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 ABSTRACT 

 In the present work, a study of thermoelastic analysis of a rotating thick truncated 

conical shell subjected to the temperature gradient and non-uniform internal pressure is 

carried out. The formulation is based on first-order shear deformation theory (FSDT), 

which accounts for the transverse shear. The governing equations, derived using 

minimum total potential energy principle, are solved, using multi-layered method 

(MLM). The model has been verified with the results of finite element method (FEM) 

for several tapering angles of the truncated cone. The numerical results obtained are 

presented graphically and the effects of thermal and mechanical loading, tapering angle 

of truncated cone, and profile of internal pressure are studied in detail.                            

                     © 2016 IAU, Arak Branch.All rights reserved. 

 Keywords : Truncated conical shells; Thick shells; Thermoelastic analysis; Rotation; 

Non-uniform pressure.  

1    INTRODUCTION 

 OTATING conical shells are increasingly being put to numerous engineering applications such as hoppers, 

vessel heads, components of missiles and spacecrafts, heart ventricles, diffusers and other civil, mechanical and 

aerospace engineering structures [1]. Since in most applications, conical shells must operate under extremes of 

thermal and mechanical loadings, any failure or fracture will be an irreparable disaster. So, adequate strength 

consideration is so important for these components [2].  

From early thermoelastic analyses on conical shells, Witt [3] derived a differential equation of a conical shell 

subjected to axis-symmetrical temperature distributions. In order to obtain a particular solution to the differential 

equation, he assumed the expression for the temperature distributions to be the sum of hyperbolic and cubic 

functions. Panferov [4] used the method of successive approximations to obtain the solution of the problem of 

thermal loading of an elastic truncated conical pipe with constant thickness. A generalized thermoelasticity problem 

of multilayered conical shells was presented in Jane and Wu [5]. They developed a hybrid Laplace transformation 

and finite difference to obtain the solution of two-dimensional axisymmetric coupled thermo-elastic equations. Patel 

et al. [6] studied the thermoelastic post-buckling behavior of cross-ply laminated composite conical shells under 

presumed uniform temperature distribution. Vivio and Vullo [7] presented an analytical procedure for the evaluation 

of elastic stresses and strains in rotating conical disks, either solid or annular, subjected to thermal load, with a 

fictitious density variation along the radius. 

Naj et al. [8] studied thermal and mechanical instability of truncated conical shells made of functionally graded 

materials. Based on the perturbation theory, Eipakchi et al. [1,9]  used a mathematical approach for axisymmetric 
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stress analysis of a thick conical shell with varying thickness under nonuniform internal pressure. By applying a 

meshless local Petrov-Galerkin method, Saldek et al. [10] solved problems of Reissner-Mindlin shells under thermal 

loading. Using the tensor analysis, Nejad et al. [11] obtained a complete and consistent 3D set of field equations to 

characterize the behavior of functionally graded (FG) thick shells of revolution with arbitrary curvature and variable 

thickness. Ghannad et al. [12] obtained an elastic solution for thick truncated conical shells. They employed the 

FSDT for the analysis of the problem. Arefi and Rahimi [13] investigated thermoelastic analysis of a functionally 

graded cylinder under mechanical and thermal loads. Jabbari et al. [14] presented the general solution of steady-state 

two-dimensional non-axisymmetric mechanical and thermal stresses and mechanical displacements of a hollow 

thick cylinder made of fluid-saturated functionally graded porous material. 

More recently, Ray et al. [15] carried out an analysis of conduction heat transfer through conical shells of 

different inner radii and shell thicknesses. Based on the high-order shear deformation theory (HSDT), Ghannad and 

Gharooni [16] presented displacements and stresses for axisymmetric thick-walled cylinders made of functionally 

graded materials under internal and/or external uniform pressure by using the infinitesimal theory of elasticity and 

analytical formulation. Ghannad et al. [17] performed an elastic analysis for axisymmetric clamped-clamped 

pressurized thick truncated conical shells made of functionally graded materials. In other work, using matched 

asymptotic method of the perturbation theory, Ghannad et al. [18] presented an analytical solution for deformations 

stresses of axisymmetric clamped–clamped thick cylindrical shells with variable thickness made of functionally 

graded materials subjected to internal pressure. 

Nejad et al. [19] used a semi-analytical iterative method as one of the newest analytical methods for the elastic 

analysis of thick-walled spherical pressure vessels made of functionally graded materials subjected to internal 

pressure.  Nejad et al. [20] derived an elastic solution for the purpose of determining displacements and stresses in a 

thick truncated conical shell under uniform pressure where MLM has been used for solution. They also used this 

method to the analysis of a rotating truncated conical shell [21]. Making use of FSDT and MLM, Nejad et al. [22] 

performed a semi-analytical solution for the purpose of elastic analysis of rotating thick truncated conical shells 

made of functionally graded material (FGM) under non-uniform pressure. 

In this paper, thermo-elastic analysis of rotating thick truncated conical shells under non-uniform pressure is 

considered. The governing equations are based on FSDT that accounts for the transverse shear. The governing 

equations are derived, using minimum total potential energy principle. The heat conduction is also taken into 

consideration in the analysis. These equations in the axisymmetric case and thermo-elasto-static state constitute a 

system of ordinary differential equations with variable coefficients. Normally, these equations do not have exact 

solutions. The MLM is used to solve the system of equations with variable coefficients. For this purpose, a rotating 

truncated conical shell is divided into disks with constant thickness. With regard to the continuity between layers 

and applying boundary conditions, the governing set of differential equations with constant coefficients is solved. In 

fact, this technique converts the set of equations with variable coefficient into the set of equations with constant 

coefficient. The results are compared with those derived through the finite element method (FEM) for some load 

cases. By numerically solving the resulting equations, the distribution of the thermal stress and displacement 

components can be obtained and the numerical results of the thermal stresses are presented graphically to show the 

effect of loading parameters on the distribution of thermal stresses and displacements. In particular, we studied the 

influence of tapering angles on the results. Finally, the conclusions drawn from the present study are reported. 

2    GOVERNING EQUATION 

In the FSDT, the sections that are straight and perpendicular to the mid-plane remain straight but not necessarily 

perpendicular after deformation and loading. In this case, shear strain and shear stress are taken into consideration. 

The geometry of a thick truncated cone with thickness h, and the length L, is shown in Fig. 1. The location of a 

typical point m, within the shell element is 

 

   : , ,
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(1) 

 

where z is the distance of a typical point from the middle surface. In Eq. (1), R represents the distance of the middle 

surface from the axial direction. 
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where   is half of tapering angle as: 
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For axial distribution of inner pressure P, the model of Eq. (4) is selected: 
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Here 1P  and 2P  are the values of pressure at the 0x   and x L , respectively and m is a constant parameter, 

which is used to control the pressure profile. The pressure applied to the internal surface is comprised of two 

components as follows 

 

sin , cosx zP P P P    (5) 

 

where xP  and zP  are components of internal pressure P along axial and radial directions, respectively. 

 

 
(a) Geometry parameters 

 
(b) Boundary and loading conditions 

 

Fig.1 

Cross section of the thick rotating truncated cone with clamped-clamped ends. 

 

The general axisymmetric displacement field  ,x zU U , in the FSDT could be expressed on the basis of axial 

displacement and radial displacement, as follows 
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(6) 

 

where ( )u x  and ( )w x  are the displacement components of the middle surface. In addition, ( )x  and ( )x  are 

the functions used to determine the displacement field. The kinematic equations (i.e., strain-displacement relations) 

in the cylindrical coordinates system are 
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(7) 

 

Considering the effect of the thermal strain for homogeneous and isotropic materials, the stress-strain relations 

(i.e., constitutive equations) are as follows  
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(8) 

 

where i  and , , ,i i x z   are the stresses and strains in the axial, circumferential, and radial directions. v, E, 

 and T are Poisson’s ratio, modulus of elasticity, the coefficient of thermal expansion and temperature gradient, 

respectively. In Eq. (8),   is 
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The normal forces ( , ,x zN N N ), bending moments ( , ,x zM M M ), shear force ( xQ ), and the torsional 

moment ( xzM ) in terms of stress resultants are 
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where K is the shear correction factor that is embedded into the shear stress term. In the static state, for conical 

shells 5 6K  [23]. On the basis of the principle of virtual work, the variations of strain energy are equal to the 

variations of work of external forces as follows 

 
U W   (14) 

 

where U is the total strain energy of the elastic body and W is the total work of external forces due to internal 

pressure and centrifugal force. With substituting strain energy and work of external forces, we have  
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Here  stands for the mass density,   represents the constant angular velocity and 2  is the force per unit 

volume due to centrifugal force. Substituting Eqs. (7) and (8) into Eq. (15), and drawing upon the calculus of 

variation and the virtual work principle, we will have 
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and 
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Eq. (17) states the boundary conditions which must exist at the two ends of the cone. In order to solve the set of 

differential Eqs. (16), with using Eqs. (7) and (13), and then using Eq. (16), we have 
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The coefficients matrices  
4 4iB


, and force vector  4 1F 
 are as follows 
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where the parameters are as follows 
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3    SEMI-ANALYTICAL SOLUTION 

3.1 Multi-layered formulation 

In MLM, the truncated cone is divided into disk layers with constant thickness t, and constant height h(Fig. 2).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Dividing of truncated cone to disk form multilayer. 
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Therefore, the governing equations convert to nonhomogeneous set of differential equations with constant 

coefficients. 
 k

x  and 
 k

R  are represent length and radius of the middle of disks and k represents the number of 

disks. The modulus of elasticity and Poisson’s ratio of disks assumed to be constant. The length of the middle of an 

arbitrary disk (Fig. 3) is as follows 
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where n is the number of disks and k is the corresponding number given to each disk. The radius of the middle point 

of each disk is as follows 
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Fig.3 

Geometry of an arbitrary disk layer. 

3.2 Heat conduction equation 

In the general form, the temperature distribution is the function of the axial and radial direction of the truncated 

cone. By dividing the truncated cone into disk form multilayer, the variation of temperature is assumed to occur in 

the radius direction only. By assumption of an element in the cylindrical coordinate system in the steady state 

without internal heat source, according to the heat balance equation for steady-state heat conduction without heat 

generation, the Eq. (27) for each disk has been conducted 
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where k is the thermal conductivity coefficient. By considering Eq. (1) and Eq. (24), Eq. (27) can be written as 

follows 
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Solving the differential Eq. (28) finally the terms of temperature gradient are derived as follows 
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where 1d  and 2d  are constants of integration and refT is the reference temperature. General boundary conditions for 

Eq. (29) are 
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In Eq. (30), ( 1,2; 1,2ijC i j  ) are constants which depend on the thermal conductivity and the thermal 

convection. 1f  and 2f are constants which are evaluated at the inner and outer radii, respectively. By exerting the 

boundary conditions for the temperature gradient distribution, we have 
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(31) 

 

If the prescribed surface temperature imposed on inner and outer sides of each disk is 
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If the o refT T , temperature gradient distribution is obtained as: 
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(33) 

3.3 Thermoelastic solution 

Considering shear stress and based on FSDT, the nonhomogeneous set of ordinary differential equations with 

constant coefficient of each disk is obtained. 
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The coefficients matrices  
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where the parameters are 
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Defining the differential operator  P D , Eq. (27) is written as: 

 

 
 

 
 

 
   2

1 2 3

2
2

2
,

k kk k
P D B D B D B

d d
D D

dxdx

       

  


 

 

 

(40) 

 

Thus 
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The above differential Equation has the total solution including general solution for the homogeneous case 
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The result of the determinant above is a six-order polynomial which is a function of m, the solution of which is a 

6 eigenvalues .im  The eigenvalues are 3 pairs of conjugated root. Substituting the calculated eigenvalues in the 

following equation, the corresponding eigenvectors  
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V  are obtained. 
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Therefore, the homogeneous solution for is  
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The particular solution is obtained as follows 
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Therefore, the total solution for is 
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In general, the problem for each disk consists of 8 unknown values of ,iC  namely 0C  (first Eq. (16)), 1C  to 6C  

(Eq. (45)), and 7C  (Eq. 
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3.4 Boundary and continuity conditions 

According to Fig. 1, the boundary conditions of cone is clamped-clamped ends. Thus, we have 
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Because of continuity and homogeneity of the cone, at the boundary between two layers, forces, stresses and 

displacements must be continuous. Given that shear deformation theory applied is an approximation of one order 

and also all equations related to the stresses include the first derivatives of displacement, the continuity conditions 

are as follows 

 

   
     

   
     1

1

1

2 2

, ,

, ,k k

k k

x x

k k
t tz zx x x x

U x z U x z

U x z U x z





   

      
   

      

 

 

(50) 

 

   
     

   
     1

1

1

2 2

, ,

, ,k k

k k

x x

k k
t tz zx x x x

U x z U x z

U x z U x z 





   

      
   

      

 

 

(51) 

 

and 

 

   

   
 

   

   
 1

1

1

2 2

, ,

, ,

k k

k k

x x

k k

z z

t t
x x x x

dU x z dU x z

dx dx

dU x z dU x z

dx dx





   

   
   
   

   
   
   
   

 

 

 

(52) 

    

   

   
 

   

   
 1

1

1

2 2

, ,

, ,

k k

k k

x x

k k

z z

t t
x x x x

dU x z dU x z

dx dx

dU x z dU x z

dx dx 





   

   
   
   

   
   
   
   

 

 

 

(53) 

                   



477                     M. Jabbari et al. 

© 2016 IAU, Arak Branch 

               

Given the continuity conditions, in terms of Z, 8 equations are obtained. In general, if the cone is divided into n 

disk layers,  8 1n  equations are obtained. Using the 8 equations of boundary condition, 8n  equations are 

obtained. The solution of these equations yields 8n  unknown constants. 

4    RESULTS AND DISCUSSION 

The solution described in the preceding section for a homogeneous and isotropic truncated conical shell with 40a   

mm, 30b   mm, 20h   mm and 400L   mm will be considered. The Young's Modulus, Poisson’s ratio, thermal 

expansion coefficient and thermal conductivity respectively, have values of 6200 , 0.3, 12 10 1/ CE Gpa        ,  

and 20W / m C   . The internal pressure applied at the 0x  and x L  is 1 40P MPa  and 2 120P MPa  

respectively. The truncated cone rotates with 1000 /  rad s  and has clamped-clamped boundary conditions. The 

boundary conditions for temperature are taken as 100iT C   and 25oT C   . 

 

 

 

 

 

 

 

 

Fig.4 

Effect of the number of disk layers on the normalized 

radial displacement. 

 

The effect of the number of disk layers on the radial displacement is shown in Fig. 4. It could be observed that if 

the number of disk layers is fewer than 40, it will have a significant effect on the response. However, if the number 

of layers is more than 60 disks, there will be no significant effect on radial displacement. In the problem in question, 

80 disks are used. 

 

 

 

 

 

 

 

 

Fig.5 

Normalized radial displacement distribution in middle 

layer. 

 

In Figs. 5-8, displacement and stress distributions are obtained, using MLM, they are then compared with the 

solutions of FEM and are finally presented in the form of graphs. Figs. 5-8 show that the disk layer method based on 

FSDT has an acceptable amount of accuracy when one wants to obtain radial displacement, radial stress, 

circumferential stress and shear stress. 

 

 

 

 

 

 

 

 

 

Fig.6 

Normalized radial stress distribution in middle layer. 
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Fig.7 

Normalized circumferential stress distribution in middle 

layer. 

  

 

 

 

 

 

 

 

Fig.8 

Normalized shear stress distribution in middle layer. 

 

The distribution of normalized radial displacement and stresses across the length of the truncated conical shell 

subjected to different loading types are shown in Figs. 9-11. As would be expected, it can be seen that the 

superposition law is satisfied for the thermoelastic analysis of rotating truncated conical shells. 

Fig. 9 illustrates the radial displacement distributions change with respect to the internal pressure profile. It can 

be further observed that the radial displacements subjected to various loading conditions have their peak values 

some distance away from the boundaries. With regard to Fig. 10, it can be seen that due to edge moments developed, 

the radial stresses are higher for thermal loading at the clamped ends. Fig. 11 shows that the circumferential stress 

subjected to centrifugal force and thermal loading at points away from the boundaries at different layers is trivial 

whereas, at points near the boundaries, the stresses are significant. It must be noted that for the points near the 

boundaries, the circumferential stress subjected to centrifugal force and internal pressure is more than 

circumferential stress subjected to total loading whereas for points away from the boundaries, the reverse is the case. 

The observations above clearly suggest that the centrifugal force is less effective than the internal pressure and 

thermal loading. 

 

 

 

 

 

 

 

 

 

Fig.9 

Normalized radial displacement subjected to various 

loading conditions. 

  

 

 

 

 

 

 

 

 

Fig.10 

Normalized radial stress subjected to various loading 

conditions. 
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Fig.11 

Normalized circumferential stress subjected to various 

loading conditions. 

 

Fig. 12 shows that a linear pressure distribution can be obtained by setting 1m  . The pressure profile is 

concave if 1m   and it is convex if 1m  . Figs. 13 and 14 indicate that radial displacement and circumferential 

stress rise with increases in non-uniformity pressure constant m. Besides, it could be observed that the radial 

displacement and circumferential stress distributions change with respect to the internal pressure profile. For 

example, for convex pressure profile, radial displacement and circumferential stress profile at points away from the 

boundaries are convex. 

 

 

 

 

 

 

 

 

 

Fig.12 

Axial distribution of non-dimensional inner pressure. 

  

 

 

 

 

 

 

 

 

Fig.13 

Normalized radial displacement along the length subjected 

to different internal pressure profiles. 

  

 

 

 

 

 

 

 

 

Fig.14 

Normalized circumferential stress along the length 

subjected to different internal pressure profiles. 

 

In order to evaluate the semi-analytical method, a set of results from the FEM were compared with those 

obtained from the semi- analytical method (Figs. 15-16). The results indicated that the MLM was capable of 

calculating stress and displacement components in truncated conical shell with great accuracy.  

The distribution of radial displacement in the inner surface of the cone is shown in Fig. 15. The greater the 

tapering angle (i.e., the greater the value of /a b ), the greater the radial displacement. The greatest radial 
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displacement occurs near the lower boundary ( 0x  ). In a like manner, the distribution of the circumferential stress 

in the inner surface is illustrated in Fig. 16. As this figure suggests, the greater the tapering angle, the greater the 

circumferential stress. 

 

 

 

 

 

 

 

 

 

Fig.15 

Normalized radial displacement distribution along middle 

surface with different tapering angles. 

  

 

 

 

 

 

 

 

 

Fig.16 

Normalized circumferential stress distribution along 

middle surface with different tapering angles. 

5    CONCLUSIONS 

The main objective of the present study was to present an analytical thermoelastic solution for rotating truncated 

conical shells under non-uniform internal pressure. To this end, based on FSDT and steady state conduction heat 

transfer equation, the governing equations of thick-walled truncated conical shells were derived. The nonlinear 

differential equations were derived, using minimum total potential energy principle. A semi-analytical procedure 

was presented in order to solve the nonlinear differential equations. The thick truncated conical shell was divided 

into disks with constant height. With regard to the continuity between layers and applying boundary conditions, the 

governing set of differential equations with constant coefficients was solved. Finite element analysis of the problem, 

using commercial code was used for the verification purposes of the proposed semi-analytical solution technique. 

Good agreement was found between the results. From the present study, the following conclusions can be drawn: 

 Shear deformation theory (SDT) is a popular model in structural analysis. In SDT, any changes in the axial 

direction of a thick shell such as geometry parameters and boundary conditions, cause variable coefficients 

in the governing differential equations. The system of differential equations with variable coefficients can 

be changed to a set of differential equations with constant coefficients by MLM. 

 This approach can be applied to each thick shell with various loadings. 

 The results show that the MLM, based on FSDT, has an acceptable amount of accuracy when one wants to 

obtain radial displacement, radial stress, circumferential stress and shear stress. 

 The superposition law is satisfied for the thermoelastic analysis of rotating truncated conical shells. 

 The radial displacements subjected to various loading conditions have their peak values some distance 

away from the boundaries. 

 The circumferential stress subjected to centrifugal force and thermal loading at points away from the 

boundaries at different layers is trivial.  

 Case study results show that the centrifugal force is less effective than the internal pressure and thermal 

loading. 

 The thermal circumferential stress is maximum at points near the boundaries. 
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 The radial displacement and circumferential stress distributions change with respect to the internal pressure 

profile. For example, for convex pressure profile, radial displacement and circumferential stress profile at 

points away from the boundaries are convex. 

 The radial displacement, and circumferential stress are heavily dependent on tapering angles and any 

change in the tapering angle brings about a change in them as well. 

REFERENCES 

[1] Eipakchi H. R., Khadem S. E., Rahimi, G. H., 2008, Axisymmetric stress analysis of a thick conical shell with varying 

thickness under nonuniform internal pressure,  Journal of Engineering Mechanics 134(8): 601-610. 

[2] Ghasemi A. R., Kazemian A., Moradi M., 2014, Analytical and numerical investigation of FGM pressure vessel 

reinforced by laminated composite materials, Journal of Solid Mechanics 6(1): 43-53. 

[3] Witt F.J., 1965, Thermal stress analysis of conical shells, Nuclear Structure Engineering 1(5): 449-456. 

[4] Panferov I. V., 1991, Stresses in a transversely isotropic conical elastic pipe of constant thickness under a thermal load,  

Journal of Applied Mathematics and Mechanics 56(3): 410-415. 

[5] Jane K. C., Wu Y. H., 2004, A generalized thermoelasticity problem of multilayered conical shells, International 

Journal of Solids Structures 41: 2205-2233. 

[6] Patel B. P., Shukla K. K., Nath Y., 2005, Thermal postbuckling analysis of laminated cross-ply truncated circular 

conical shells, Composite Structures 71: 101-114. 

[7] Vivio F., Vullo V., 2007, Elastic stress analysis of rotating converging conical disks subjected to thermal load and 

having variable density along the radius, International Journal of Solids Structures 44: 7767-7784. 

[8] Naj R., Boroujerdy M. B., Eslami M. R., 2008, Thermal and mechanical instability of functionally graded truncated 

conical shells, Thin Walled Structures 46: 65-78. 

[9] Eipakchi H. R., 2009, Errata for axisymmetric stress analysis of a thick conical shell with varying thickness under 

nonuniform internal pressure, Journal of Engineering Mechanics 135(9): 1056-1056. 

[10] Sladek J., Sladek V., Solek P., Wen P. H., Atluri A. N., 2008, Thermal analysis of reissner-mindlin shallow shells with 

FGM properties by the MLPG, CMES: Computer Modelling in Engineering and Sciences 30(2): 77-97. 

[11] Nejad M. Z., Rahimi G. H., Ghannad M., 2009, Set of field equations for thick shell of revolution made of functionally 

graded materials in curvilinear coordinate system, Mechanika 77(3): 18-26. 

[12] Ghannad M., Nejad M. Z., Rahimi G. H., 2009, Elastic solution of axisymmetric thick truncated conical shells based 

on first-order shear deformation theory, Mechanika 79(5): 13-20. 

[13] Arefi M., Rahimi G. H., 2010, Thermo elastic analysis of a functionally graded cylinder under internal pressure using 

first order shear deformation theory, Scientific Research and Essays 5(12): 1442-1454. 

[14] Jabbari M., Meshkini M., Eslami M. R., 2011, Mechanical and thermal stresses in a FGPM hollow cylinder due to non-

axisymmetric loads, Journal of Solid Mechanics 3(1): 19-41. 

[15] Ray S., Loukou A., Trimis D., 2012, Evaluation of heat conduction through truncated conical shells, International 

Journal of Thermal Sciences 57: 183-191. 

[16] Ghannad M., Gharooni H., 2012, Displacements and stresses in pressurized thick FGM cylinders with varying 

properties of power function based on HSDT, Journal of Solid Mechanics 4(3): 237-251. 

[17] Ghannad M., Nejad M. Z., Rahimi G. H., Sabouri H., 2012, Elastic analysis of pressurized thick truncated conical 

shells made of functionally graded materials, Structural Engineering and Mechanics 43(1): 105-126. 

[18] Ghannad M., Rahimi G. H., Nejad M. Z., 2013, Elastic analysis of pressurized thick cylindrical shells with variable 

thickness made of functionally graded materials, Composite Part B-Engineering 45: 388-396. 

[19] Nejad M. Z., Jabbari M., Ghannad M., 2014, A semi-analytical solution of thick truncated cones using matched 

asymptotic method and disk form multilayers,  Archive of Mechanical Engineering 3: 495-513. 

[20] Nejad M. Z., Rastgoo A., Hadi A., 2014, Effect of exponentially-varying properties on displacements and stresses in 

pressurized functionally graded thick spherical shells with using iterative technique, Journal of Solid Mechanics 6(4): 

366-377. 

[21] Nejad M. Z., Jabbari M., Ghannad M. 2014, Elastic analysis of rotating thick truncated conical shells subjected to 

uniform pressure using disk form multilayers, ISRN Mechanical Engineering 764837: 1-10. 

[22] Nejad M. Z., Jabbari M., Ghannad, M., 2015, Elastic analysis of FGM rotating thick truncated conical shells with 

axially-varying properties under non-uniform pressure loading, Composite Structures 122: 561-569.  

[23] Vlachoutsis S., 1992, Shear correction factors for plates and shells, International Journal for Numerical Methods in 

Engineering 33: 1537-1552. 


