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 ABSTRACT 

 In this paper, bending analysis of concentric and eccentric beam stiffened square and 

rectangular plate using the meshless collocation method has been investigated. For 

detecting the governing equations of plate and beams, Mindlin plate theory and 

Timoshenko beam theory have been used, respectively, with the stiffness matrices of 

the plate and the beams obtained separately. The stiffness matrices of the plate and 

the beams were combined together using transformation equations to obtain a total 

stiffness matrix. Being independent of the mesh along with its simpler 

implementation process, compared to the other numerical methods, the meshless 

collocation method was used for analyzing the beam stiffened plate. In order to 

produce meshless shape functions, radial point interpolation method was used where 

moment matrix singularity problem of the polynomial interpolation method was 

fixed. Also, the Multiquadric radial basis function was used for point interpolations. 

Used to have solutions of increased accuracy and stability were polynomials with 

the radial basis functions. Several examples are presented to demonstrate the 

accuracy of the method used to analyze stiffened plates with the accuracy of the 

results showing acceptable accuracy that the employed method in analyzing 

concentric and eccentric beam stiffened square and rectangular plates.                        
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1    INTRODUCTION 

 TIFFENED plates are widely used in different structures. High strength to weight ratios has made stiffened 

plates extensively used across such industrial applications as aerospace structures, road bridges, ship hulls, etc. 

Extensive researches have been done for the analysis of stiffened plates. The earliest models for the analysis of 

stiffened plates include grillage model [1] and orthotropic model [2]. Defining an equivalent thickness of stiffened 

plate, these models suffered from inadequate accuracy and efficiency. Therefore, new models are developed where 

the plate and stiffener are considered as separate structures with compatibility equations introduced to consider 

interactions between the plate and stiffeners ([3], [4] and [5]). 

Different methods are used to analyze stiffened plates, such as Rayleigh-Ritz method [6], finite difference 

method [7], finite element method ([5], [8], and [9]), constrain method [4], finite strip method [10], and semi 

analytical finite difference method [11]. Wen et al. [12] used boundary element method to analyze stiffened plates. 

They used coupled boundary element formulation of shear deformable plate and two dimensional plane stress 

______ 
*
Corresponding author. Tel.: +98 912 809 2210; Fax: +98 361 591 2424. 

E-mail address: bsoltani@kashanu.ac.ir (B.Soltani). 

S 



     Sh. Hosseini and B. Soltani                      569 

 

© 2017 IAU, Arak Branch 

elasticity. It is necessary to use numerical methods instead of analytical approaches for such complex engineering 

structures as stiffened plates. Among other numerical methods, finite element method was taken into consideration 

due to its stability and efficiency. However, one of the main problems associated with this method is its reliance on 

mesh. Therefore, the idea of eliminating the meshes where the solutions are just dependent on the nodes, caused so-

called meshless or mesh-free methods to emerge ([13] and [14]). 

Peng et al. [3] investigated a rectangular stiffened plate based on element-free Galerkin method. Memar 

Ardestani et al. [15] studied an FGM stiffened plate based on reproducing kernel particle method. They studied the 

stability of RKPM for the analysis of stiffened plates. 

One of the useful meshless methods is a meshless collocation method based on radial basis functions. With no 

background meshes required to be integrated into the meshless collocation method, it is truly meshless. Furthermore, 

it is simpler to formulate and implement compared to other meshless methods such as MLPG or EFG. 

Recently, radial basis functions have enjoyed considerable success and research as a technique for interpolating 

data and functions. A radial basis function can be seen as a spline that depends on the Euclidian distance between 

distinct data centers also called nodal or collocation points. These functions resolve the singularity matrix in the 

polynomial point interpolation method. Also, Kronecker delta function properties imply that boundary conditions 

can be imposed with no special method required. 

Kansa [16] introduced the concept of solving PDE’s by an unsymmetric RBF collocation method based upon 

Multiquadrics interpolation functions. 

Hardy [17] introduced multiquadrics for the analysis of scattered geographical data. In 1990s, Kansa [16] used 

multiquadrics to solve partial differential equations. The RBFs are insensitive to spatial dimensions, making the 

implementation of the method much easier than that of, e.g., finite elements. An important feature of RBF method is 

that it does not require a mesh. The only geometric property needed in a RBF approximation is the distance between 

the two points. Working with higher dimensional problems is not difficult as distances are easy to compute in spaces 

of any number of dimensions. 

One of the main problems of collocation method is represented by its instability in the presence of derivative 

boundary conditions which may not only cause some instabilities in the solution of the problem, but may also lead to 

lower accuracy and even wrong results in some cases. There are, however, many ways to stabilize problems with 

derivative boundary conditions. Using Hermite-type collocation method, using fictitious points outside the problem 

domain, using regular grids within the problem domain along the derivative boundary, using meshless weak-strong 

form and the use of dense nodes near the derivative boundary are some of such ways, to name a few. Using dense 

nodes near the derivative boundary significantly increase the accuracy and stability of the results [13]. In this 

method, the more number of nodes are used across areas near the derivative boundary condition. Solid points in Fig. 

1 show uniform node distribution in an arbitrary domain with the cross signs showing additional points introduced to 

increase the accuracy and stability of the results. 

 

 

 
 

 

 

 

 

 

 

 

Fig.1 

Using compact nodes in regions near to the derivative 

boundaries for increasing the stability and accuracy of the 

problem. 

 

In this paper, the deflection of stiffened square and stiffened rectangular plates are studied using the collocation 

method based on radial basis functions. Point interpolations are performed via a multiquadric interpolation function. 

The boundary conditions are directly applied because of Kronecker delta function property of the shape functions. 

The interactions between the plate and stiffeners are imposed through the compatibility equations in which 

deflection of stiffeners is considered to be equal to that of the plate along the line of interactions. 

 

 

Additional nodes 

Field nodes 
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2    MESHLESS COLLOCATION FORMULATION BASED ON RPIM 

2.1 Radial point interpolation formulations 

Radial basis approximation functions are meshless numerical schemes that can exploit accurate representations of 

the boundary, are easy to implement and can be spectrally accurate. In this paper, the formulation of a global 

unsymmetrical collocation RBF-based method to compute elliptic operators is presented. 

Consider a linear elliptic partial differential operator L and a bounded region   in R
n
 within some 

boundary . . In a static problem, one may seek the computation of displacements u from a global system of 

equations. 

 

Lu f in   (1a) 

 

BL u g in   (1b) 

 

where L and LB are linear operators in the domain and on the boundary, respectively. The right-hand side of Eq. (1) 

represents the external forces applied in the internal domain and the boundary conditions applied along the perimeter 

of the problem, respectively (Fig. 2). 

The radial basis function approximation of a function u is 

 

1 1

( ) ( ) ( ) ( ) ( )

n m

i i j j

i j

u x R x a p x b R x a p x b

 

      

 

(2) 

 

where ( )iR x  is a radial basis function, n is the number of RBFs, ( )jp x  is monomial in the space coordinates 

 ,Tx x y , and m is the number of polynomial basis functions. When m=0, pure RBFs are used. Otherwise, the 

RBF is augmented with m polynomial basis functions. Coefficients ia  and jb  are constants. In the radial basis 

function ( )iR x , the variables are shape parameter c and the distance between the point of interest x and a node at xi, 

that defined as: 

 

ir x x                                              for 1-D problems (3a) 

 

 2 2( ) ( )i ir x x y y                     for 2-D problems 
(3b) 

 

The most common RBFs are: 

Cubic:    3( )r r    

Thin plate splines:     2( ) log( )r r r   

Gaussian:     
2( )( ) crr e   

Multiquadrics:     2 2( )r c r    

Inverse Multiquadrics:     2 2 1 2( ) ( )r c r    

where the Euclidian distance r is real and non-negative. 
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Fig.2 

Node distribution on inner and boundary regions of global 

domain. 

 
 

RPIM shape functions with pure RBFs usually cannot pass the standard patch tests. Adding polynomial terms up 

to the linear order can ensure the 1C  consistency that is needed to pass the standard patch test. In general, adding 

polynomials can always improve the accuracy of the results while reducing the sensitivity of the shape parameters, 

so that it will provide the user with much more freedom and a wider range of choosing shape parameters [19]. 

Coefficients ia and jb in Eq. (2) can be determined by enforcing Eq. (2) to be satisfied at all n nodes 

surrounding the point of interest x. This leads to n linear equations, one for each node. The matrix form of these 

equations can be expressed as follows 

 

 0s mU R a P b                                          (4a) 

 

where the vector of function values sU is 

 

 1 2, ,...,
T

s nU u u u                                         
(4b) 

 

The moment matrix of RBFs is 

 

1 1 2 1 1

1 2 2 2 2
0

1 2 ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n

n

n n n n n n

R r R r R r

R r R r R r
R

R r R r R r


 
 
 
 
 
 

                                        

 

 

(4c) 

 

The polynomial moment matrix is 

 

     

1 1 1

2 2 2

( )

1 ( )

1 ( )

1 ( )

m

m
m

n n m n m n

x y p x

x y p x
P

x y p x


 
 
 
 
 
 

                                   

 

 

(4d) 

 

The vector of coefficients of RBFs is 

 

   1 2, ,...,
T

na a a a                                       
(4e) 

 

and the vector of coefficients for polynomial is 

 

 1 2, ,...,
T

mb b b b                                    
(4f) 

 

There are n+m variables in Eq. (4a). The additional m equations can be added using the following m constraints 

conditions. 
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1

( ) 0

n
T

j i i m

i

p x a P a



                                

 

(5) 

 

By combining Eq. (4a) and Eq. (5), yields the following set of equations in the matrix form 

 

0
0

0 0

T
s m

s
m

U aR P
U G a

bP

    
      

     

                              
 

(6a) 

 

where 

 

 0 1 2 1 2, ,..., , , ,...,
T

n ma a a a b b b                               
(6b) 

 

 1 2, ,..., ,0,...,0
T

s nU u u u                       
(6c) 

 

By combining Eq. (6a) and Eq. (4a) and some simplification, RPIM shape functions can be expressed as: 

 

   1
1 2 1( ) ( ) ( ), ( ) ,..., ( ) , ( ) ,..., ( )T T

n n n mR x p x G x x x x x    
                          

 

(7) 

 

Finally, the RPIM shape functions corresponding to the nodal displacements vector ( )x  are obtained as: 

 

 1 2( ) ( ), ( ),..., ( )nx x x x                          (8) 

 

Eq. (2) can be rewritten as: 

 

1

( ) ( )

n
T

s i i

i

u x x U u



                         

 

(9) 

 

The derivatives of u(x) are obtained as: 

 

  , ,( ) ( )l l su x x U                      (10) 

 

where l denotes either the coordinates x or y. 

The choice of shape parameter directly influences the accuracy of results. Hardy [17] suggests the use of 

0.815c d , where 

1

1
N

i

i

d d
N



  , and di is the distance from the data point xi to its nearest neighbor. Franke [18], 

on the other hand, recommends 
1.25D

c
N

 , where D is the diameter of the smallest circle containing all data points. 

Fasshauer [19] argues the use of 
2

a

c
N

 , where Na is the number of collocation points in either x- or y- direction. 

Ferreira et al. [20] suggest 
1

a

c
N

  for plates with 15
a

h
 . 

In this paper, we used the Multiquadric radial basis function to interpolate scattered points. The shape parameter 

has been chosen to be 
1

a

c
N

  for plates with unit length of side and 
D

c
N


  for plates of non-identical lengths 

of the sides, where α is a user defined parameter that is different in different problems. 
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2.2 Stiffness matrix 

The global system of equations mentioned in Eq. (1). By substituting Eq. (9) into Eq. (1), results 

 

( )sL U f                                (11a) 

 

( )B sL U g                               (11b) 

 

By putting Eq. (11) in a matrix form, the global stiffness matrix is formed 

 

 1 1N N N NK U F                                (12a) 

 

where stiffness matrix, K, is 

 

1 1( (X )),..., ( (X )), ( (X )),..., ( (X ))
T

NI B NI B NBK L L L L                                    
(12b) 

 

Nodal values vector, U, is 

 

  1 2 1, ,..., , ,...,
T

NI NI NBU u u u u u                               
(12c) 

 

and the global source vector F consists of 

 

1 2 1( ), ( ),..., ( ), ( ),..., ( )
T

NI NI NBF f X f X f X g X g X                                 
(12d) 

 

The Eq. (12a) can be solved by using common methods for solving the system of equation. 

3    COMPATIBILITY EQUATIONS 

Transformation equations were used to combine the stiffness matrix of plate and beams. The stiffener is considered 

to be attached to the lower side of the plate. The meshless model of a stiffened plate is shown in Fig. 2. Some of the 

nodes are subscriber between plate and stiffener, so that the compatibility conditions of the stiffened plate can be 

written as follows: 

 

2 2p s

p s

z h z h
w w

 

   
   

                             
 

(13a) 

 

2 2p s

p s
x x

z h z h
 

 

   
   

                         
 

(13b) 

 

2 2p s

p s
y y

z h z h
 

 

   
   

                       
 

(13c) 

 

where hp is the thickness of the plate and hs is the depth of the x-stiffener. Subscript s and p are generic notations 

which refer to x- or y- stiffener and plate, respectively. 

By using RPIM shape functions, Eq. (13) can be reformulated as: 
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1 1

( ) 0 0 ( ) 0 0

0 ( ) 0 0 ( ) 0 , ( 1,..., )

0 0 ( )0 0 ( )

p s

p p s s
ij j j i jn n

p p s s
i j i xj sj xj

j j s sp p
j i yjij yj

X w X w

X X i n

XX

 

   

  
 

       
       
               
       
             

                         

 

 

 

(14) 

 

where np and ns are the number of nodes on the plate domain and stiffener domain, respectively. The matrix form of 

Eq. (14) expressed as: 

 
p p s sT T                               (15a) 

 

where , ,p s pT T   and s defined as follows 

 

1 11
1

1 11 1

11 11

1

1

1
(3 3 )

( ) 0 0 ( ) 0 0

0 ( ) 0 0 ( ) 0

0 0 ( ) 0 0 ( )

,

( ) 0 0 ( ) 0 0

0 ( ) 0 0 ( ) 0

0 0 ( ) 0 0 ( )

p

p

p

p
s sp

s sp

s sp
s p

p p
pn

p p p
n x

p
p p

y
n

p p

p
p p n

n nn

p p
n nn

p p
n nn

n n

X X
w

X X

X X

T

w
X X

X X

X X

 

  

 



 


 

 


 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
  

(3 1)

p

p
p

p
xn

p
yn

n




 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                             

 

 

 

 

 

 

(15b) 

 

      

1 1 1
1

1 1 1 1

11 1 1

1

1

1
(3 3 )

( ) 0 0 ( ) 0 0

0 ( ) 0 0 ( ) 0

0 0 ( ) 0 0 ( )

,

( ) 0 0 ( ) 0 0

0 ( ) 0 0 ( ) 0

0 0 ( ) 0 0 ( )

s

s

s

ss sp

s sp

s sp
s s

s s
sn

s s s
n x

ss s
yn

s s

ss s
nn nn

s s
xnn nn

s s
n nn

n n

X X
w

X X

X X

T

wX X

X X

X X

 

  

 



 

 

 


 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

(3 1)

s

s
s

s

s
yn

n




 
 
 
 
 
 
 
 
 
 
 
 
 
  

                       

 

 

 

 

 

 

(15c) 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Node distribution in stiffened plate. 
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In general, the transformation equations can be obtained as: 

 
1( )s s p pT T                               (16) 

 

For x- and y-stiffener, Eq. (16) can be reformulated as: 

 
1( )sx sx sx p pT I T                               (17a) 

 
1( )sy sy sy p pT I T                             (17b) 

where 

 

(3 3 ) (3 3 )

1 1

1 0 0 0

0 1

,

1 1

0 1 0 0

0 1
sx sx sy sy

sx sy

n n n n

I I

 

   
   
   
   
   

    
   
   
   
   
   

                           

 

 

 

 

(17c) 

 

where nsx and nsy are the number of nodes on x- and y-stiffener, respectively. Finally, by using the transformation 

equations for beam stiffened plate, total stiffness matrix defined as: 

 

1 1 1 1

1 1

(( ) ) (( ) ) (( ) ) (( ) )

sysx
NN

sy sysx sx p T i sx sx p sy p T i sy p
p i sx i syi i

i i

K K T I T K T I T T I T K T I T   

 

                               

 

(18) 

 

where Nsx and Nsy denote the number of stiffeners in x- and y-directions, respectively. 

4    GOVERNING EQUATIONS OF STIFFENED PLATE 

4.1 Governing equations of Timoshenko beam 

Displacement field for Timoshenko beam is 

 

0
sxu u z                             (19a) 

 

0w w                            (19b) 

 

In-plane displacement of the beam (u0) is very small and it can be neglected. The strain fields defined as: 

 
sx

x
u

z
x x




 
 
 

                           
 

(20a) 

 

0 sx
xz

ww u

x z x
 

 
   
  

                        
 

(20b) 

 

The virtual strain energy with shear strain virtual energy is 
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, 0, , 0,
0 0

( [ ]) [ ( ]
L L

sx sx sx sx
xx x xz x xx xx x x

A
U z w dA dx M Q w dx                                        

 

(21) 

 

where , ,xx xz xxM  and xQ are normal stress, shear stress, bending moment and shear force, respectively and 

defined as: 

 

xx xx
A

M z dA                          
(22a) 

 

x xz
A

Q dA                       
(22b) 

Virtual potential energy from q̂  load, is 

 

 0
0

ˆ( )
L

V q x w dx                       
(23) 

 

By substuting virtual strain energy and virtual potential energy in virtual work principle and separating the 

factors of 0w  and sx , equilibrium equations obtained as: 

 

, 0xx x xM Q                      (24a) 

 

, ˆx xQ q                  (24b) 

 

By combining bending moment, shear force and equilibrium equations, governing equations of the x-stiffener 

obtained as: 

 

, 0, ˆ( ) ( )sx
xz x xxA w q x                      (25a) 

 

, 0,( ) 0sx sx
xx xx s xz xD K A w                      (25b) 

 

where Ks is shear correction factor and xzA and xxD defined as: 

 

xz xz xz
A

A G dA G A                     
 

(26a) 

 

2
xx yy

A
D E z dA E I                     

 

(26b) 

 

Boundary conditions for Timoshenko beam are 

 

0 0 , 0sxw                  Clamped          (27a) 

 

0 0 , 0xxw M              Simply Supported          (27b) 

 

0 , 0x xxQ M              Free        (27c) 

 

Similarly, governing equations of y-stiffener are 

 

, 0, ˆ( ) ( )sy
yz y yyA w q y                            (28a) 
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, 0,( ) 0sy sy
yy yy s yz yD K A w                            (28b) 

 

where yzA and yyD are 

 

yz yz yz
A

A G dA G A                           
 

(29a) 

 

2
yy xx

A
D E z dA E I                         

 

(29b) 

 

4.2 Governing equations of Mindlin plate 

Displacement field for Mindlin plate is 

 

0
pxu u z                           (30a) 

 

0
pyv v z                          (30b) 

 

 0w w                        (30c) 

 

where px and py denote the rotation around y- and x- axis, respectively. In-plane displacements (u0 and v0) are 

very small and negligible. 

Linear strain components are 

 
px

xx
u

z
x x




 
 
 

                     
 

(31a) 

 
py

yy
v

z
y y




 
 
 

                  
 

(31b) 

 

( )
px py

xy
u v

z
y x y x

 


   
   
   

                 
 

(31c) 

 

0 px
xz

ww u

x z x
 

 
   
  

                
 

(31d) 

 

 0 py
yz

ww v

y z y
 

 
   
  

               
 

(31e) 

 

Equilibrium equations of Mindlin plate obtained from virtual work principle ( 0W U V      ). Virtual 

strain energy and virtual potential energy are 

 

2

2
( )

h

xx xx yy yy xy xy xz xz yz yz
A h

U dz dx dy          


 
     

 
                       

 

(32a) 
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0( , )
A

V q x y w dx dy                        
 

(32b) 

 

Finally the equilibrium equations obtained by separating the coefficients of 0 , pxw  and py . 

 

, , ( , )x x y yQ Q q x y                       (33a) 

 

, , 0xx x xy y xM M Q                        (33b) 

 

, , 0yy y xy x yM M Q                       (33c) 

 

where the resultant moments and forces are 

 
2

2
[ , , ] [ , , ]

h

xx yy xy xx yy xy
h

M M M z dz  


                     
 

(34a) 

 
2

2
[ , ] [ , ]

h

x y s xz yz
h

Q Q K dz 


                     
 

(34b) 

 

Governing equations of Mindlin plate in terms of displacements, obtained as: 

 

0, 0, , ,( ) ( , )
2(1 )

px pys
xx yy x y

K Eh
w w q x y 


   


                   

 

(35a) 

 

, , , , 0,
(1 ) (1 )

( ) ( ) ( ) 0
2 2 2(1 )

px px px py pxs
xx yy xx yx x

K EhD D
w

 
    



 
     


                 

 

(35b) 

 

 , , , , 0,
(1 ) (1 )

( ) ( ) ( ) 0
2 2 2(1 )

py py px py pys
xx yy yx yy y

K EhD D
w

 
    



 
     


                

 

(35c) 

 

where 
3

212(1 )

E h
D





, is bending stiffness. 

5    NUMERICAL RESULTS AND DISCUSSION 

In this section several numerical examples are given to demonstrate the ability of the meshless RPIM collocation 

method in the analysis of beam stiffened plate. 

5.1 Simply supported square plate with one rectangular stiffener 

In the first study a simply supported square plate with one stiffener of rectangular cross section along x-direction 

(y=0.5 in.) is considered as shown in Fig. 4. A uniformly distributed load of 1.0 psi is applied to the top surface of 

the plate. Elastic properties of the plate and stiffener are assumed to be 1.7 7E e psi and 0.3  . 
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Fig.4 

Square plate with one stiffener along y=0.5 in. 

 
This example has been solved by McBean [8] and Rossow [4] using the FEM and become a benchmark problem 

in the field of stiffened plates. 15×15 nodes are considered to discretize the plate and 15 nodes are used for x-

stiffener. The considered shape parameters are 
1

15
pc   for plate and 7.7 ( 3)sc e   and 5.8 ( 3)sc e   for 

concentric and eccentric stiffeners, respectively. The analysis results of concentric and eccentric stiffened plates are 

shown in Figs. 5 and 6, respectively, where they are also compared to the results of Peng et al. [3], Rossow [4], 

McBean [8] and Memar Ardestani et al. [15]. Also, Table 1. reports the results of the center deflection of the 

stiffened plate compared to those given by Peng et al. [3], Rossow [4], McBean [8] and Memar Ardestani et al. [15]. 

 

 
(a) 

 
(b) 

Fig.5 

Deflection of concentrically square stiffened plate with simply supported boundary condition along (a)x=0.5 in. and (b) y=0.5in. 

 

 
(a) 

 
(b) 

Fig.6 

Deflection of eccentrically square stiffened plate with simply supported boundary condition along (a) x=0.5 in. and (b) y=0.5in. 
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Table1 

Center deflection of square stiffened plate for concentric and eccentric configurations. 

Ref. Concentric RD*(%) Eccentric RD (%) 

Peng et al [3] 4.8425e-4 0.1280 1.3516e-4 0.9692 

Rossow [4] 4.556e-4 6.1523 1.367e-4 0.1682 

McBean [8] 4.557e-4 6.1290 1.367e-4 0.1682 

Memar Ardestani et al. [15] 4.7150e-4 2.5726 1.3801e-4 1.1159 

Present 4.8363e-4  1.3647e-4  

*Relative Difference 

 

Due to the results of the Table 1, maximum and minimum relative differences are 6.1523%, with that result of 

Rossow [4] and 0.1280% with that result of Peng et al. [3], respectively. The nearest references from the aspect of 

assumptions in the formulation of the problem and numerical method are Ref. [3] and Ref. [15]. The relative 

differences between the present results and these references are in the acceptable range. Also, due to Figs. 5 and 6, 

the results for the other nodes have acceptably accurate compared to the references. 

Fig. 7 shows corresponding deflection contours to the stiffened plate by one concentric rectangular beam. 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Deflection contour of stiffened plate by one concentric 

rectangular beam. 

5.2 Simply supported and clamped square plate with one rectangular stiffener 

This example is the same as before, except that it has changed boundary conditions. Edges along y and x-axis 

considered to be clamped and simply supported, respectively. Shape parameters are considered same as before. Fig. 

8 shows the dimensions of the plate and stiffener and the position of boundary conditions. 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Square plate with one stiffener along y=0.5 in. and various 

boundary condition. 

 

The results are compared to those results of Abaqus analysis. The number of elements has been considered as 

14×14 (15×15 nodes). The element types of the plate and stiffener are S4R and B31, respectively. The results of 

eccentric stiffened plates with simply supported and clamped edges are shown in Fig. 9, where they are also 

compared to those results of Abaqus. By increasing the number of nodes in the areas close to the clamped edges, the 

accuracy of the results will be increased. The results of Fig. 9 show that the MCM has an acceptably accurate in 

various boundary conditions. 
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(a) 

 
(b) 

Fig.9 

Deflection of eccentrically square stiffened plate with simply supported and clamped boundary condition along (a) y=0.5 in. 

and (b) x=0.5 in. 

5.3 Simply supported square plate with one I-shape stiffener 

This problem is similar to the problem in Section 5.1, except for the fact that cross section of beam is I-shape and 

the beam is concentric with the plate. Also, the thickness of the plate was considered to be 0.1 in. Fig. 10 shows the 

dimensions of the plate and the stiffener. 

 

 

 

 

 

 

 

 

 

 

 

Fig.10 

Square plate with one I-shape stiffener along y=0.5 in. 

 

For solving this problem, 15×15 nodes are considered and shape parameter for plate, 
1

15
pc  , and for 

stiffener, 7.7 ( 3)sc e  , have been intended. The results are compared to those results of Peng et al. [3] and are 

shown in Fig. 11. Due to the Fig. 11, bending of the stiffened plate is symmetric and the maximum deflection is 

happening in the center of the plate, because the thickness of the plate is more than that of the previous problem; 

therefore the stiffness matrix is increasing or plate gets harder. 

5.4 Simply supported square plate with one T-shape stiffener 

In this problem, elastic properties of the plate and the stiffener are same as those in the problem presented in Section 

5.1, except for the fact that the beam is considered to be concentric, with a T-shape cross section. 

For the sake of solving this problem, 15×15 nodes were considered and the shape parameters were chosen to be 

1

15
pc   for the plate and 7.7 ( 3)sc e   for the stiffener. 
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(a) 

 
(b) 

Fig.11 

Deflection of concentrically square I-shape stiffened plate with simply supported boundary condition along (a) x=0.5 in. and (b) 

y=0.5 in. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12 

Square plate with one T-shape stiffener along y=0.5 in. 

 

Fig. 13 compares the numerical results of the present paper to those of Peng et al. [3]. Similar to the previous 

example, bending of the stiffened plate is symmetric and the maximum deflection is happening in the center of the 

plate. Also, due to Fig. 13 the results are corresponding to those of Peng et al. [3]. 

5.5 Simply supported rectangular plate centrally stiffened by two stiffeners 

A simply supported rectangular plate centrally stiffened by two stiffeners is subjected to a uniformly distributed load 

of 10.0 psi. Dimensions of the plate and the stiffeners are shown in Fig. 14. The plate and the stiffeners are made of 

the same material, with the elastic modulus of 3 7E e psi and Poisson ratio of 0.3  . 

Concentric and eccentric stiffeners were considered. This problem has been solved by Rossow et al. [4] (using 

FEM) and Chang [21] (using FEM and analytical solution). Because in this case, the distances between the nodes 

are identical, 19×11 nodes were considered to solve this problem. The shape parameters for the plate, x-stiffener, 

and y-stiffener were taken as 
1.5

, 1.4p sx
D

c c
N

   and 1.15syc  , respectively. 

The deflections of concentric and eccentric stiffened plates at x = 7.5 in. and x = 15 in. are shown in Figs. 15 and 

16, respectively. The deflection contours of the concentric stiffened plate by the two concentrically stiffeners are 

shown in Fig. 17. As can be seen in Figs. 15 to 17, maximum deflection is not happening in the center of the plate 

and the area of the plate is divided into four parts. 

Fig. 18 demonstrates the corresponding moment diagram for this problem at y = 15 in. for the concentric and 

eccentric stiffeners. 
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(a) 

 
(b) 

Fig.13 

Deflection of concentrically square T-shape stiffened plate with simply supported boundary condition  along (a) x=0.5 in. and 

(b) y=0.5 in. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.14 

Simply supported rectangular plate centrally stiffened by 

two stiffeners. 

 

Minor differences in the deflection of the rectangular stiffened plate were observed between the proposed 

method in the present paper and references, due to different theoretical bases and assumptions. The main target is to 

determine the deflection of the nodes on the boundaries and on the stiffeners. As can be seen in Figs. 15 and 16, zero 

deflection is determined at boundaries with the deflections of the nodes on the stiffeners enjoying acceptable 

accuracy. Similar to the previous case, differences in moments stem from differences in the assumptions and 

solution method. 

5.5 Simply supported square plate orthogonally stiffened by equidistant stiffeners 

A simply supported square plate of side length 2.0m and thickness 0.02m is orthogonally stiffened with equally 

spaced stiffeners of rectangular section (depth 0.1m, width 0.01m). The plate is subjected to a uniformly distributed 

load of q=6 t/m
2
. The numbers of the stiffeners are 14+14, 12+12, 10+10, 8+8, 6+6 and 4+4. A square plate 

orthogonally stiffened by 4+4 stiffeners has been shown in Fig. 19. 

The plates and stiffeners are made of the same material, with the elastic modulus of E=2.1e7 t/m
2
 and the 

Poisson ratio of ν=0.3. The numbers of nodes for each problem have been chosen to be (Ns+4)×(Ns+4) (with Ns 

denoting the number of stiffeners in x- or y-direction), except for the 4+4 stiffeners, as the problem fails to provide 

stability with (8×8) nodes at which node configuration the results render inaccurate. Consequently, the number of 

nodes for 4+4 stiffeners was chosen to be (13×13). 

The shape parameter was taken as 
2

p
D

c
N

  for the plate; however, regarding various numbers of nodes, the 

shape parameter was chosen to be 31.3 12.5 10sc  for the stiffeners. 
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(a) 

 
(b) 

Fig.15 

Deflection of concentrically rectangular stiffened plate with simply supported boundary condition  along (a) x=7.5 in. and (b) 

y=7.5 in. 

 

 

 
(a) 

 
(b) 

Fig.16 

Deflection of eccentrically rectangular stiffened plate with simply supported boundary condition  along (a) x=7.5 in. and (b) 

y=7.5 in. 

 
 

 

 

 

 

 

 

 

 

 

 

Fig.17 

Deflection contour of the concentric stiffened plate by two 

beams in x- and y- direction. 
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(a) 

 
(b) 

Fig.18 

Diagram of moment of rectangular stiffened by two stiffeners in y=15 in. for (a) concentric and (b) eccentric stiffener. 

 

  

 

 

 

 

 

 

 

 

 

Fig.19 

A square plate orthogonally stiffened by four stiffener in 

each direction. 

 
Table 2. reports the results of the maximum deflection of the stiffened plate compared to those given by Deb and 

Booton [22], Biswal and Ghosh [23], Sadek and Tawfik [5] and Peng et al. [3]. The table demonstrates the 

maximum deflection reduction by increasing the number of stiffeners. The differences between the references come 

from different assumptions and formulations used to solve the problems. In terms of the assumptions taken, Ref. [3] 

represents the closest reference to the present research. The minimum and maximum relative difference between the 

present results and those results of reference [3] are 0.2490% and 4.8793%, respectively where, they are in an 

acceptably range. 

 
Table 2 

Maximum deflection of stiffened plate by equal distance beams in two directions (m×103). 

Number of 

stiffeners in 

two directions 

FEM 

Ref. [22] 

Orthotropic 

Ref. [22] 
Ref. [23] Ref. [5] Ref. [3] 

Present 

results 

14+14 1.288 1.363 1.1999 1.2414 1.1388 1.1249 
12+12 1.452 1.553 1.3726 1.4025 1.2849 1.2881 
10+10 1.683  1.814 1.5804 1.6191 1.5078 1.4874 
8+8 2.010 2.195 2.0189 1.9256 1.8273 1.8018 
6+6 2.479 2.811 2.4909 2.3933 2.3261 2.3176 
4+4 3.365 3.391 3.2824 3.1967 3.2156 3.0587 

6   CONCLUSIONS 

In this study, a meshless collocation method was used to analyze a simply supported rectangular stiffened plate 

based on FSDT. Radial point interpolation method based on multiquadric function was used for producing shape 

functions. Two cases of concentric and eccentric stiffeners were considered. The total potential energy principle was 

used to derive governing equations of the stiffened plate. 
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Same as the references, the results show that the maximum deflection of thinner stiffened plates is not happening 

in the center of the plate and for thicker stiffened plates, it happens in the center of the plate. Unlike FEM, using 

mesh-free RPIM method, no mesh generation is needed with the positions of the stiffeners being arbitrary. Also, 

mesh-free RPIM method is less complex and truly meshless as it does not need any integration. Therefore, the CPU-

run-time of this method is significantly less than the other methods. Due to eliminating of the integration, the error 

of the numerical integration is removed and the accuracy of the results is increased. Enjoying acceptable accuracy, 

the results proved this method to be an efficient approach for stiffened plates. 
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