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 ABSTRACT 

 In the present article, the reflection and transmission of plane waves at the boundary of 
thermally conducting micropolar elastic media with two temperatures is studied. The 
theory of thermoelasticity with and without energy dissipation is used to investigate the 
problem. The expressions for amplitudes ratios of reflected and transmitted waves at 
different angles of incident wave are obtained. Dissipation of energy and two temperature 
effects on these amplitude ratios with angle of incidence are depicted graphically. Some 
special and particular cases are also deduced. 

                                                   © 2014 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE theory of micropolar elasticity was introduced and developed by Eringen [1]. The theory of micropolar 
continuum mechanics gives consideration to the microstructure. Micropolar theory is useful in structure 

materials with a fibrous, lattice or granular micropolar structure. The main difference of micropolar elastic material 
from the classical elastic material is that each point has extra rotational degrees of freedom independent of 
translation and the material can transmit couple as well as usual force stress. 

The linear theory of micropolar thermoelasticity has been developed by extending the theory of micropolar 
continua. A comprehensive review of works on the subject was due to Eringen [2] and Nowacki [3] . Dost and 
Taborrok [4] presented the generalized thermoelasticity by using Green and Lindsay theory. Chandrasekharaiah [5] 
developed a heat flux dependent micropolar thermoelsticity. Boschi and Iesan [6] extended a generalized theory of 
micropolar thermoelasticity that permits the transmission of heat as thermal waves at finite speed. 
Thermoelasticity with two temperatures is one of the non-classical theories of thermodynamics of elastic solids. The 
main difference of this theory with respect to classical one is in the thermal dependence. Boley and Tolins [7] while 
studying the transient coupled thermoelastic boundary-value problem in half-space concluded that two temperatures 
and strains are the foundation of the results in the form of the wave-pulse response which occurs instantaneously 
throughout the body. In the theory of thermodynamics, the temperature caused by the thermal process is known as 
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conductive temperature   and the temperature due to mechanical process in the material is known as 
thermodynamic temperature T . Chen et al. [8-9] have formulated a theory of heat conduction in deformable bodies, 
which depend on two distinct temperatures, the conductive temperature  and thermodynamic temperature T . For 
time-independent situations, the difference between these two temperatures is proportional to the heat supply while 
the two temperatures are identical in the absence of any heat supply. For time-dependent problems, however, and for 
wave propagation problems in particular, the two temperatures are in general different regardless of the presence of 
a heat supply. The two temperatures and the strain are found to have representation in the form of a travelling wave 
pulse, a response which occurs instantaneously throughout the body (Boley [10]). The wave propagation in the two 
temperature theory of thermoelasticity was investigated by Warren and Chen [11]. 

A new theory of generalized thermoelasticity by taking into account the theory of heat conduction in deformable 
bodies, which depends on distinct conductive and thermodynamic temperatures and a uniqueness theorem for the 
equation of two temperatures generalized linear thermoelasticity for a homogeneous and isotropic body was 
presented by Youssef [12]. Various investigators Kumar and Mukhopadhyay [13], Kaushal et al. [14] , Ezzat and 
Awad [15], Kaushal et al. [16] , El-Karamany and Ezzat [17] , Banik and Kanoria [18] studied different problems in 
thermoelastic media with two temperatures.  Kumar and Abbas [19] studied deformation due to thermal source in 
micropolar thermoelastic media with thermal and conductive temperatures, Youssef [20] studied state-space 
approach to two-temperature generalized thermoelasticity without energy dissipation of medium subjected to 
moving heat source. Ailawalia and Lofty [21] studied two temperature generalized magneto-thermoelastic 
interactions in an elastic medium under three theories. 

To study the propagation of thermal waves at finite speed, it may be possible in the foreseeable future to identify 
an idealized material. Green and Naghdi [22-24] has made relevant theoretical development in the theory of 
thermoelasticity and provided sufficient basic modifications in the constitutive equations that allow treatment of 
wider class of heat flow problems, labeled as types I, II, III. When the respective theories are linearized, type I is 
similar to classical heat equation, where as the linearized version of type II and type III theories allow propagation 
of thermal waves at finite speed. In type II and type III (i.e thermoelasticity without energy dissipation and 
thermoelasticity with energy dissipation) the entropy flux vector is determined in terms of potential that also 
determine stresses. The temperature equation reduces to classical Fourier law of heat conduction when Fourier 
conductivity is dominant; and when the effect of conductivity is negligible, the equation has undamped thermal 
wave solutions without energy dissipation.  

Various investigators have studied the different problems using GN type II and type III theories notable among 
them are  Taheri et al. [25], Mukhopadhyay and Kumar [26] , Mohamed et al. [27] ,  Chrita and Ciarletta [28-29], 
Passarella and Zampoli [30]. Abbas [31] investigated GN model for thermoelastic interaction in an unbounded fiber-
reinforced anisotropic medium with a circular hole. Ailawalia et al. [32] studied dynamic problem in Green-Naghdi 
(Type III) thermoelastic half-space with two temperature. Das et al. [33] studied a problem of magneto-
thermoelastic interactions in a transversely isotropic hollow cylinder due to thermal shock in the context of three 
phase-lag theory of generalized thermoelasticity. Kothari and Mukhopadhyay [34] presented some theorems in the 
linear theory of thermoelasticity with dual phase-lags for an anisotropic and in homogeneous material.  Othman et 
al. [35] discussed the effect of gravity on plane waves in generalized thermo-microstretch elastic solid under Green 
Naghdi theory. Fahmy [36] studied the generalized magneto-thermo-viscoelastic problem in a rotating solid of 
functionally graded material (FGM) in the context of the Green and Naghdi theory of type III. El-Karamany and 
Ezzat [37] proved the uniqueness and reciprocal theorems are without the use of  laplace transforms for the Dual-
Phase-Lag thermoelasticity theory. Guo et al. [38] investigates the thermoelastic dissipation of micro-plate 
resonators by using the generalized thermoelasticity theory of dual-phase-lagging model.  

In the present investigation, we study the reflection and transmission of plane waves i.e. longitudinal 
displacement wave (LD wave), thermal wave (T wave), transverse displacement wave coupled with microrotational 
wave (CD-I wave and CD-II wave) at the boundary of thermally conducting micropolar elastic media with two 
temperatures with and without energy dissipation. Energy dissipation and two temperature effects are depicted 
numerically and depicted graphically on the amplitude ratios for incidence of various plane waves for a particular 
model. 

2    BASIC EQUATIONS 

The field equations in an isotropic, homogeneous, micropolar elastic medium following Eringen [1], Ezzat and The 
field equations in an isotropic, homogeneous, micropolar elastic medium following Eringen [1], Ezzat and Awad 
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[15] and Green and Naghdi [23] in the theory of thermoelasticity with energy dissipation, without body forces, body 
couples and heat sources, are given by 
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and the constitutive relations are  
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where   and   are Lame's constants. , ,K    and   are micropolar constants. ijt and ijm are the components of 

stress tensor and couple stress tensor. iu  and i  are the displacement and microrotation vectors,   is the density , j  

is the microinertia, *
1K  is the thermal conductivity, 

*

1
( 2 )

4
c

K
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  is material characteristics constant of the 

theory, *c is the specific heat at constant strain,   is the deviation of conductive temperature from reference 
temperature, T  is the deviation of thermodynamic temperature from reference temperature, 0T  is the reference 

temperature,  = 3 2 ,TK      where T  is the coefficient of linear thermal expansion , ij  is the Kronecker 

delta, ijr  is the alternating tensor. T and   are connected by the relation 2(1 )T a    , where a  is a two 

temperature parameter. 

3    FORMULATION OF THE PROBLEM 

Two homogeneous, isotropic, micropolar, thermoelastic solid half spaces with two temperatures (medium 1M ) and 

(medium 2M ) in contact with each other are considered. Origin of the rectangular Cartesian co-ordinate system 

1 2 3Ox x x  is taken on the surface 3 0x   and 3x -axis is pointing normally into the medium 1M . 
The components of displacement and microrotation for two dimensional problem are taken in the form 
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Eqs . (1)-(3) with the help of Eq. (6), reduce to the following equations 

 
2

2 21 2 1
1 2

1 3 1

( ) ( ) (1 ) ,
e u

K u K a
x x x t


    

  
        

   
 

 
   (7) 

2
2 2 31 2

3 2
3 1 3

( ) ( ) (1 ) ,
ue

K u K a
x x x t


    

  
        

   
 

 
   (8) 

2
2 31 2

2 2 2
3 1

2 ,
uu

K K j
x x t


   

  
        

 
 

   (9) 

2 2
* 2 * 2

1 1 0 12 2
( ) (1 ) ,K K c a T e

t t t
   

      
  

 
 

   (10) 



425                    R. Kumar et al. 

© 2014 IAU, Arak Branch 

where 

                                                                                                       

 
The dimensionless quantities are defined as:  
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is a parameter having dimensions of length. 

The relations between non-dimensional displacement components 1 3,u u  and the dimensionless potential 

functions ,   can be expressed as: 
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Making use of Eq. (11) in Eqs. (7)-(10) and with the aid of Eq. (12) after suppressing the primes, we obtain  
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4    BOUNDARY CONDITION 

The following boundary conditions at the interface 3x =0 are considered 
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5    REFLECTION AND TRANSMISSION 

We consider longitudinal displacement wave (LD-wave), thermal wave (T-wave), transverse displacement wave 
coupled with microrotational waves (CD-I wave and CD-II wave) propagating through the medium 1M which we 

designate as the region 3 0x  and incident at the plane 3 0x  with its direction of propagation with angle 0  normal 
to the surface. Corresponding to each incident wave, we get reflected LD-wave, T-wave, CD-I and CD-II waves in 
medium 1M  and transmitted LD-wave, T-wave, CD-I and CD-II waves in medium 2M  . We write all the variables 

without bar in medium 1M and attach bar to denote the variables in medium 2M  as shown in Fig.1. 

 
 

 
 
 
 
 
 
 
 
 
Fig. 1  
Geometry of the problem.          

 
 
In order to solve the Eqs. (13)-(16), we assume the solutions in the form 
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Such that k  is the wave number,   is the angular frequency and 
~ ~ ~ ~

2, , ,    are arbitrary constants. 
Using Eq. (18) in Eqs . (13)-(16), we obtain 
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Eqs. (19) and (20) are quadratic in 2V , therefore the roots of these equations give four values of 2 .V  

Corresponding to each value of 2V in Eq. (19), there exist two types of waves in medium 1M  in decreasing order of 

their velocities, namely  LD-wave and T-wave. Similarly corresponding to each value of 2V  in Eq. (20), there exist 
two types of waves in medium 1M , namely CD-I wave and CD-II wave. Let 1 2,V V be the velocities of reflected 

LD-wave, T-wave and 3 4,V V  be the velocities of reflected CD-I wave, CD-II wave in medium 1M .  
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In view of Eq. (14), the appropriate solutions of Eqs. (13)-(16) for medium 1M and medium 2M  are assumed in 
the form 
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And 0 0,j jS T  are the amplitudes of incident (LD-wave, T-wave) and (CD-I, CD-II) waves respectively. iS  and jT   

are the amplitudes of reflected (LD-wave, T-wave) and (CD-I, CD-II) waves and 
_

iS , 
_

jT are the amplitudes of 
transmitted (LD-wave, T-wave) and (CD-I, CD-II) waves respectively. 

We use the following extension of the Snell’s law to satisfy the boundary conditions 
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Making use of the values of , ,    and 2  from Eqs. (21)-(24) in boundary conditions (17) and with the aid of 

Eqs. (4)-(6), (11) , (12), we obtain a system of eight non-homogeneous equations in the following form 
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where the values of ija
 
are given as: 
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   (28) 

 
In the above Eq. (28), 1, 2i   , 3, 4j  ,  5, 6k  , and 7,8l   
 

3 31 2 4 1 2 4
1 2 3 4 5 6 7 8* * * * * * * *

= , = , = , = , = , = , = , =
T TS S T S S T

Z Z Z Z Z Z Z Z
A A A A A A A A

 
 
 

  
Such that 1 2 3 4, , ,Z Z Z Z  are the amplitude ratios of reflected LD-wave, T-wave and coupled CD-I, CD-II 

waves in medium 1M  and 5 6 7 8, , ,Z Z Z Z  are the amplitude ratios of transmitted LD-wave, T-wave and coupled 
CD-I, CD-II waves in medium 2M .  

(1) For incident LD-wave:  
 

*
01 02 03 04 1 11 2 21 3 31 4 41 5 51

6 61 7 71 8 81

= , = = = 0 , = , = , = = 0 , = , = ,

= 0 , = , =

A S S T T Y a Y a Y a Y a Y a

Y a Y a Y a

 

 
 

 
 

 
(2) For incident T-wave:  
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*
02 01 03 04 1 12 2 22 3 32 4 42 5 52

6 62 7 72 8 82

= , = = = 0 , = , = , = = 0 , = , = ,

= 0, = , =

A S S T T Y a Y a Y a Y a Y a

Y a Y a Y a

 

 
 

 
 

 
(3) For incident CD-I wave:  
 

*
03 01 02 04 1 13 2 23 3 33 4 43 5 53

6 63 7 73 8 83

= , = = = 0 , = , = , = , = , = ,

= , = 0 , = = 0

A T S S T Y a Y a Y a Y a Y a

Y a Y a Y a

 

 
 

 
 

 
(4) For incident CD-II wave: 
 

 
*

04 01 02 03 1 14 2 24 3 34 4 44 5 54

6 64 7 74 8 84

= , = = = 0 , = , = , = , = , = ,

= , = 0 , = = 0

A T S S T Y a Y a Y a Y a Y a
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 

 
 

 
 

6    PARTICULAR CASES 
Case I: Energy dissipation without two temperatures 

By neglecting two temperature parameters i.e.  0 , 0a a  , we obtain the amplitude ratios at the boundary of two 

micropolar thermoelastic solid half spaces with energy dissipation. The values of ija  are given by Eq. (28) with the 

following changed values 
 

   
2 2

1 1 2 1 1 2 02 2
= , = ,       (  1,2,   3,4,  5,6)i i i k i i

i i

a d d B f a d d R p f i j k
V V

  
        
  

 
 
 

Case II: Without energy dissipation  

If we take * *
1 10, 0K K  , then we obtain the amplitude ratios at the boundary of two micropolar thermoelastic 

solid half spaces with two temperatures and without energy dissipation and the values of ija  are given in Eq. (28) 

with the changed values of ija as: 

 

8 8 2= , = ,  (  1,2, 5,6)i i i k i i
i i

a f B a p R f i k
V V

      
 
 

Case III: Without energy dissipation and without two temperatures 

If we take * *
1 10, 0, 0K K a    and 0,a   then we obtain the amplitude ratios at the boundary of two micropolar 

thermoelastic solid half spaces without energy dissipation. The values of ija  are given in Eq. (28) with the changed 

values of ija  as: 

 

   
2 2

1 1 2 1 1 2 02 2

8 8 2
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Case IV: Half-space 

If we remove the upper medium 2M , then we obtain the amplitude ratios at the free surface of micropolar 
thermoelastic solid half space with two temperatures and energy dissipation as: 
 

 
4

=1

= ; = 1, 2, 3, 4ij j i
j

a Z Y i  
 
 

 
where the values of ija are given as: 

 

 
2 2 2

1 1 2 1 2 02 2
j 0

2 2 2
2

2 3 4 0 2 3 4 3 0 52 2
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3 3 4 4

= (1 ) , = sin ,
V V

(2 ) sin , = ( ) sin ,

= 0 , = , = , = 0 (  1,2,  3, 4)

i i i j j
i i

i i j j j
j

i j j j i i i j
j i

a d d B a f a d B
V V

a d d B a d d B d d f
V V V V
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   

   

  

  

     

 

 

 
 

7   NUMERICAL RESULTS AND DISCUSSION 

The following values of relevant parameters for both the half spaces for numerical computations are taken. 
The values of micropolar constants for medium 1M  are taken from Eringen [39]: 
 

10 2 10 2 10 2

10 17 2 3 3

= 9.4 10 , = 4.0 10 , = 1.0 10 ,

ˆ= 7.79 10 , = 0.002 10 , = 1.74 10 ,

Nm Nm K Nm
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 

 

  

  

  

  
 

 
 

 
and thermal parameters are taken from Dhaliwal and Singh [40] :  
 

4 2 1 * 3 1 1

2 * 2 1 1
0 1

= 2.68 10 , = 1.04 10 ,

0.5 , = 0.298 , = 1.7 10 , = 1 .

Nm K c NmKg K

a m T K K Nsec K


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   
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 

 
 

 
 

 
Following Gauthier [41] , the values of micropolar constants for medium 2M  are taken as:  
 

10 2 12 2 17 2

9 2 5 3 3

= 7.59 10 , = 0.0189 10 , 0.00196 10 ,

= 0.0149 10 , = 2.68 10 , = 2.19 10 .

Nm Nm j m
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 
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Thermal parameters for the medium 2M  are taken as:  
 

* 2 1 1 8 2 1
0 1

* 2 1 1 2

= 0.0296 , = 1.2 10 , 0.02603 10 ,

= 9.21 10 , = 0.1 .

T K K Nsec K Nm K

c JKg K a m

   

 

  


 

 
 

 
The values of amplitude ratios have been computed at different angles of incidence.  
In Figs. 2-25, we represent the solid line for incident wave for thermoelastic solid with two temperatures and 

with energy dissipation (TS), small dashes line for thermoelastic solid with two temperatures and without energy 
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dissipation (KTS), large dashes line for thermoelastic solid with energy dissipation (ATS) and dash dot dash line for 
thermoelastic solid without energy dissipation (AKTS). 

7.1 Incident LD-Wave 

Variations of amplitude ratios ;1 8iZ i  with the angle of incidence 0 , for incident LD-wave are shown in Figs. 

2 through 9. Fig. 2 shows that the values of 1Z  for TS, KTS, ATS and AKTS are oscillatory in the whole range. 

The values for KTS attain maximum value near the grazing incidence. It is noticed that the values for KTS remain 
greater than the values for TS in the intermediate range. It is evident from Fig. 3 that the values of amplitude ratio 

2Z  for TS, KTS, ATS and AKTS increase in the whole range, except near the grazing incidence where the values 

get decreased sharply. Also, the values for KTS in comparison with TS and ATS in comparison with AKTS remain 
more in the whole range that reveals the effect of energy dissipation. The values of amplitude ratio for TS, KTS, 
ATS and AKTS are magnified by multiplying by 10. Fig. 4 shows that the values for 3Z  for TS, KTS, ATS and 

AKTS increase up to intermediate range and then decrease with further increase in angle of incidence. The values 
for KTS remain less than the values for TS, ATS and AKTS in the whole range.  

Fig.5 depicts that the values of amplitude ratio 4Z  for TS, KTS, ATS and AKTS increase in the range 
0 0

00 32   and then decrease in the subsequent range. The values of amplitude ratio for TS, KTS, ATS and 

AKTS are magnified by multiplying by 102. Fig. 6 shows that the behavior of variation of 5Z for ATS in 

comparison with AKTS and TS in comparison with KTS is similar with to difference in their magnitude. The values 
for TS remain more than the values for ATS in the whole range. The maximum value is attained by KTS near the 
normal incidence. Fig. 7 shows that the values of 6Z  for AKTS remain more than the values for ATS in the whole 

range. The values for KTS and AKTS show sharp decrease near the grazing incidence. The values of amplitude ratio 
for TS and KTS are magnified by multiplying by 105 and 106 respectively and the values for ATS and AKTS are 
magnified by multiplying by 104. It is noticed from Fig. 8 that the values of 7Z  for TS, KTS and AKTS increase in 

the range 0 0
00 52  and then get decreased in the further range. The values of amplitude ratio for ATS and 

KATS are magnified by multiplying by 10 and the values for KTS are magnified by multiplying by 102. It is noticed 
from Fig. 9 that values of 8Z  for KTS remain less than the amplitude for TS in the whole range. The values of 

amplitude ratio for TS, ATS and AKTS are magnified by multiplying by 102 and the values for KTS are magnified 
by multiplying by 10. 
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Fig. 2  
Variations of amplitude ratios with the angle of incidence for 
LD-Wave.    
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Fig. 3  
Variations of amplitude ratios with the angle of incidence 
for LD-Wave.    
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Fig. 4  
Variations of amplitude ratios with the angle of incidence 
for LD-Wave.    
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Fig.5  
Variations of amplitude ratios with the angle of incidence 
for LD-Wave.    
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Fig. 6  
Variations of amplitude ratios with the angle of incidence 
for LD-Wave.    
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Fig. 7  
Variations of amplitude ratios with the angle of incidence 
for LD-Wave.    
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Fig. 8 
Variations of amplitude ratios with the angle of incidence 
for LD-Wave.    
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Fig. 9 
Variations of amplitude ratios with the angle of incidence 
for LD-Wave.    

7.2 Incident T-Wave 

Variations of amplitude ratios ;1 8iZ i   with the angle of incidence 0  , for incident T-wave are shown in Figs. 

10 through 17. Fig. 10 shows that the values of 1Z
 
for TS, KTS, ATS and AKTS oscillate in the whole range. The 

values for AKTS attain peak value in the interval 0 0
020 30 .   The values for KTS are reduced by dividing by 

10. Fig. 11 depicts that the amplitude of 2Z  for TS and KTS increase in the whole range. Also the values for TS in 

comparison with ATS remain more in the whole range that shows the effect of two temperatures.  

It is evident from Fig. 12 that the values of 3Z
 
for AKTS attain maximum value in the interval 0 0

080 90 .   

The values for TS and ATS increase in the range 0 0
00 50  and then decrease in the remaining range.  

Fig. 13 depicts that values of 4Z
 
for KTS in comparison with TS are greater. The values of amplitude ratio for 

TS, KTS, ATS and AKTS are more oscillatory. The values of amplitude ratio for TS, ATS, KTS and AKTS are 
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magnified by multiplying by 10.  Fig. 14 shows that the values of 5Z
 
for ATS remain greater than the values for 

TS in the whole range. The values for AKTS attain peak value in the interval 0 0
025 30  and near the grazing 

incidence. The values for AKTS are reduced by dividing by 10. Fig. 15 shows that the values of 6Z  for TS, ATS 

and KTS and AKTS decrease with increase in 0  and the values for AKTS attain peak value in the interval 
0 0

025 35  and near the grazing incidence. The values of amplitude ratio for TS, ATS and AKTS are magnified 

by multiplying by 103. Fig. 16 shows that the values of 7Z  for ATS remain higher than the values of amplitude 

ratio TS in the whole range that shows the effect of two temperatures. The values of amplitude ratio for TS and ATS 
are magnified by multiplying by 10 and the values for KTS are magnified by multiplying by 102. Fig. 17 shows that 
the behavior of variation of 8Z

 
is similar as that of 7Z  with difference in their magnitude values. The values of 

amplitude ratio for TS, ATS, AKTS by 102 and the values for KTS are magnified by multiplying by 10. 
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Fig. 10 
Variations of amplitude ratios with the angle of incidence 
for T-Wave. 
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Fig. 11 
Variations of amplitude ratios with the angle of incidence 
for T-Wave. 
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Fig. 12 
Variations of amplitude ratios with the angle of incidence 
for T-Wave. 
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Fig. 13  
Variations of amplitude ratios with the angle of incidence 
for T-Wave. 
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Fig. 14 
Variations of amplitude ratios with the angle of incidence 
for T-Wave. 
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Fig. 15 
Variations of amplitude ratios with the angle of incidence 
for T-Wave. 
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Fig. 16 
Variations of amplitude ratios with the angle of incidence 
for T-Wave. 
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Fig. 17 
Variations of amplitude ratios with the angle of incidence 
for T-Wave. 

7.3 Incident CD-I Wave 

Variations of amplitude ratios ;1 8iZ i  with the angle of incidence 0  , for incident CD-I wave are shown in 

Figs. 18 through 25. Fig. 18 depicts that the values of 1Z
 
for TS, KTS, ATS and AKTS increase in the interval 

0 0
00 84  and then decrease with increase in 0 . The values for TS are greater than the values for KTS, and 

AKTS in the whole range. It is depicted from Fig. 19 that the values of 2Z  for AKTS in comparison with KTS are 

smaller in the whole range. The maximum value is attained by TS in the interval 0 0
075 85  . The values of 

amplitude ratio for TS, KTS and AKTS are magnified by multiplying by 102 and the values for ATS are magnified 
by multiplying by 10. 

It is noticed from Fig. 20 that the values of 3Z
 
for TS, ATS and AKTS increase from normal incidence to 

grazing incidence, except near the grazing incidence, where the values decrease. The values for TS are higher than 
the values for KTS in the whole range. Fig. 21 depicts that the values of 4Z  for TS, ATS, KTS and AKTS increase 

in the whole range. The maximum value is attained by TS at the grazing incidence. There is slight difference in the 
magnitudes for TS, ATS and AKTS. Fig. 22 shows that the values of 5Z for TS in comparison with KTS remain 

more in the whole range except near the grazing incidence. Fig. 23 depicts that the values of 6Z
 
for KTS remain 

more than the values for TS and the values for ATS remain more than that for AKTS in the whole range due to the 
dissipation of energy. The values of amplitude ratio for TS and KTS are magnified by multiplying by 106 and the 
values for ATS and AKTS are magnified by multiplying by 105. It is noticed from Fig. 24 that the values of 7Z

 
for 

TS, ATS and AKTS decrease while the values for KTS increase from normal incidence to grazing incidence. There 
is slight difference in the magnitudes for TS, ATS and AKTS. The values of amplitude ratio for KTS are magnified 
by multiplying by 10. It is observed from Fig. 25 that behavior of variation of 8Z  for TS, KTS, ATS and AKTS is 

similar in the whole range.The values of amplitude ratio for TS, ATS and AKTS are magnified by multiplying by 
102.   
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Fig. 18 
Variations of amplitude ratios with the angle of incidence 
for CD-I Wave.                         
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Fig. 19 
Variations of amplitude ratios with the angle of incidence 
for CD-I Wave. 
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Fig. 20 
Variations of amplitude ratios with the angle of incidence 
for CD-I Wave. 
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Fig. 21  
Variations of amplitude ratios with the angle of incidence 
for CD-I Wave. 
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Fig. 22  
Variations of amplitude ratios with the angle of incidence 
for CD-I Wave. 

 

0 10 20 30 40 50 60 70 80 90
Angle of incidence 

0

0.4

0.8

1.2

A
m
p
lit
u
d
e
 r
a
tio

 
 

TS

KTS

ATS

AKTS

 

 
 
 
 
 
 
 
 
 
Fig. 23  
Variations of amplitude ratios with the angle of incidence 
for CD-I Wave. 

 
 

0 10 20 30 40 50 60 70 80 90
Angle of incidence 

0.08

0.12

0.16

0.2

0.24

0.28

A
m
pl
itu

de
 r
a
tio

 
 

TS

KTS

ATS

AKTS

 
 
 
 
 
 
 
 
Fig. 24 
Variations of amplitude ratios with the angle of incidence 
for CD-I Wave. 
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Fig. 25 
Variations of amplitude ratios with the angle of incidence 
for CD-I Wave. 
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8    CONCLUSIONS 

In the present paper, the expressions for reflection and transmission coefficients of various reflected and transmitted 
waves have been derived in the context of GN type II and GN type III theories. It is observed that when LD-wave is 
incident, the values of amplitude ratios 1 2 5, ,Z Z Z for ATS remain more than the value for TS i.e two 

temperatures effect decrease the magnitude of amplitude ratios. Also when T-wave is incident, the values of 
amplitude ratios follow oscillatory pattern and the values for KTS and AKTS attain peak value in the initial range. 
The values of amplitude ratio ; 1,3,4iZ i 

 
for TS in comparison with KTS remain greater that reveals the effect of 

energy dissipation (CD-I wave incident). The problem is of geophysical interest and the results are supposed to be 
useful in theoretical and observational studies of wave propagation in more realistic models of micropolar solids 
present in the earth’s interior.   
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