive for 11 1B  . From Fig. 5(e), it is observed that for 22B
 
radial couple stresses are 

tensile and increases with the increase in the value of 22B . Radial couple stress is maximum for higher value of 

internal length as can be noticed from Fig. 5(f). Also, it has been noticed that effect of smallest internal length on 

radial couple stresses is negligible.  

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

  

 
(e) 

 
(f) 

Fig.5 

Couple stress rrm : (a) influence of 66A with internal length, 1i   (b) influence of 66A with internal length  0.1i   (c) 

influence of 66A with internal length  0.01i   (d) influence of internal length i  with 66 0.5A   (e) influence of 11B with 

internal length 1i   (f) influence of 22B with internal length 1i  . 

 

Circumferential couple stresses have been drawn in Figs. 6(a)-(d) to show the effect of material parameters 

66A with different values of internal length 1, 0.1, 0.01i   on circumferential couple stresses. Fig. 6(a) and 6(b) 

shows that the circumferential couple stresses are maximum for 66 1.A   Also, these circumferential couple stresses 

are constant except near the boundary of the cylinder for 0.01i 
 
as can be seen from Fig. 6(c). Fig. 6(d) shows 
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the influence of internal length with fixed material constants on circumferential couple stresses. Also, it is noticed 

that for smallest value of internal length, these couple stresses are constant throughout the radii ratio except at free 

boundaries. Also, behavior of circumferential couple stresses for largest internal length, i.e. 10, 1i   varies 

differently as compared to smallest internal length i.e. 0.1, 0.01.i   

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

Fig.6 

Couple stress m : (a) influence of 66A with internal length 1i   (b) influence of 66A with  internal length 0.1i   (c) 

influence of 66A with internal length 0.01i   (d) influence of internal length, i with 66 0.5A  . 

 

Figs. 7(a)–(d) have been drawn for axial couple stress with radii ratio with different values of 66A  and internal 

length 1, 0.1, 0.01.i   It is observed from Fig. 7(a) and Fig. 7(b) that these axial couple stresses are maximum at 

internal surface for 66 1A 
 
at 1i   and 0.1i  . However, it is found from Fig. 7(c) that these couple stresses are 

constant throughout the radii except free boundaries for small internal length
 

0.01i  . Fig. 7(d) shows the 

influence of various internal lengths
 

10, 1, 0.1, 0.01i   on axial couple stresses with fixed angle of twist and 

material constants. It has been noticed that effect of larger value of internal length i.e. 10i   on axial couple stress 

is negligible. The code of the algorithm has been compiled and executed in MATLAB running on a PC. 

 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig.7 

Couple stress 
zzm : (a) influence of 66A with internal length 1i   (b) influence of 66A with internal length 0.1i   (c) 

influence of 
66A with internal length 0.01i   (d) influence of internal length 

i  with 66 0.5A  . 

4    CONCLUSIONS 

Using finite difference method, numerical solution in terms of stresses, couple stresses and micro-rotations have 

been obtained. Our results are good in agreement with Taliercio and Veber [14], for hollow circular cylinder made 

up of isotropic material. It has been concluded that the effect of smallest internal length on both kind of shear 

stresses 
z  and 

z  is negligible. Moreover, the couple stresses are constant throughout the radii for hollow 

circular cylinder except at free boundaries and in small neighborhood of these boundaries when internal length is 

small. Couple stresses showing its significance for materials whose internal length is large.  
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