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 ABSTRACT 

 The objective is to study the deformation in a homogeneous isotropic modified 

couple stress thermoelastic rotating medium in the presence of Hall current and 

magnetic field due to a ramp-type thermal source. The generalized theories of 

thermoelasticity developed by Lord Shulman (L-S, 1967) and Green Lindsay (G-

L, 1972) are used to investigate the problem. Laplace and Fourier transform 

technique is applied to obtain the solutions of the governing equations. The 

displacements, stress components, temperature change and mass concentration 

are obtained in the transformed domain. Numerical inversion technique has been 

used to obtain the solutions in the physical domain. Effects of Hall current and 

rotation are shown in a resulting quantities. Some special cases of interest are 

also deduced.                                  © 2017 IAU, Arak Branch. All rights reserved. 

 Keywords: Modified couple stress; Generalized thermoelasticity; Laplace and 

Fourier transforms; Ramp-Type heating; Hall current and magnetic effect. 

1    INTRODUCTION 

 LASSICAL first gradient approaches in continuum mechanics do not address the size dependency that is 

observed in smaller scales. Consequently, a number of theories that include higher gradients of deformation 

have been proposed to capture, at least partially, size-effects at the nano-scale. Additionally, consideration of the 

second gradient of deformation leads naturally to the introduction of the concept of couple-stresses. Thus, in the 

current form of these theories, the material continuum may respond to body and surface couples, as well as spin 

inertia for dynamical problems. The existence of couple-stress in materials was originally postulated by [1]. 

However, [2] were the first to develop a mathematical model to analyze materials with couple stresses. Lacking an 

internal material length scale parameter, classical elasticity and plasticity cannot be used to interpret the size effect 

observed in numerous tests at micron and nanometer scales. However, higher-order (non-local) continuum theories 

contain material length scale parameters and are capable of explaining microstructure related size (and other 

effects). Couple stress theories represent one class of such higher-order theories. The classical couple stress 

elasticity theory was proposed by (e.g., [3-6]) contains four material constants two classical and two additional for 

isotropic elastic materials. The couple stress theory can be viewed as a special format of strain gradient theory which 

uses rotation as a variable to describe curvature, while the strain gradient theory uses strain as variable to describe 

curvature. Couple-stress theory is an extended continuum theory that includes the effects of a couple per unit area on 
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a material volume, in addition to the classical direct and shear forces per unit area. This immediately admits the 

possibility of asymmetric stress tensor, since shear stress no longer have to be conjugate in order to ensure rotational 

equilibrium. The two additional constants are related to the underlying microstructure of the material and are 

inherently difficult to determine (e.g. [7], [8]). Every physical theory possesses a certain domain of applicability 

outside which it fails to predict the physical phenomena with reasonable accuracy. Hence, there has been a need to 

develop higher-order theories involving only one additional material length scale parameter. Recently, [9] developed 

a modified couple-stress model, in which the couple stress tensor is symmetrical and only one material length 

parameter is needed to capture the size effect which is caused by micro-structure. [10] studied the Bernoulli- Euler 

beam model based on a modified couple stress theory. Variational formulation of a modified couple stress theory 

and its application to a simple shear problem was studied by [11]. [12] investigated the size effect on dynamic 

stability of functionally graded microbeams based on a modified couple stress theory. [13] presented a modified 

couple stress model for bending analysis of composite laminated beams with first order shear deformation. [14] 

studied the geometrically nonlinear micro-plate formulation based on the modified couple stress theory. [15] 

investigated the bending and vibration of fuctionally graded microbeams using a new higher order beam theory and 

the modified couple stress theory. Recently, the size dependent buckling analysis of microbeams based on modified 

couple stress theory with high order theories and general boundary conditions have been studied by [16]. [17] 

studied the size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory 

including surface effects. Thermodiffusion in an elastic solid is due to the coupling of the fields of temperature, 

mass diffusion and strain. Heat and mass exchange with the environment during the process of the thermodiffusion 

in an elastic solid. The concept of thermodiffusion is used to describe the processes of thermomechanical treatment 

of metals (carboning, nitriding steel, etc.) and these processes are thermally activated, and their diffusing substances 

being, e.g. nitrogen, carbon etc. They are accompanied by deformations of the solid. [18-22] developed the theory of 

thermoelastic with mass diffusion. In this theory, the coupled thermoelastic model is used. This implies infinite 

speeds of propagation of thermoelastic waves. [23] developed the theory of generalized thermoelastic diffusion that 

predicts finite speeds of propagation for thermoelastic and diffusive waves. [24] worked on a problem of a 

thermoelastic half space with a permeating substance in contact with the bounding plane in the context of the theory 

of generalized thermoelastic diffusion with one relaxation time. Recently, [25] derived the basic equations in 

generalized thermoelastic diffusion for Green Lindsay (GL-model) theory and discussed the Lamb waves. The 

foundations of magnetoelasticity were presented by [26] and [27] and developed by [28]. An increasing attention is 

being de-voted to the interaction between magnetic field and strain field in a thermoelastic solid due to its many 

applications in the fields of geophysics, plasma physics and related topics. In all papers quoted above it was 

assumed that the interactions between the two fields take place by means of the Lorentz forces appearing in the 

equations of motion and by means of a term entering Ohm’s law and describing the electric field produced by the 

velocity of a material particle, moving in a magnetic field. When the magnetic field is very strong, the conductivity 

will be a tensor and the effect of Hall current cannot be neglected. The conductivity normal to the magnetic field is 

reduced due to the free spiraling of electrons and ions about the magnetic lines of force before suffering collisions 

and a current is induced in a direction normal to both the electric and magnetic fields. This phenomenon is called the 

Hall effect. In all of the above investigations, the effects of Hall current have not been considered. Effects of Hall 

current and rotation on magneto-microploar generalized thermoelasticity due to ramp-type heating was studied by 

[29]. [30] also investigated the effect of Hall current on generalized magneto-thermoelasticity micropolar solid 

subjected to ramp-type heating.   

The objective of this paper is to consider two dimensional modified couple stress generalized thermoelastic with 

mass diffusion in the presence of a uniform strong magnetic field acts in  
2x  directiontaken into consideration the 

effects of Hall current and rotation. This new model is applied to generalization, Lord – Shulman theory and Green – 

Lindsay theory solved by using Laplace and Fourier transform technique. The ramp-type heating application is 

employed to our problem to get the solution in the complete form. The normal stress, tangential stress, couple stress, 

temperature change and mass concentration are computed and presented graphically for different values of distance. 

Some particular cases are also derived from the present investigation. 

2    BASIC EQUATIONS 

Following ([9], [25], [29]) the constitutive relations and the equations of motion in a modified couple-stress 

generalized thermoelastic elastic with mass diffusion in the absence of body forces, body couples, heat and mass 

diffusion sources are  
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(i) Constitutive relations 
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(ii) Equations of motion in the rotation frame of reference are 
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(iii) Equation of heat conduction 
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(iv) Equation of mass diffusion 
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 1 2 3, ,u u u u is the components of displacement vector, where ijt  are the components of stress tensor,  and 

  are material constants, ij  is Kronecker’s delta, ije are the components of strain tensor, ijke is alternate tensor, 

ijm  are the components of couple-stress,  1 3 2 t     ,  2 3 2 c     , Here ,t c   are the coefficients of 

linear thermal expansion and diffusion expansion respectively, T is the temperature change, C is the mass 

concentration,   is the rotation,   is the couple stress parameter, ij  is symmetric curvature, i  is the rotational 

vector, b is the coefficient describing the measure of mass diffusion effects, a is the coefficient describing the 

measure of thermoelastic diffusion.  1 2 3, ,u u u u  is the components of displacement vector,   is the density,   is 

the Laplacian operator,   is del operator. K is the coefficient of the thermal conductivity, ec  is the specific heat at 

constant strain, 0T  is the reference temperature assumed to be such that 0/ 1T T . D is the thermoelastic diffusion 

constant, Here 
0 1,   are the diffusion relaxation times with 

1 0 0    and 0 1,   are thermal relaxation times with 

1 0 0   . Here 1
1 0   , 0 01,    , for Lord-Shulman (L-S) model and 0

0 0,    , for Green Lindsay 

(G-L) model. 

Following Zakaria [29], the generalized Ohm’s law including Hall current: 
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and  0F J H   is the Lorentz force. 

where J is the current density vector, 0  is the magnetic permeability, H is the total magnetic field vector, E is the 

intensity vector of the magnetic field. 

3    FORMULATION AND SOLUTION OF THE PROBLEM 

A homogeneous isotropic, modified couple stress generalized thermoelastic elastic body with mass diffusion 

occupying the region of a half space 3 0x   is taken. We consider a rectangular Cartesian coordinate system 

 1 2 3, , x x x  having origin on the surface 3 0.x   We consider a plane deformation problem with all the field 

quantities depending only on   1 3, , x x t . The half surface is subjected to ramp-type heating on the bounding plane 

3 0x   along with traction-free and iso-concentrated boundary. 

For two dimensional problem, we take 
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Let us assume that the magnetic field H and the angular velocity   acts in the direction of 2x  axis as: 
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We define the dimensionless quantities: 
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where 
*  and 1c  are characteristic frequency and longitudinal wave velocity in the media and  M is the Hartmann 

number or magnetic parameter respectively. 

Upon introducing (14) in Eqs. (5)-(7) with aid of (9)-(13), after suppressing the primes, we obtain 
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The displacement components  1 1 3, ,u x x t and  3 1 3, ,u x x t  are related to the scalar potentials   1 3, ,x x t  and 

 1 3, ,x x t in dimensionless form as: 
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with the aid of (19), Eqs. (15)-(18) yield 
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We define Laplace and Fourier transform as:  
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Applying the Laplace and Fourier transform defined by (24) on (20)-(23), after simplification, we obtain 
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The solution of the Eq. (25) satisfying the radiation conditions that ˆ ˆˆ,  ,  T   and Ĉ  tend to zero as 3x  tends to 

infinity can be written as: 
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4    BOUNDARY CONDITIONS 

Mechanical boundary conditions, we consider the traction free plane boundary 3 0x  ,
 
 so 

   

33 31 32 0.t t m    (27) 

 

Mass concentration boundary condition, we consider the boundary plane 3 0x  is iso-concentrated surface, so 

 

0.C   (28) 

 

Thermal boundary condition:  we suppose that the boundary plane
 3 0x 

 
is subjected to ramp-type heating, 

which depends on the coordinate 1x  and the time t
 
of the form 
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(30) 

 

where  1T  is constant and 0t  is the ramp-type parameter. 

Applying Laplace and Fourier transforms defined by (24) on (29) and with the aid of (30), we obtain 
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(34) 

 

Making use of (26) in the boundary conditions (27)-(29) and with the aid of (19), (24) and (31)-(34), we obtain 

the expressions for components of displacement, stresses, temperature change and mass concentration as: 
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5    PARTICULAR CASES 

If 0,m  in Eqs. (35)-(41), we obtain the components of displacement and stresses in a modified couple stress 

thermoelastic with mass diffusion with rotating medium without Hall current effect. 

If the effect of rotation is absent  0 ,  in Eqs. (35)-(41), we obtain the components of displacement and 

stresses in a modified couple stress thermoelastic with mass diffusion with the following changed values of  

1 4 5, ,    and 7  as: 
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If 1
1 0 00, 1,         in Eqs. (35)-(41), we obtain the corresponding results for modified couple stress 

thermoelastic with mass diffusion under the influence of Hall current and rotation for Lord Shulman (L-S) model. 

If 0
0 0,     in Eqs. (35)-(41), we obtain the corresponding results for modified couple stress thermoelastic 

with mass diffusion under the influence of Hall current and rotation for Green Lindsay (G-L) model. 
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6    INVERSION OF THE TRANSFORMATION 

To obtain the solution of the problem in physical domain, we must invert the transforms in (35)-(41). Here the 

displacement components, normal and tangential stresses, couple stress, temperature change and mass concentration 

are functions of 3 ,x the parameters of Laplace and Fourier transforms s and  respectively and hence are of the 

form  3, , .f x s  To obtain the function  1 3, ,f x x t  in the physical domain, we first invert the Fourier transform 

using 
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(42) 

 

where ef  and 0f  are respectively the odd and even points of  ˆ , , .f x s  Thus the expression (42) gives the Laplace 

transform  1 3, ,f x x s of the function  1 3, ,f x x t . Following [31], the Laplace transform function  1 3, ,f x x s can 

be inverted to  1 3, ,f x x t . 

The last step is to calculate the integral in Eq. (42). The method for evaluating this integral is described by [32]. 

It involves the use of Romberg’s integration with adaptive step size. This also uses the results from successive 

refinements of the extended trapezoidal rule followed by extrapolation of the results to the limit when the step size 

tends to zero. 

7    NUMERICAL RESULTS AND DISCUSSION 

For numerical computations, following [24], we take the copper material (thermoelastic diffusion solid) as:  
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The Hall current parameters are given by [29] 
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The software Matlab 7.10.4 has been used to determine the normal stress, tangential stress, couple stress, 

temperature change and mass concentration for different values of Hall current parameters and rotation for both L-S 

and G-L theories are computed numerically and shown graphically in Figs. 1-10 respectively. 

In Figs. 1-5, solid line ( ) , solid line with centre symbol ( )  and solid line with centre symbol ( )   

corresponds to L-S theory for 0,0.25,0.75m   and keeping 0.5,   respectively. Similarly, small dash line (----), 

small dash line with centre symbol (---*---) and small dash line with centre symbol (--- ---) corresponds to G-L 

theory for 0,0.25,0.75m    and keeping 0.5  respectively. 

From Figs. 6-10, solid line ( ) , solid line with centre symbol ( )  and solid line with centre symbol ( )   

corresponds to L-S theory for 0,0.25,0.75   and keeping 0.5m   respectively. Similarly, small dash line (----), 

small dash line with centre symbol (---*---) and small dash line with centre symbol (--- ---) corresponds to G-L 

theory for 0,0.25,0.75  and keeping 0.5m  respectively. 
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7.1 Effect of Hall parameter 

Fig. 1 shows the variations of normal stress 33t with distance x for both L-S and G-L theories for different values of 

Hall parameter. The values of 33t  increase monotonically in the range 0 1.3x  and then decrease as x increase 

further for both the theories of thermoelasticity.   

Fig. 2 represents the variations of tangential stress with different values of Hall parameter 0,0.25,0.75m  . It is 

noticed that the values of 31t  first oscillate in the range 0 1.1,x  increase rapidly in the range 1.1 1.3,x  decrease 

in the range 1.3 1.8x   and then oscillates for the remaining values of x.  It is evident that the values of tangential 

stress for 0m   is higher than in comparison to 0.25,0.75m   for both the theories. 

Fig. 3 depicts that the variations of couple stress 32m  with distance x for Hall parameter 0,0.25,0.75m  . Its 

values initially oscillate in the range 0 1.0,x   increase sharply in the range 1.0 1.3,x   decrease rapidly in the 

range 1.3 1.8x   and then increase further for remaining values of x. The values of couple stress component 

remain oscillatory for all values of x for both L-S and G-L theories.  

Fig. 4 shows that the variations of temperature change T with distance x  for both L-S and G-L theories. Its 

values initially oscillates in the range 0 0.9,x   increase monotonically in the range 0.9 1.3x   and then 

decrease sharply for the  remaining values of  x. The values of temperature change with Hall parameter  0m   for 

L-S theory is higher than that of G-L theory in the whole range, whereas the values of temperature change with hall 

parameter  0.25,0.75m  for L-S theory is greater than that of G-L theory in the range 0 0.8x   and less in the 

remaining values of x. 

Fig. 5 represents the variations of massconcentration C with different values of Hall parameter 0,0.25,0.75.m   

The values of C oscillate in the whole range for both L-S and G-L theories.  
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Fig.1 

Variation of normal stress with Hall parameter m. 

 

  

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 LS (m=0)

 GL (m=0)

 LS (m=0.25)

 GL (m=0.25)

 LS (m=0.75)

 GL (m=0.75)

T
a

n
g

e
n

ti
a

l 
s
tr

e
s
s
 (

t 3
1
)

Distance (x)

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Variation of tangential stress with Hall parameter  m. 
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Fig.3 

Variation of couple stress with Hall parameter m.  
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Fig.4 

Variation of temperature change with Hall parameter m.  
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Fig.5 

Variation of mass  concentration with Hall parameter m. 

 

7.2 Effect of rotation 

Fig. 6 depicts the variations of normal stress 33t with distance  for rotation  0,0.25,0.75 .   The values of 33t  

for rotation  0,0.75   increase and decrease alternately with distance x for both L-S and G-L theories, whereas 

the value of 33t for rotation  0.25   for L-S theory is more in the range 0 0.5x   and less in the range 

0.5 2x    in comparison to G-L theory. 

Fig. 7 shows that the variations of tangential stress 31t  with distance x for rotation  0,0.25,0.75 .   The 

values of 31t  for 0   for G-L theory is higher in comparison to L-S theory for 0  , whereas for 

0.25,0.75  , its values increase and decrease alternately as the values of  x increase further for both L-S and G-L 

theories. 
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Fig. 8 represents the variations of couple stress 32m  with different values of rotation 0,0.25,0.75.  For 

0  , the values of couple stress  initially oscillate in the range 0 1x   and then increase for remaining values 

of x and for 0.25  , its values increase monotonically in the range 0 1x  , decrease in the range 

0 1.4x  and then oscillate as x increase further, whereas for 0.75  , the values of couple stress firstly decrease 

in the range 0 0.7x  , increase in the range 0.7 1.2x   and then oscillate for remaining values of  x. The values 

of couple stress for G-L theories are greater than in comparison to L-S theories for and0,0.25  0.75.    

Fig. 9 shows that the variations of temperature change T with distance x for both L-S and G-L theories.  The 

values of T for rotation 0  , its values initially increase in the range 0 0.8x  , decrease in the range 

0.8 1.2x  , oscillate in the range 1.2 1.5x    and then increase as x increase further for both the theories. For 

0.25  , its values initially oscillate in the range 0 0.9x  , increase in the range 0.9 1.5x   and oscillates in 

the range 1.5 2.0x  , whereas the values of T for 0.75  , oscillates in the range 0 0.8x  , increase in the 

range 0.8 1.2x   and then again oscillatory behaviour is noticed for remaining values of x for both L-S and G-L 

theories. 

Fig. 10 depicts the variations of mass concentration C with distance x for both L-S and G-L theories for different 

values of rotation. The behavior of variations of mass concentration for L-S  0   is more in the range 

0 0.5x  , less in the range 0.5 2.0x    in comparison for G-L  0  , whereas for LS  0.25  , its values 

more in the range 0 0.2x   and increase and decrease alternately with remaining values of x for G-L  0.25  . 

The values of mass concentration for  0.75  , increase and decrease alternately in the range 0 1.0x  , and 

for remaining values of x, its values for L-S theory is more in comparison to G-L theory. 
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Fig.6 

Variation of normal stress with rotation .  
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Fig.7 

Variation of tangential stress with rotation .  
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Fig.8 

Variation of couple stress with rotation .  
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Fig.9 

Variation of temperature change with rotation .  
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Fig.10 

Variation of mass   concentration with rotation .  

 

8   CONCLUSIONS 

Analysis of stresses, temperature change and mass concentration due to ramp-type heating is a significant problem 

of continuum mechanics. The result obtained from above study are summarized as. 

The resulting quantities depicted graphically are observed to be very sensitive towards the Hall and rotation 

parameters. Figures show that the Hall and rotation parameters have oscillatory effects on the numerical values of 

the physical quantities obtained after computational process. It is also observed that the physical quantities are also 

effected by the different non-classical theories of thermoelasticity. It is observed that the values of stress 

components 33 31,t t  and 32m  for G-L theory are more in comparison to L-S theory due to the effect of Hall 

parameter and rotation. It is also observed that initially the values of temperature change for L-S theory is more in 



                                                                               Effects of Hall Current and Rotation in Modified Couple….                           541 
 

© 2017 IAU, Arak Branch 

comparison to G-L theory as the Hall parameter increases and reverse behavior is noticed due to the effect of 

rotation. Appreciable effect of Hall parameter and rotation is observed on the mass concentration. The results 

obtained in the study should be beneficial for people working on modified couple stress thermoelastic solid with 

mass diffusion. By introducing the Hall parameter and rotation to the assumed model present a more realistic mode 

for future study. 
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