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 ABSTRACT 

 The present investigation deals with the propagation of Rayleigh wave in an 

incompressible medium bonded between two half-spaces. Variation in elastic 

parameters of the layer is taken linear form. The solution for layer and half-

space are obtained analytically. Frequency equation for Rayleigh waves has 

been obtained. It is observed that the heterogeneity and width of the 

incompressible medium has significant effect on the phase velocity of Rayleigh 

waves. Some particular cases have been deduced. Results have been presented 

by the means of graph. Also the findings are exhibited through graphical 

representation and surface plot. 
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1    INTRODUCTION 

 LASTIC surface waves in isotropic elastic solids, discovered by Rayleigh [1] more than 120 years ago, have 

been studied extensively and exploited in a wide range of applications in seismology, acoustics, geophysics, 

telecommunications industry and material science. For the Rayleigh wave, its speed is a fundamental quantity which 

attracts the researchers of seismology, geophysics and in other fields of physical sciences. The formation and 

alteration of the oceanic lithosphere are important components of the solid earth cycles and geodynamics theme. 

More than two third of the earth crust is of oceanic crust type, made of different layers with varying material 

properties. The sedimentary layer of oceanic crust exhibits anisotropy and/or inhomogeneity. Oceanic crust is 

continuously being created at mid-ocean ridges. As plates diverge at these ridges, magma rises into the upper mantle 

and crust. As it moves away from the ridge, the lithosphere becomes cooler and denser, and sediment gradually 

builds on top of it. On other hand, Rayleigh waves play drastic role in damages during earthquake due to their nature 

of propagation. Also, they help to explain the crucial seismic observations that cannot be done by body wave theory. 

The above fact, demands an analytical study for propagation behavior of Rayleigh type waves near the ocean ridges. 

After the pioneer works of Rayleigh, many investigators have solved the problem of Rayleigh waves in a half-space 

and one or more superficial layers situated over it. A good amount of literature about Rayleigh waves may be found 

in the standard books of Love [4] and Stonely [5]. Many investigators have been studied the propagation of elastic 

waves in isotropic medium. Propagation of elastic waves in a system consisting of a liquid layer of finite depth 

overlying an isotropic half-space have been discussed by Stonely [6], Biot[7] and Tolstoy[8]. The dispersive 
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properties of liquid layer overlying a semi-infinite homogeneous, transversely isotropic half-space have been studied 

by Abubaker and Hudson [9]. Carcione [10] has shown the possibility of propagation of two types of Rayleigh 

waves in isotropic viscoelastic media. The equation of motion and the constitutive relation of the isotropic linear 

viscoelastic solid are derived in terms of the complex Lame parameters by Carcione. Destrade [11] has derived the 

secular equation for surface acoustic waves propagating on an orthotropic incompressible half-space. This 

contribution helped others to obtain the propagation patterns of surface waves in different elastic properties. Rudzki 

[12] studied the propagation of an elastic surface wave in a transversely isotropic medium. Vinh and Ogden [13] 

have obtained an explicit formula for the speed of Rayleigh waves in orthotropic compressible elastic material by 

using the theory of cubic equations. Singh and Kumar [14] have analyzed the problem of propagation of Rayleigh 

waves due to a finite rigid barrier in a shallow ocean. Gupta [15] studied the Propagation of Rayleigh Waves in a 

Pre-stressed layer over a Pre-stressed half-space. He has notice that the frequency equation of Rayleigh waves are 

affected due to the initial stresses present in the equation. Vinh et al [16] have investigated the Rayleigh waves in an 

isotropic elastic half-space coated by a thin isotropic elastic layer with smooth contact. Pal et al [17] have shown the 

propagation of Rayleigh waves in anisotropic layer overlying a semi-infinite sandy medium. They have suggested 

that the sandiness of materials produces heterogeneity in the medium and has a great impact on the phase velocity. 

They study the behavior of Rayleigh waves when upper boundary plane is considered as free surface. The 

heterogeneity and anisotropy plays a key role in the seismic wave propagation. Gupta and Kumar [18] have studied 

the propagation of Rayleigh wave over the pre-stressed surface of a heterogeneous medium. Rayleigh waves in non-

homogeneous granular medium have been investigated by Kakar and Kakar [19]. They have shown the effect of 

heterogeneity in granular medium. Dutta [20] explained the Rayleigh waves in two layer heterogeneous medium. 

Singh [21] has investigated the wave propagation in an incompressible transversely isotropic medium. Vinh and 

Link [22] have analyzed the Rayleigh waves in an incompressible elastic half-space overlaid with a water layer 

under the effect of gravity. Singh [23] discussed the Rayleigh wave in an initially stressed transversely isotropic 

dissipative half-space. Rayleigh Waves in a Homogeneous Magneto-Thermo Voigt-Type Viscoelastic Half-Space 

under Initial Surface Stresses has been discussed by Kakar [24]. Study on Rayleigh wave propagation in structures 

having planer boundaries is important leading to better understanding of seismic wave behavior. To be specific, 

Rayleigh wave propagation is significantly affected by the height of the layer.  

In the present investigation, we have shown the effect of heterogeneity and width of the layer on the propagation 

of Rayleigh waves in an incompressible layer bonded between liquid half-space and transversely isotropic half-

space. A model has been considered to represent the part of real earth where the crustal part (oceanic crust: the crust 

that lies at the ocean floor) appear to be sandwiched between ocean and upper mantle. Elastic conditions of the layer 

are taken by following the geophysical fact that the oceanic crust is thinner but denser and its different layers exhibit 

variations in elastic parameters. An analytical study is carried out to highlight the effect of different physical 

parameters on the velocity profile of considered surface wave. As the outcome of the study, it is found that wave 

number, wavelength, rigidity and density have their substantial effect on the phase velocity of Rayleigh waves. 

Numerical computation and graphical demonstration has been done to exhibit the findings. Some particular cases 

have been deduced. 

2    FORMULATION OF THE PROBLEM  

We consider an incompressible heterogeneous medium sandwiched between liquid half-space and transversely 

isotropic half-space as shown in Fig. 1. We consider a rectangular coordinate system in such a way that x axis in the 

direction of propagation and z axis pointing vertically downward. Heterogeneity in the intermediate layer has been 

taken in the form of   2 1 1 az    and   2 1 1 az    where 1  and 1  refers to the rigidity and density 

at 0z  , respectively. 

 

 

 

 

 

 

 

 

Fig.1 

Geometry of the problem. 
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3    BASIC EQUATIONS AND SOLUTIONS  

3.1 Solution for the upper half-space 

Equation of motion for the upper half-space in terms of the displacement potential   is given as: 
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2 2 2 2
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x z t
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  
 
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(1) 

 

where 0

0





 is the velocity of the dilatational wave in the liquid, 

0  is the density and 
0  is the bulk modulus of 

upper layer. Displacement components 
1 1,u w  and pressure p for upper half-space are given by 
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 
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(2) 

 

where 
zz  is the normal component of stress in the liquid. We seek wave the solution of Eq. (1) of the form 
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Introducing Eq. (3) in Eq. (1), we obtain 
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On solving Eq. (4), we obtained 
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Introducing Eq. (5) in Eq. (3), we get 
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Hence, displacement components for the upper half-space are 
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3.2 Solution for the intermediate layer 

Equations of motion for the incompressible layer are 
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where 
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We are assuming that 
2 2lim     as 

2   and
2 0  , and the stress components are given by 
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(16) 

 

We have considered the heterogeneity in the layer in following form 

 

 2 1 1 az    (17) 

 

 2 1 1 az    (18) 

 

Using Eqs. (10), (11), (16), (17) and (18) in Eqs. (14) and (15), we get the following equations 
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Presume the solution of Eqs. (19) and (20) as: 
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( )

22 ( , , ) ( ) ik x ctx z t z e    (22) 

 

Intuducing Eqs.(21) and (22) in Eqs. (19) and (20), we obtained 
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Solution of Eqs. (23) and (24) may be written as: 
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Mechanical displacement for incompressible layer is 
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3.3 Solution for the lower half-space 

The strain energy volume density function for the lower half-space, Love [4] 
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In  ,x z direction, the strain energy volume density function becomes 
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Equation of motion without body forces, are 

 

 
2 2 2 2

2 2 2
,

u u w u
A L F L

z xx z t


   
   

   
 

 

(32) 

 

 
2 2 2 2

2 2 2
.

w w u w
L C F L

z xx z t


   
   

   
 

 

(33) 

 

Consider the solution of Eqs. (32) and (33) in the form 
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 Using Eqs.(34) and (35) in Eqs. (32) and (33), the following equations reduces to 
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To solve the Eqs. (36) and (37), we assume the solution as: 
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For the non-trivial solution of Eqs. (32) and (33), we must have 
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Thus, the solutions of Eqs. (36) and (37) can be written as: 
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Hence, the displacement for the lower half-space are 
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where 
1 and 

2  are real and positive. 

4    BOUNDARY CONDITIONS  

We consider the appropriate boundary conditions for the propagation of Rayleigh wave as following:  

At the interface z H  , the stress and the displacement components are continuous 

 

   

 

1 2

1 2

1 2

2

) ,

) ,

) ,

) 0.

zz zz

xz

a u u

b w w

c

d

 











 

 

 

At the interface 0z  , the stress and the displacement components are continuous 
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Using all the boundary conditions we obtained the following equations 
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1 1 2 1 1 2 2 2 0B X B Y C X C Y     (53) 
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Solving  Eqs. (50) to (57), we obtained 
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(58) 

 

Eq. (58) is the frequency equation for Rayleigh waves propagating in incompressible heterogeneous layer 

bonded between liquid and transversally isotropic half-spaces. 

5    SPECIAL CASES  
5.1 Case 1 

In the absence of liquid half-space, the frequency Eq. (58) reduces to 
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(59) 
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Eq. (59) is the frequency equation for Rayleigh wave propagation in an incompressible, heterogeneous medium 

lying over a transversely isotropic half-space. 

5.2 Case 2 

When the lower half-space becomes isotropic, i.e. 2 ,A C F       and L   then the frequency Eq. (58) 

reduces to  
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(60) 

 

where 
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Such that 2 2 
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


   and  2 




 . 

Eq. (60) is the frequency equation for Rayleigh waves propagating in an incompressible heterogeneous layer 

bonded between a uniform medium of liquid and isotropic half-space. 

5.3 Case 3 

In the absence of incompressible medium i.e. 0H  , we get the dispersion relation for Rayleigh wave propagation 

in a liquid half-space lying over a transversely isotropic half-space. 
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(61) 

 

where 
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6    NUMERICAL EXAMPLES AND DISCUSSION  

To illustrate the effect of heterogeneity parameters we have done the numerical analysis of frequency equation. We 

have considered the following values. For the liquid layer, Ewing et al. [3],  

 
11 -2 -3

0 00.214 10  cm , 1  cm ,dynes g      

 

For the incompressible medium we have taken the following values: Bullen [2] 

-3 11 -2

1 13.53  cm , 8.1 10  cm .g dynes      

 

For the transversely isotropic half-space we have taken the following values: Love [4] 

11 -2

11 -2

11 -2

11 -2
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26.94 10  cm ,
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g

 

 

 

 



 

 

 

Numerical results are obtained by using Eq. (60) to represent the effect of heterogeneity on propagation of 

Rayleigh wave. In all the figures curves are plotted to exhibits the variation in wave number, wave length and 

Rayleigh wave velocity. 
 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Variation of Rayleigh wave velocity c with respect to wave 

number k for different values of heterogeneity parameter 

aH. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Variation of Rayleigh wave velocity c with respect to wave 

number k for different values of H. 
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Fig.4 

Variation of Rayleigh wave velocity c with respect to wave 

length 
2

k


 for different values of heterogeneity parameter 

aH. 

  

 

 

 

 

 

 

 

 

 

 

Fig.5 

Variation of Rayleigh wave velocity c with respect to wave 

length 
2

k


 for different values of H. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Surface plot for Rayleigh wave velocity c with respect to 

wave number k and heterogeneity parameters aH.  

 

  

 

 

 

 

 

Fig.7 

Surface plot for Rayleigh wave velocity c with respect to 

wave length 
2

k


 and heterogeneity parameters aH. 
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Presented figures show the effect of heterogeneity on Rayleigh wave velocity  c  with respect to different 

parameters like: wave number  k and wave length
2

k

 
 
 

. In Fig. 2-3, the graph is plotted for the variation of wave 

velocity c against the wave number k for different values of aH and width of the layer. The figure reflects that as aH 

increases, the wave velocity c increases and as the wave number k increases the wave velocity c decreases. In Fig. 4, 

the graph is plotted for the variation of Rayleigh wave velocity c against the wavelength 
2

k

 
 
 

 for different values 

of aH. The figure reflects that as aH increases, the wave velocity c decreases and as the wavelength 
2

k

 
 
 

 increases 

the wave velocity c increases. Fig. 5, the graph is plotted for the variation of Rayleigh wave velocity c against the 

wavelength 
2

k

 
 
 

 for different values of H and observes that when we increase H, the wave velocity c increases. 

Figs. 6-7 display the surface plot for Rayleigh wave velocity with respect to different parameters like: wave number, 

heterogeneity and wavelength. 

7   CONCLUSIONS 

Effects of heterogeneity and layer width on the propagation of Rayleigh waves have been studied. Frequency 

equation has been obtained in determinant form. It is observed that the heterogeneity and width of the 

incompressible medium has great impact on the phase velocity of Rayleigh waves. In particular, Rayleigh wave 

velocity increases with respect to wave number as we increases the heterogeneity parameter and decreases with 

respect to wave length. Findings have been shown by the means of graphs. The presented model may help to 

understand the propagation behavior of Rayleigh type waves near the ocean ridges. 

ACKNOWLEDGEMENTS   

Authors are thankful to Indian School of Mines, Dhanbad for providing research fellowship to Mr. Abhinav Singhal 

and also for providing research facilities. 

REFERENCES 

[1] Rayleigh L., 1885, On waves propagating along the plane surface of an elastic solid, Proceedings of the 

Royal Society of London, Series A 17: 4-11. 

[2] Bullen K.E., 1947,  An Introduction to the Theory of Seismology, Cambridge University Press. 

[3] Ewing W.M., Jardetzky W.S., Press F., 1957,  Elastic Waves in Layered Media,  McGraw-Hill, New York. 

[4] Love A.E.H., 1944,  A Treatise on the Mathematical Theory of Elasicity, Dover Publication, New York. 

[5] Stonely R., 1924, Elastic waves at the surface of separation of two solids (transverse waves in an internal stratum), 

Proceedings of the Royal Society of London. 

[6] Stonely R., 1926, The effect of ocean on Rayleigh waves, Monthly Notices of the Royal Astronomical Society 1: 349-

356. 

[7] Biot M.A., 1952, The interaction of Rayleigh and Stonely waves in ocean bottom, Bulletin of the 

Seismological Society of America 42: 81-92. 

[8] Tolstoy I., 1954, Dispersive properties of fluid layer over lying a semi-infinite elastic solid, Bulletin of the 

Seismological Society of America 44: 493-512. 

[9] Abubaker I., Hudson J.A., 1961, Dispersive properties of liquid overlying an aelotropic half-space,The 

Royal Astronomical Society 5: 218-229. 

[10] Carcoine J.M., 1992, Rayleigh waves in isotropic viscoelastic media, Geophysical Journal International 108:453-464. 

[11] Destrade M., 2001, Surface waves in orthotropic incompressible materials, Acoustical Society of America 110(2): 837. 

[12] Rudzki M.P., 2003, On the propagation of an elastic surface wave in a transversely isotropic medium, Journal of 

Applied Geophysics 54: 185-190. 

[13] Vinh P.C., Ogden R.W., 2004, Formulas for Rayleigh wave speed in orthotropic elastic solids, Archives of Mechanics 

56(3): 247-265. 



                                                                             Influence of Heterogeneity on Rayleigh Wave Propagation …                          567 

 

© 2017 IAU, Arak Branch 

[14] Singh J., Kumar R., 2013, Propagation of Rayleigh waves due to the presence of a rigid barrier in a shallow ocean, 

International Journal of Engineering and Technology 5(2): 917-924. 

[15] Gupta I.S., 2013, Propagation of Rayleigh waves in a prestressed layer over a prestressed half-space, Frontiers in 

Geotechnical Engineering 2(1): 16-22. 

[16] Vinh P.C., Anh V.T.N., Thanh V.P., 2014, Rayleigh waves in an isotropic elastic half-space coated by a thin isotropic 

elastic layer with smooth contact, Wave Motion 51: 496-504. 

[17] Pal P.C., Kumar S., Bose S., 2015, Propagation of Rayleigh waves in anisotropic layer overlying a semi-infinite sandy 

medium, Ain Shams Engineering Journal 6(2): 621-627. 

[18] Gupta I.S., Kumar A., 2014, Propagation of Rayleigh wave over the pre-stressed surface of a heterogeneous medium, 

Proceeding of 59th Congress of ISTAM. 

[19] Kakar R., Kakar S., 2013, Rayleigh waves in non-homogeneous granular medium, Journal of Chemical, Biological 

and Physical Sciences 3(1): 464-478. 

[20] Dutta S., 1963, Rayleigh waves in a two layer heterogeneous medium, Bulletin of the Seismological Society of America 

53(3): 517-526. 

[21] Singh B., 2014, Wave propagation in an incompressible transversely isotropic thermoelastic solid, Meccanica 50:1817-

1825. 

[22] Vinh P.C., Link N.T.K., 2013, Rayleigh waves in an incompressible elastic half-space overlaid with a water layer under 

the effect of gravity, Meccanica 48: 2051-2060. 

[23] Singh B., 2013, Rayleigh wave in an initially stressed transversely isotropic dissipative half-space, Journal of Solid 

Mechanics 5(3): 270-277. 

[24] Kakar R., 2015, Rayleigh waves in a homogeneous magneto-thermo voigt-type viscoelastic half-space under initial 

surface stresses, Journal of Solid Mechanics 7(3): 255-267. 


