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 ABSTRACT 

 The elasticity mixed boundary values problems dealing with half-space 

contact are generally well resolved. A large number of these solutions are 

obtained by using the integral transformation method and methods based 

the integral equations. However, the problems of finite layer thicknesses 

are less investigated, despite their practical interests. This study resolves a 

quasi-stationary problem of an isotropic elastic layer compressed by two 

rigid cylinders with flat ends. Hankel transformation and auxiliary 

functions with boundary conditions reduce the differential equation to an 

algebraic equations system, which can be solved in a numerical way. The 

contact efforts equations are established. From the general method, 

solutions of particular cases are also resolved. A particular case is studied, 

the contact zone pressure and stresses distribution curves are presented. 

                                             © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 E consider an axisymmetric problem of an elastic layer thickness (H) indentation by two rigid coaxial 

cylindrical punches with different radii on its boundary surfaces (Fig.1). A calculation method of the contact 

stresses is developed using the Hankel transform reducing the differential equation linking the stresses and the 

displacement components to a system of integral equations. The approach in this work takes its origin from previous 

studies carried out by Harding and Sneddon [1] which seems to be the first to use the Hankel transformation to 

reduce the Boussinesq problem for a circular solid punch to the resolution of a pair of double integral equations. 

Ufliand [2] presents in his book a synthesis of early work concerning the integral transformations in elasticity 

problems of contacts. Kuz'min and Ufliand [3] use the same technique to solve the problem of a compressed layer 

by two identical punches under equal pressures and lead to approximations of stresses and displacements to the 

interfaces in the forms of power series. Later Zakorko [4], by the same approach finished to approximate the 

distribution of the layer-flat ended punches contacts efforts to a convergent series for small parameters smaller 

indenter radius.  Dhaliwal and Sing [5] studied an interesting alternative of shear punching in an elastic layer and 

reduced the problem by the Hankel transform to the solution of a pair of simultaneous Fredholm integrals of the 

second kind. Many other works include detailed descriptions of applications of the integral transformations to 

contact problems [6-8]. In recent works authors return to the use of the Hankel transform to solve loading of the 

contact finite layers’ thicknesses. We refer to Keer and Kuo [9], using the Hankel integral transformation reducing 

the problem to an integral equation they solved numerically. Matnyak [10] studied the stress distribution under the 
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punch moving on a prestressed elastic layer and also used the Hankel transformation. This method seems to suit 

perfectly thermo elastic problems solving, and in fact Shelestovskii and Gabrusev [11] used this method in their 

work and analyzed the effect of the punches geometry on the distribution of thermal and mechanical components of 

the contact forces. The same method is applied by Ruiny and Dahan [12] under the assumption that stresses and 

displacements are supposed to tend toward zero for (r, z) tending to infinity. In our present contribution, we assume 

that at points far from the punch, the components of stresses and displacements are negligible and that perturbations 

of the planarity of the free faces are rather weak. In a first time, we built up a system of integral equations with 

boundary conditions similar to the ones in previous works [3,4]. The difference is that, after applying the inverse 

Hankel transform to differential equations and writing the general expressions of stresses and displacements, we 

introduce two auxiliary functions in the boundary conditions and a suitable change in the variables. This facilitates 

the integral equations resolution and lead to a system of numerical integral equations.  

In this work, the aim is to get a solution to the problem, in a simpler way, for which the classical results 

formulated as power series do not converge (at least rapidly) for R ≥  H. Expressions giving the stresses distribution 

under the punches are defined and the corresponding practical curves are plotted. 

2    PROBLEM FORMULATIONS 

A layer thickness (H) of an elastic material with isotropic parallel faces is statically compressed by two flat ended 

rigid cylinders at its boundaries (Fig. 1). We assume that the line of action of the two forces coincide with the 

symmetric axis of the two punches. This is a symmetrical axial problem and can be represented in a cylindrical 

coordinates system (r,, z)  coinciding with the upper surface layer. 

Considering the following boundary conditions: 

 

0 , 0 : 0rzr z       (1) 

 

0 , : 0rzr z H        (2) 

 

, 0 : 0zR r z       (3) 

 

1 , : 0zR r z H        (4) 

 

0 , 0 : zr R z U      (5) 

 

1 10 , : zr R z H U       (6) 

 

1,  : Penetration depth of the two punches in the elastic layer. 
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The problem schematic representation. 
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3    GENERAL SOLUTION OF THE ELASTICITY PROBLEM IN AXIAL SYMMETRY 

The differential equation governing the problem with axial symmetry in cylindrical coordinates is the bi harmonic 

equation [13,14]. 

 
4 ( , ) 0r z   (7) 

 

where:  
2 2

2

2 2

1

r rr z

  
   

 
             

Using for the equation solution the Hankel inverse transform of zero order [2,15], the function ( , )r z  is defined 

by:  

 

0

0

( , ) ( , ) ( )r z z J r d    



   

 

(8) 

 

     0J : The Bessel function of order zero. 

     
( , )r z : The stress function defined by the following relations.  

 
2

2

2

2 ( , )
( , )z

G G r z
U r z

G G z

  


  
  


 

 

(9) 

 
2 ( , )

r

G r z
U

G r z

  


 
 

 

(10) 

                                               

  and G are elastic coefficients. After substitution the general solution is: 

 

   1 2 3 4( , ) ( ) ( ). ( ) ( ).z zz B B z e B B z e           (11) 

 

B1, B2, B3, B4 are functions of the variable ( ) determined by the boundary conditions. Introducing (11) into (8) 

and in the expressions for the displacements and the stresses given by [3]. General expressions of stresses and 

displacements can be written in the form of integral expressions. 

 

1 2
1 1

0

0
3 4

1 1

( ) (2 ) ( )
1

( )

( ) (2 ) ( )

F F e
b R b

Uz J d

F F e
b R b





 
 

 
  

 




  
   

  
   

  
    
  

  

 

 

(12) 
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3
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0
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( ) ( ) ( )

z

F b F e
Rb

J d
R

F b F e
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


  

  


  




  
   

  
  

         

  

 

 

(13) 
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(14) 
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bi (i = 1-3) are physical constants of the material 1 2,        
G

b b
G G



 
 

 
  and   3b G  .  

3

3
( ) ( )i iF B

RR

 
   : (i=1 to 4) are the unknown functions. 

(  ,  .     )
r Z

R et
R R

       are dimensionless parameters. 

4    SOLVING METHOD AT THE BOUNDARY VALUE PROBLEM 

Satisfying the boundary conditions (1), (2) and introducing the functions 1 2( ), ( )     in the conditions (3) and (4) 

such that: 

 

31 2 2 2 4( ) ( ) ( ) ( ) 0F b F F b F
R R

 
        

1 2 2 3 2 4[ ( ) ( ) ( )] [ ( ) ( ) ( )] 0F b F e F b F e
R R

  
             

1 1 2 3 1 4 1

1 1 2 3 1 4 2

( ) ( ) ( ) ( ) ( )

[ ( ) ( ) ( )] [ ( ) ( ) ( )] ( )

F b F F b F R
R R

F b F e F b F e R
R R

 

 
     

 
       

   


     

 

 

 

 

 

(15) 

 

with:  /H R . Solving the system of algebraic Eqs. (15) and expressing the functions  ( 1 4) by ( 1,2).i jF i j    

We get, after substitution ( 1 4)iF i  
 
 in the conditions (3), (4), (5) and (6), the following system of integral 

equations: 

 

1
1 0 2 2 1 1 0

1
0 0

( ) ( ) ( ( ) ( ) ( ) ( )) ( ) ; 1
(1 )

b
J d P P J d

R b


            

 


  
   

 

(16) 

 

1 0

0

( ) ( ) 0 ; 1J d    



  

 

(17) 

 

1 1
2 0 1 2 2 1 0 1

10 0

( ) ( ) ( ( ) ( ) ( ) ( )) ( ) ;
(1 )

b
J d P P J d

R b


             

 


  
   

 

(18) 

 

2 0 1

0

( ) ( ) 0 ;J d     



  

 

(19) 

 

where:   1
1  

R

R
   ;   2 2 2 2

( )
sh ch

P
sh

  


 





 ;   

2 2

1 2 2 2
( )

e sh
P

sh

  


 

 



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4.1 Case of punches with similar radius 

When the layer is compressed by two punches having the same radii R=R1 with two equal forces: 1   and 

1 2( ) ( ) ( )       , the previous equations system (16) - (19) is reduced to the following system of two integral 

equations: 

 

1
0 0 0

10 0

( ) ( ) ( ) ( ) ( ) ) ( ) ( ) ; 1
(1 )

b
J d G J d J d

R b


             

 


 
   

0

0

( ) ( ) 0 ; 1J d    



  

 

 

 

(20) 

 

where: 
1 2( ) ( ) ( )G P P     

4.2 Case of a single punch 

Considering the case where R1 tends to infinity (or 1  equal to zero). In either assumption, the underneath punch 

becomes a support plan. Taking 1 0  ,   from Eq. (18), we deduce 2( ) 
 
function of 1( )   so that: 

 

2 1( ) ( )
sh ch

sh ch

  
   

  





 

 

(21) 

 

Substituting in Eq. (16) 2( )   by its new expression (21), we obtain another system of two integral equations, 

which is written as: 

 

1
1 0 1 1 0

10 0

( ) ( ) ( ) (2 ) ( ) ; 1
1

b
J d G J d

R b


         

 

  
   

1 0

0

( ) ( ) 0 ; 1J d    



  

 

 

 

(22) 

 

where:   
2

1 2

1 2
(2 )

2 2

e
G l

sh




 

 



 

In both cases (15) and (16) it's only necessary to solve a system with two integral equations. The only difference 

lies in the expression of the functions ( )G  and 1(2 )G   in Eqs. (20) and (22) to get to an expression of 

constraints in the following form: 

 

1

2 2 2 2

(1) ( )
( ,0)

2 1
z

F t

R t

 
 

  

 
  

 
 

   

  

 

 

(23) 

 

The function ( )t  is the one to be determined numerically from the following equation; concerning the 

methodology see [16]. 

 

1

0 0

2 sin
( ) ( ) ( )cos cos 1 : 0 1t x dx Q x t d t


     

 


 

     
 

   

 

(24) 
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where: 

( ) ( )Q G      for the system (15)  

1( ) (2 )Q G   for the system (16) 

4.3 Case of a half space  

If the relative thickness ( H
R  ) tend towards infinity in (4.2 Case of a single punch) the solution will be that of 

an infinite semi space. The function (2 )G   will take the value zero and consequently the function ( )t will be 

unity according to (24). The interface pressure (23) can be written as:  

 

2 2

1
( ,0)

2 1
z

F

R
 

 






 
 

 

4.4 Study of the general case of two punches of different various radii   

We propose to solve the case corresponding to punches with different radii (R   R1) solicited by two similar forces 

(Fig.1).  

Changing variables ( 1   and 1    ) and the following functions representation 1( )   and 

2( )  [8,15,17]
 
; 

 

1
1

1 1
1

0

( ) ( )cos( )
1

b
f t t dt

b
  

   

 

(25) 

 

1
2 2 1

2 2 1 2 1 2
11

0

( ) ( ) ( ) ( )cos( )
1

b
f t t dt

b


       




    

   

 

(26) 

 

Eqs. (17) and (19) are satisfied.   
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(28) 

and the stresses at the contact surfaces (z = 0, z = -H) are determined by: 
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1

1 3 2 2

*2 2 *21
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Eqs. (16) and (18) are transformed to Abel integrals,  

 

1
1

2 2
0
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f t dt
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
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


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(29) 

 

which can be easily solved in the way [15,17] ; 
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1

2 2
0
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t
g dd

f t
dt
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
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2

2
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( )2
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(30) 

 

with: 

 
1 1

2
1 1 2 0 2 1 1 0 1

0 0 0 0

( ) ( ) ( ) ( )cos ( ) ( ) ( )cosg P J d f t tdt P J d f t tdt
R


          

 

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(31) 

 
1 1 *

* * * * * * * * * * * *1
2 1 0 2 2 0 12

1 110 0 0 0

1
( ) ( ) ( ) ( )cos ( ) ( ) ( )cosg P J d f t tdt P J d f t tdt

R

 
         

 

 


              

 

(32) 

 

Substituting (31) and (32) in each expression (30) and taking into account (25) and (26), we get two Fredholm 

integral equations as functions  1( )f t  and 2( )f t : 

 
1 12

1
1 1 1 2 2 1

0
0 0 0

22 2
( ) ( ) ( )cos cos ( ) ( )cos xcos td   : (0 t 1)f t f x dx P x td f x dx P

R


        

  




                 

 

(33) 

 
1 1 *

* * * * * * * * *1
2 2 1 1 22 01 110 0 0

2 2 2
( ) ( ) ( )cos( )cos( ) + ( ) ( )cos x.cos td   : (0 t 1)f t f x dx P x t d f x dx P

R

 
      

  




                

 

(34) 

 

Using the static equilibrium conditions at the interfaces ( 0z   ; z H  ). 

 
1

2

0

2 ( ,0) ; 0 1zF R d              

 

(35) 

 

1
2 2 * * * * *

1

0

2 ( , ) ; 0 1zF R d               

 

(36) 

 

The stress expressions at contact surfaces ( 0z   ; z H  ) can be also writing in the form:  
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1

0 1 0

0 0

( ,0) ( )cos ( ) ; 1z f t tdt J d       
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1

* * * * * * * *
0 2 0

0 0

( , ) ( )cos ( ) ; 1z f t tdt J d        



        
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with: 3 1
0

1

2

1

b b

b
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
  

Taking (37) in (35) and (38) in (36), taking into account (34) and (33). Integrating with respect to variable (t), we 

get:  

 

1 12
0

( ) ( )
2

F
f t t

R


 
      

 

(39) 

 

2 22 2
1 0

( ) ( )
2

F
f t t

R


  
      

 

(40) 

  

with:  
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(41) 

 

where: 
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1( )t  and  2( )t  are unknown functions to be determined from the resolution of the equations system (41). 

Finally the stresses at the interfaces punches-layer taking into account (27) and (28) can be determined by the 

following equations: 
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z z
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(42) 
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where: ( ,0)z   and *( , )z    are dimensionless stresses 
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(43) 

5    NUMERICAL COMPUTATIONS 

The use of the finite sums method (numerical integration) to solve the integral Eqs. (41) leads to the system of linear 

algebraic equations with unknowns 
1( )it ,

2 ( )it , (i =1, n+1). 

The approximation of  
1( )t  and  

2 ( )t  by polynomial types 1 0

1

( )
n

k

k

k

t a a t


   and  2 0

1

( )
n

k

k

k

t b b t


  . 

Allows the writing of (43) as: 
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(45) 

5.1 Application 

Taking the elastic layer with relative thickness ( H/R) and taking for punches (R1/R = 1.5). Discrediting the 

radiuses in R = 20 parts and R1 = 30 parts. We use for the function
1( )it and 

2 ( )it  the polynomial approximation 

of degree (k = 5).The results of the stresses distribution in the contact zone * ( ,0)z  and *( , )z    are represented 

by the curves in Fig. 2.  

5.2 Graphical results 

The curves intersection in the vicinity of 0.8   (Fig. 2) testifies of the effectiveness of the algorithm. In fact, the 

surface under the curve is constant. In order to preserve this value for any unspecified parameter variation, the 

corresponding curves must rotate round this point. The graphic result shows a critical situation in the case of 

punches with same radiuses R 1 = R. Knowing that, the sudden increase in the stresses on the interfaces follows the 

same circumferential line of action ( 1 1   ).  
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Fig.2 

Stresses distribution in the contact zone. 
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6    CONCLUSIONS 

We conclude from this work the following:   

1. The semi analytical solution becomes very accurate with the development of numerical calculation and 

powerful computing means.   

2. The solution to a problem of compressed layer by a single flat cylindrical punch is obtained from the 

general case with 1 0   (Eq.(18)) or by making the second punch dimension R1 tends to infinity.   

3. Starting from the case of a single punch, we can deduct the solution of the infinite semi space requested by 

a flat punch (Boussinesq problem) by making H tends to infinity in (Eq. (24)).   

4. To solve the problem of a layer compressed by two identical cylindrical punches, it is sufficient to take 

R1= R in Eqs. (16) -(19) which will lead to the resolution of a two equations system (Eq.(20)).   

5. The solution of the case of the layer requested by two different flat cylindrical punches (Fig.1) summarizes 

in the solution of the algebraic system of Eqs. (41), the approximation of the functions ( 1( )t  , 2 ( )t ) 

and the determination of the distribution of the stresses below each punch by Eq.(43).   

6. Static balance implies the equality of resulting forces the pressures at the contact interfaces.  Then the 

equality of the representative surfaces (the surface limited by the x-axis and the curves of stresses) of the 

stresses under each curves (z=0, z=-H) is an important result which marks the contribution of the 

calculation algorithm.      

7. The static balance ensured by the equality of applied forces, permit to choose their intensities from the 

stresses expressions (42).  

8. The developed algorithm is perfectly suitable for cases arising from the general case as it consists of the 

decomposition and the numerical resolution of Eq. (41) which leads to the computing time reduction 

making the analysis faster.  
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