
 

© 2016 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 8, No. 3 (2016) pp. 578-589 

Generalized Thermoelastic Problem of a Thick Circular 
Plate Subjected to Axisymmetric Heat Supply 

J.J. Tripathi
 1,

 
*
, G.D. Kedar

 2
 ,K.C. Deshmukh 

2
 

1
Department of Mathematics, Dr. Ambedkar College, Deekshabhoomi, Nagpur -440010, Maharashtra, India

 

2
Department of Mathematics, R.T.M. Nagpur University, Nagpur-440033, Maharashtra ,India 

Received 20 June 2016; accepted 17 August 2016 

 ABSTRACT 

 The present work is aimed at analyzing the thermoelastic disturbances in a circular 

plate of finite thickness and infinite extent subjected to constant initial temperature 

and axisymmetric heat supply. Integral transform technique is used. Analytic 

solutions for temperature, displacement and stresses are derived within the context 

of unified system of equations in generalized thermoelasticity in the Laplace 

transform domain using potential functions. Inversion of Laplace transforms is done 

by employing a numerical scheme. Temperature, displacement and stresses 

developed in the thick circular plate are obtained and illustrated graphically for 

copper (pure) material.                        © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 HE theory of thermoelasticity has seen a swift development in the past decade, affected by many different 

engineering sciences. The theory of thermoelasticity can be broadly classified as uncoupled and coupled 

thermoelasticity. The heat conduction equation in classical uncoupled theory is independent of elastic terms which 

contradict the fact that elastic changes and heat changes affect each other. The heat conduction equation is parabolic 

thus predicting infinite speeds of propagation for heat waves. Thus, the Classical uncoupled theory is found to be 

incompatible with physical observations. The theory of coupled thermoelasticity was introduced by Biot [1] by 

introducing the elastic terms in the heat conduction equation, eliminating the first paradox of the classical theory.  

This theory still predicted infinite speed of heat propagation which is contrary to the actual phenomena.  

Modifications to the coupled theory were later introduced, thus paving way for the generalized thermoelasticity 

theories. The first modification was due to Lord and Shulman [2]. They introduced one relaxation parameter in the 

Fourier’s heat equation to obtain a hyperbolic heat conduction equation. The heat equation of Lord-Shulman theory 

is of wave type, hyperbolic in nature, thus predicting finite speeds of heat and elastic wave propagation. The second 

generalization was due to Green and Lindsay [3] who obtained the equations of generalized thermoelasticity with 

two relaxation parameters. Later on, Şuhubi [4] also obtained these equations independently. Dhaliwal and Sherief 

[5] extended the Lord-Shulman theory of generalized thermoelasticity to homogeneous anisotropic materials. 

Chandrasekariah [6] studied the thermal disturbances with second sound. A review article comparing various 

theories of generalized thermoelasticity was given by Hetnarski and Ignaczak [7].  

Sherief and Anwar [8] have discussed a problem of heat conduction in Lord-Shulman theory for a thermoelastic 

cylindrical medium composed of two different materials. Maghraby and Abdel Halim [9] studied a problem of 

generalized thermoelasticity in Lord-Shulman theory for a half space subjected to a known axisymmetric 
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temperature distribution. Othman and Abbas [10] discussed a thermal shock problem of generalized thermoelasticity 

for a non homogeneous isotropic hollow cylinder using finite element method. Youssef [11] studied two 

dimensional generalized thermoelastic problem for a half space subjected to ramp type heating. Awad [12] wrote a 

note on the spatial decay estimates in non-classical linear thermoelastic semi-cylindrical bounded domains. 

Mukhopadhyay and Kumar [13] discussed thermoelastic interactions on two-temperature generalized 

thermoelasticity in an infinite medium with a cylindrical cavity. Tripathi et.al [14] solved a problem of semi-infinite 

cylinder with heat sources in the context of Lord-Shulman theory and Classical coupled thermoelasticity. Mallik and 

Kanoria [15] studied the two dimensional problem in generalized thermoelasticity of thermoelastic interaction for a 

transversely isotropic thick plate having heat source. These problems are solved using eigenvalue approach. Bagri 

and Eslami [16] have got the unified generalized thermoelastic solution for cylinders and spheres. A two 

dimensional problem for a half space and for a thick circular plate with heat sources have been solved by El-

Maghraby [17, 18]. Youssef [19] studied the problem of a generalized thermoelastic medium subjected to moving 

heat source and ramp type heating using state –space approach. Recently, Tripathi et al. [20] studied a problem of 

generalized thermoelastic diffusion in thick circular plate.  

The present work is aimed at analyzing the effects of phase lags on wave propagation under axisymmetric 

distributions and to investigate the nature of distributions of different fields in a thick circular plate under 

axisymmetric temperature distribution in the context of unified system of theories of generalized thermoelasticity 

(i.e. L-S and G-L). The classical coupled (CT) theory is recovered as a special case. The exact expressions for 

temperature distribution, displacement components and the stress are obtained in the Laplace transform domain. 

Numerical inversion of Laplace transforms are performed using Gaver-Stehfast algorithm [21, 22, 23] which is 

considerably more stable and computationally efficient than inversion using the discrete Fourier transform [24] and 

all integrals were evaluated using Romberg’s integration technique [25] with variable step size. The results 

presented here will be useful in many engineering problems like thick-walled pressure vessels, such as a nuclear 

containment vessel, a cylindrical roller, such as a roller bearing, etc. 

2    FORMULATION OF THE PROBLEM 

The present paper deals with the thick plate of thickness 2b occupying the space D defined by 

0 ,r b z b . Let the plate be subjected to a transient axisymmetric temperature field dependent on the 

radial and axial directions of the cylindrical co-ordinate system. The thick circular plate is initially held a constant 

temperature 
0T  and a heat flux ( )QF r  is prescribed on the upper and lower boundary surfaces. Under these 

conditions, the thermoelastic quantities in a thick circular plate of infinite extent are required to be determined. We 

also assume that the heat source and body forces are absent. 

All the field equations for isotropic media in the absence of heat source and body forces are formulated in a 

unified system [11] as, 

(i) Equation of motion 
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(ii) Equation of heat conduction 
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(iii) The constitutive relations  
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Eqs. (8)-(10) reduce to Eqs. (1)-(3) (CCTE) when 0 11, 0 . Putting 11, 0 and 0 0 , the 

equations reduce to (1), (4) and (3) for the ETE model, while when 1 00 , 0 , the equations reduce to (5)- 
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(7) for the TRDTE model. 

The dilatation e  is given by 

 

1
e = ( u + u )and e e
ij i ,j j,i ii2

 
 

(4) 

 

where  and  are Lame’s constants, 
0 1and  are relaxation times,   is a material constant given by 

t )23(  ,
t is the coefficient of linear thermal expansion, 

0T is the reference temperature chosen such 

that
0 0( ) / 1T T T . 

Eqs. (1)-(4) give the complete set of unified system of field equations in the context of generalized 

thermoelasticity. We take the axis of symmetry as the z axis and the origin of the system of co-ordinates at the 

middle plane between the upper and lower faces of the plate. The problem is studied using the cylindrical polar co-

ordinates ),,( zr  . Due to the rotational symmetry about the z axis of the problem, all quantities are independent of 

the co-ordinate . The displacement vector, thus, has the form ( ,0, )u u w . 

The equations of motion can be written as: 
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(6) 

 

The generalized equation of heat conduction has the form  
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(7) 

 

where T is the absolute temperature and e is the dilatation given by the relation  
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where the Laplacian operator is given by 
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The following constitutive relations supplement the above equations 
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rz
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(12) 
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We shall use the following non-dimensional variables 
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where 1 Ec C

k
 is the dimensionless characteristic length, 
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  is the speed of propagation of 

longitudinal wave. 

Using the above non-dimensional variables, the governing Eqs. (5)-(13)   take the form, 
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Using Helmholtz decomposition theorem, we seek the displacement components u and w in the form, 
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where the potential functions   and   are the Lame’s potentials representing irrotational and rotational parts of the 
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displacement vector u  respectively. 

From Eqs. (4), (21) and (22), we obtain 

 
2e    (23) 

 

Using Eq. (21)-(23), the Eqs. (14)-(16) become, 
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Eq. (25) for the function   represents a wave equation with wave velocity 1/v  . This represents a transverse 

wave and it has no effect on temperature. Eq.(26) represents a longitudinal thermal wave moving with velocity 

0
1 / .

L
v    

We shall assume that the initial state of the medium is quiescent. The boundary conditions of the problem are 

taken as: 
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and the traction free surface stress functions, 
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3    ANALYTICAL SOLUTION 

Applying the Laplace transform defined by the relation, 
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and the Hankel transform of order zero with respect to r of a function ( , , )f r z s  defined by the relation, 
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where 
0J is the Bessel function of the first kind of order zero. 

The inverse Hankel transform is given by the relation  
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Taking the Laplace and Hankel transform of both sides of Eqs. (24)-(26), we get, 
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The solution of the above equation can be written in the form 
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Solving Eqs. (29) and (30), we get the solutions * and * in the form, 
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On using Eqs. (21), (22) in Eqs. (12) and (13), the stress components * *,zz rz  become, 
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where H represents the Hankel transform. 

Applying the Laplace and Hankel transforms to the boundary conditions (27) and (28), we get, 
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Here we have considered the function ( , )F r z which falls off exponentially as one moves away from the centre 

of the plate in the radial direction and increases symmetrically along the axial direction given by, 
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Making use of the values of , andzz rz    in the boundary conditions (42), (43) and with the aid of Eq. (44), we 
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Eqs. (45)-(47) is a system of linear equations with 1 2,C C  and D as unknown parameters. The solution of this 

system of linear equations is given by 
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3.1 Inversion of Hankel transform 

Taking inverse Hankel transform of Eq. (37), we obtain, 
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Using Eqs. (37)-(39) in (21)-(22) and taking inverse Hankel transform, yields the solution for displacement 

components in Laplace transform domain, 
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Applying Laplace transform to both sides of Eqs. (17)-(19) and using the solutions given in Eqs. (48)-(50), we 

obtain the stress components in the Laplace transform domain, 
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Eqs. (48)-(53) present the complete set of variables in the Laplace transform domain.  

4    INVERSION OF DOUBLE TRANSFORMS 

Due to the complexity of the solution in the Laplace transform domain, the inverse of the Laplace transform is 

obtained using the Gaver-Stehfast algorithm. Gaver [21] and Stehfast [22, 23] derived the formula given below. By 

this method the inverse ( )f t  of the Laplace transform ( )f s is approximated by, 
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where K is an even integer, whose value depends on the word length of the computer used. / 2M K and m is the 
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integer part of the ( 1) / 2j  . The optimal value of K was chosen as described in Gaver-Stehfast algorithm, for the 

fast convergence of results with the desired accuracy. The Romberg numerical integration technique with variable 

step size was used to evaluate the integrals involved. All the programs were made in mathematical software Matlab. 

5    NUMERICAL RESULTS AND DISCUSSION 

Mathematical model is prepared with Copper material for purposes of numerical computations. The material 

constants of the problem are given below [11]  
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Using these values, it was found that 2 28886.73 , 0.0168 , 4m s     . It should be noted that a unit of 

non-dimensional time corresponds to 126.5 10 s , while a unit of non-dimensional length is equal to 82.7 10 m . 

We consider a thick circular plate of height 1b m  and the constants in the problem are taken as  1b m  and 

1Q  . The computations were carried out for three values of time  0.1,0.5,1.2t  . 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Temperature distribution   in the middle plane. 

  

 

 

 

 

 

 

 

 

 

 

Fig.2 

Radial displacement u distribution in the middle plane. 

  

 

 

 

 

 

 

 

 

 

Fig.3 

Axial stress component zz along the radial direction in the 

middle plane. 
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Fig.4 

Temperature distribution   in axial direction at 0.1r m . 

  

 

 

 

 

 

 

 

 

 

Fig.5 

Axial stress component 
zz  along the axial direction 

at 0.1r m . 

 

The numerical values for temperature  , the radial displacement component u, and the axial stress component 

zz  have been calculated at the middle of the plane ( 0z  ) for different time instants 0.1 ,0.5 ,1.2t s  along the 

radial direction and are displayed graphically for Classical Coupled Thermoelasticity (CT theory) , Lord-Shulman 

theory (L-S theory) and Green-Lindsay theory of generalized thermoelasticity and as shown in Figs. 1, 2 and 3 

respectively. The graphs of the stress component 
rr  and   are very much similar to the axial stress component 

and hence are not taken up for discussion. Since the displacement function w is an odd function of z, its value on the 

middle plane is always zero and it is omitted here. 

Fig.1 depicts the non-dimensional temperature distribution , Fig.2 depicts the radial component of displacement 

u and Fig.3 represents axial stress component 
zz  along the radial direction at the middle plane ( 0z  ) at different 

time instants 0.1 ,0.5 ,1.2t s  respectively. Classical Coupled Theory of thermoelasticity (CT) predicts an infinite 

speed of wave propagation, whereas the Lord-Shulman (LS) model and Green-Lindsay (GL) model of generalized 

thermoelasticity involves the introduction of one relaxation time 
0  and two relaxation times 

0 1,   respectively. The 

heat conduction equation is hyperbolic in nature thus the heat wave assumes finite propagation speeds. It is clearly 

observed from Fig.1, Fig.2 and Fig.3 that at small times the CT, LS and GL theory show different results. In CT, the 

heat is transmitted throughout the medium instantaneously and hence the solution is not zero. On the other hand, LS 

and GL theories predict finite speed of heat propagation. Hence, for short time the heating effect is not seen in the 

plate, the radial displacement is identically zero and the stresses are negligible. For large time, the heat wave reaches 

all points in the medium even with finite speed of propagation. Hence, for large times the three theories are in 

somewhat agreement. It is also observed that the non-dimensional temperature   drops gradually along the radial 

direction. It is further observed from Fig.3 that the axial stress 
zz  is compressive till 5r m  and after that 

becomes tensile in nature.  

Fig.4 shows the plot of non-dimensional temperature   in the axial direction i.e. along the z axis at 0.1r m . 

From the graphs, it can be observed that the temperature at the upper and lower face is more as compared to the rest 

of the thick plate. Thus, the heating takes place at the faces of the plate. It is also seen that at small times CT, LS and 

GL theories predict different results whereas at large times the three theories predict a similar result. 

Fig. 5 depicts the plot of axial stress 
zz  in the axial direction i.e. along the z axis at 0.1r m . It is observed 

that the stress is tensile at the lower edge of the plate till 0.1z m   and then becomes compressive thereafter. 
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6   CONCLUSIONS 

In this problem, we have used the generalized theories of thermoelasticity LS and GL models to solve the problem 

for thick circular plate of infinite extent with axisymmetric heat supply and compared the models with CT. From the 

graphs, it can be clearly seen that for LS and GL theories, the temperature, displacement and stress distributions are 

identically zero if not absolutely zero for small time whereas for CT theory the temperature, displacement and stress 

distributions are non zero. This may be because the heat wave is transmitted throughout the medium instantaneously 

for CT theory for small time. As generalized theories (i.e. LS and GL models) involve a hyperbolic wave equation, 

predicting finite speeds of heat propagation whereas the CT model involves a parabolic heat equation, thus 

predicting infinite speeds of heat wave propagation. As a special case, we have constructed a mathematical model 

for copper plate with axisymmetric heat supply and the results are compared in CT, LS and GL theories. We may 

also conclude that the system of equations in this paper may prove to be useful in studying the thermal 

characteristics of various bodies in important engineering problems using the more realistic generalized models of 

thermoelasticity instead of Classical Coupled theory. 
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