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 ABSTRACT 

 A mixed semi-analytical cum numerical approach is presented in this paper which accounts for the 
coupled mechanical and electrical response of piezoelectric, functionally graded (FG) and layered 
composite hollow circular cylinders of finite length. Under axisymmetric mechanical and 
electrical loadings, the three-dimensional problem (3D) gets reduced to a two-dimensional (2D) 
plane strain problem of elasticity. The 2D problem is further simplified and reduced to a one-
dimensional (1D) by assuming an analytical solution in longitudinal direction (z) in terms of 
Fourier series expansion which satisfies the simply (diaphragm) supported boundary conditions 
exactly at the two ends z = 0, l. Fundamental (basic) dependent variables are chosen in the radial 
direction (thickness coordinate) of the cylinder. The resulting mathematical model is cast in the 
form of first order simultaneous ordinary differential equations which are integrated through an 
effective numerical integration technique by first transforming the BVP into a set of initial value 
problems (IVPs). The cylinder is subjected to internal/external pressurized mechanical and an 
electrical loading. Finally, numerical results are obtained which govern the active and sensory 
response of piezoelectric and FG cylinders. Numerical results are compared for their accuracy 
with available results. New results of finite length cylinders are generated and presented for future 
reference. 

        © 2010 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 YLINDERS made of composites have seen an ever increasing use in the process industry during the last 
twenty five years. Their use as a material of choice for pressure vessels and components is due to the fact that 

they possess longer life in a corrosive environment, low weight but high strength and stiffness, and the capability to 
tailor directional strength properties to design needs. The development of piezoelectric and graded composite 
materials offers great potential for use in cylindrical vessels in advanced aerospace structural applications. The basic 
shape of piezoelectric device is circular cylinder which is used as transducers, which can reflect and receive waves 
from the media when it is pressurized. Also, it converts the electrical pulses to mechanical energy and mechanical 
energy to electrical pulses when pressurized. This basic device has many other applications like ultrasound, ground 
penetrating radar, which is extremely useful. It is very important to understand the behavior of such devices before it 
is used for engineering design. In view of this, present study is focused on such cylinders which are made up of 
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piezoelectric/graded materials and polarized in radial direction, which is subjected to electrical, mechanical and 
thermal loads. It is necessary and required that such materials be orthotropic material; orthotropic phenomenon will 
provide the particle charging and polarizing in different directions. Such a cylinder is then studied under electrical 
and mechanical loads. In addition, these materials will produce an electric field when the material changes 
dimensions as a result of an imposed mechanical force. Before these devices are used in engineering design, it is 
important that they be analyzed very accurately. For such a reason, the present study focuses on the analysis of 
piezoelectric, graded and composite devices using the exact approach.  

Some of the literature relevant in this study is described as follows. Heyliger  and Pan [1] obtained approximate 
solutions to the weak form of the governing equations of equilibrium/motion, charge and magnetic flux for 
laminates containing layers of potentially magnetoelectroelastic material, in which there can exist elastic 
displacement fields, the electric potential (or voltage), and the magnetic potential. The through-thickness elastic, 
electric, and magnetic fields of laminates composed of elastic, piezoelectric, and magnetostrictive layers are 
considered under static conditions to determine their fundamental behaviour and to investigate the limits of 
simplified plate theories in which the fields are assumed to possess a specific type of behaviour. Kapuria et al. [2] 
presented an exact axisymmetric piezothermoelastic solution for a simply-supported hybrid cylindrical shell made of 
cross-ply composite laminate and piezoelectric layers. Numerical results for hybrid shells are presented for 
sinusoidal and central band thermal and electrical loads. Heyliger [3] gave an exact three-dimensional solution of the 
equations of linear piezoelectricity for the static response of a finite laminated piezoelectric cylinder with its ends 
simply supported.  

The classic problem of an infinitely long elastic cylinder of an isotropic material under internal and external 
pressure was analysed first by Lame in 1847 (Timoshenko and Goodier [4]). Misovec and Kempner [5] obtained an 
approximate solution to the Navier equations of the 3D elasticity for an axisymmetric orthotropic infinitely long 
circular cylinder subjected to internal and external pressure, axial loads, and closely spaced periodic radial loads. 
Chandrashekhara and Kumar [6] presented static analysis of a thick laminated circular cylindrical shell subjected to 
axisymmetric load. The effect of material inhomogeneity in fundamental BVP of linear inhomogeneous isotropic 
pressurized hollow cylinder was investigated by Horgan and Chan [7]. Galic and Horgan [8, 9] developed an 
analytic solution to the axisymmetric problem of an infinitely long, radially polarized, radially orthotropic 
piezoelectric hollow circular cylinder. Kapuria et al. [10] presented a series solution for an exact axisymmetric 
piezothermoelastic problem for a simply-supported hybrid cylindrical shell made of cross-ply composite laminate 
and piezoelectric layers. Numerical results for hybrid shells are presented for sinusoidal and central band thermal 
and electrical loads. One-dimensional axisymmetric thermoelastic problem of a functionally graded transversely 
isotropic cylindrical shell was studied by Ye et al. [11] who presented useful discussion and numerical results. It is 
seen that mostly problem of infinitely long axisymmetric cylinder is investigated in literature. Benchmark solutions 
using elasticity theory are also rare for finite length cylinders under thermo-mechanical-electro loadings. 

Differential equations from theory of 3D elasticity, which govern the behaviour of a composite, functionally 
graded and piezoelectric finite length circular cylinder in a state of axisymmetric plane strain under 
electromechanical loadings which is a function of both radial and axial coordinates, are taken. By assuming a global 
analytical solution in the longitudinal direction which satisfies the two end boundary conditions exactly, the 2D 
generalized plane strain problem is reduced to a 1D problem in the radial direction. The equations are reformulated 
to enable application of an efficient and accurate numerical integration technique for the solution of the BVP of a 
cylinder. In addition, one dimensional elasticity equations of an infinitely long axisymmetric cylinder are utilized to 
reformulate the 1D mathematical model suitable for numerical integration. This has been done with a view to check 
and compare the results of the present formulation of finite length cylinder under uniform internal/external 
electromechanical load, when the length of the cylinder tends to infinity. 

2    MATHEMATICAL FORMULATION 

Basic equation which govern the behaviour of static response of composite/FG/piezoelectric finite length cylinder 
under pressure loading are written below. 

2.1 Equilibrium equations 

2D Stress equilibrium equation for finite length cylinder can be written as Timoshenko and Goodier [4], Fig. 1. 
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Fig. 1 
Fundamental dependent variables in a cylinder. 
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For piezoelectric cylinder additional charge equilibrium equation Cady [12] is written as, 
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2.2 Strain displacement relations 

2D strain-displacement and in cylindrical coordinates are 
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2.3 Stress displacement relations 

Stresses in terms of displacement components for piezoelectric material can be cast as follows Cady [12]: 
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where u is the radial displacement and φ is the electric potential, w is the axial displacement, Dr, Dz is the electric 
displacements. The elastic constants are c11, c12, c22, c23, c31, c33. The piezoelectric constant are e11, e12, e13, e15 and 
 11,  33 are the dielectric permittivities at constant strain, G is the shear modulus. 

2.4 Boundary conditions 

Boundary conditions in the longitudinal and radial directions are: 

at 0, :     0, 0, 0

at :     - , , 0 

at :      0

z z

i r rz
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In which l is the length, ri is the inner radius and ro is the outer radius of a hollow cylinder. Load p(z) can be 

represented in terms of Fourier series in general form as follows, 
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In which pi is the Fourier load coefficient which can be determined by using the orthogonality conditions and for 

sinusoidal loading, 
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where p0 is the maximum intensity of sinusoidal distributed pressure. 

3    FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS 

Radial direction r is chosen to be a preferred independent coordinate. Six fundamental dependent variables, viz., 
displacements, u, w and φ and corresponding stresses, σr, τrz and Dr that occur naturally on a tangent plane 
rconstant, are chosen in the radial direction. Circumferential stress σθ, axial stress σz and axial electric 
displacement Dz are treated here as auxiliary variables since these are found to be dependent on the chosen 
fundamental variables Kant and Ramesh [13]. A set of six first order partial differential equations in independent 
coordinate r which involve only fundamental variables is obtained through algebraic manipulation of Eqs. (1)-(4). 
These are,  
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The A matrix coefficients are defined in Appendix A. 
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3.1 Basic fundamental variables 

Variations of the six fundamental dependent variables which completely satisfy the boundary conditions of simple 
(diaphragm) supports at z0, l can then be assumed as, 
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4    FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS 

Substitution of fundamental variables given in Eq. (8) into Eq. (7) and simplification resulting from orthogonality 
conditions of trigonometric functions leads to the following simultaneous first order ordinary differential equations 
(ODEs) involving only mixed fundamental variables. 
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The B matrix coefficients are defined in Appendix B. It is considered that all material constants have a power-

law dependence on the radial coordinate in case of FG cylinder, i.e., ( ) ( / )o n
iE r E r r= , nnon dimensional arbitrary 

constant/ nonhomogeneity parameter, Eoconstant parameter which has the same dimension as E(r), riinner radius. 
E(r) is function dependent on position. Spatial variation of Poisson’s ratio is of much less practical significance than 
Young’s modulus. Hence, Poisson’s ratio is assumed to be constant. This assumption, commonly made in the 
literature on FG materials, leads to considerable mathematical simplification. It can be easily proved that when the 
material is isotropic and if n0 for the homogeneous case, results are same as given by Timoshenko and Goodier [4] 
for plane strain elasticity solution for Lame cylinder. 

5    NUMERICAL INTEGRATION 

The above system of first order simultaneous ordinary differential Eqs. (9) together with the appropriate boundary 
conditions at the inner and outer edges of the cylinder Eq. (5) forms a two-point BVP. However, a BVP in ODEs 
cannot be numerically integrated as only a half of the dependent variables (three) are known at the initial edge and 
numerical integration of an ODE is intrinsically an IVP. It becomes necessary to transform the problem into a set of 
IVPs. The initial values of the remaining three fundamental variables must be selected so that the complete solution 
satisfies the three specified conditions at the terminal boundary Kant and Ramesh [13]. The nth (n6 here) order 
BVP is transformed into a set of (n/2+1) IVPs. ODEs are integrated from initial edge to final edge using the initial 
values as shown in Table 1. The n/2+1 solutions given in the Table 1 may be thought of as (i) one non-homogeneous 
integration which includes all the non-homogeneous terms (e.g., loading) and the known n/2 quantities at starting 
edge, with the unknown n/2 quantities at the starting edge set  as zero, (ii) n/2 homogeneous integrations which are 
carried out by setting the known quantities at the starting edge as zero and choosing the n/2 unknown quantities at 
starting edge as unit values in succession and deleting the non-homogeneous terms from the ODEs. The solutions at 
the terminal boundary corresponding to the initial values of Table 1 are given in the right side columns in Table 1.  
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Table 1 
Conversion of BVP into IVPs 
Integration 
number 

Initial boundary  Terminal boundary  Load 
term 

u w   
r   rz   Dr  u w 

r   rz   Dr     

0 0 0 (Sp*) (Sp*) (Sp*) 0  Y1,0 Y2,0 Y3,0 Y4,0 Y5,0 Y6,0  In† 

1 1 0 0 0 0 0  Y1,1 Y2,1 Y3,1 Y4,1 Y5,1 Y6,1  De‡ 

2 0 1 0 0 0 0  Y1,2 Y2,2 Y3,2 Y4,2 Y5,2 Y6,2  De‡ 
3 0 0 0 0 0 1  Y1,3 Y2,3 Y3,3 Y4,3 Y5,3 Y6,3  De‡ 
Final 
integration 

X1 X2 (Sp*) (Sp*) (Sp*) X3  Correct 
value 

Correct 
value 

Known Known Known Correct 
value 

 In† 

*Sp: specified; †In: include; ‡De: delete. 
 
 

A linear combination of the (n/2+1) solutions must satisfy the boundary conditions at the terminal edge, i.e., 
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where i indicate the n/2 variables consistent with the specified boundary values at terminal edge, j refers to solution 

number and ranges from 1 to n/2, iY is a vector of specified dependent variables at the terminal boundary and jX  is 

a vector of unknown dependent variables at the starting edge. Finally a non-homogeneous integration with all the 
dependent variables known at the starting edge is carried out to get the desired results. Fourth order Runge-Kutta 
algorithm is used for the numerical integration of the IVPs. Stability of the present numerical technique is checked 
via convergence study by taking different step sizes in RK4 algorithm. The solution technique, fourth order Runge-
Kutta-Gill routine, adopted here has an advantage of being self starting. The step size for the independent variable 
’r’ can be varied without any difficulty. Because of this laminated and gradient material cylinders can be easily 
tackled with this technique. Computer program has been developed to handle the static response of finite length 
simply (diaphragm) supported (SS) orthotropic, cross-ply laminate, functionally graded and piezoelectric cylinders. 
All the computations are carried out using GNU fortran compiler on Linux machine. A flow chart Fig. 2 is given for 
the complete numerical procedure. 

6    NUMERICAL EXAMPLES 

Three sets of numerical results are presented for clear comparison, i.e., (1) results from the present 2D finite length 
cylinder formulation, (2) computations on the analytical formulae available for infinitely long cylinder under plane 
strain condition given in literature and (3) results of the 1D infinitely long cylinder which are numerically integrated 
by the present technique. 
 
Example 1: Finite piezoelectric cylinder under sinusoidal pressure and electric load 
Following cases are studied which cover the actuators and sensory response of the smart cylinder. 
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Fig. 2 
Flowchart of numerical integration. 
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Following material properties are used for the material Piezoceramics PZT-4 Galic and Horgan [8], Kangming 
and Noor [14]. 

 
C11= 115 × 109, C12= 74.3 × 109, C13= 74.3 × 109, C21= 74.3 × 109, C22= 139 × 109 
C23= 77.8 × 109, C31= 74.3 × 109, C32= 77.8 × 109, C33= 139 × 109, G = 25.6 × 109 

 
Above Elastic constants are in Pa. 

 
e1115.08 (C/m2), e12-5.08 (C/m2), e13-5.20 (C/m2), e1512.72 (C/m2), 11 5.62 × 10-9(F/m) 

 
Non dimensionalized parameters are defined as follows 
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Here, the cylinder is subjected to sinusoidal mechanical and electric loads; the results within the limited central 
length zone only are compared with the plane strain one dimensional solutions. A hollow cylinder is analyzed by 
taking ri/ro1/2 and two l/R ratios, 4/3 and 100/3. Radial and hoop quantities are maximum at zl/2 whereas axial 
quantities are maximum at z0, l. In Table 2, results are shown for Case 1 boundary conditions where only internal 
pressure is applied. Although the boundary condition includes zero electric potential at both inner and outer 
surfaces, an electric potential developed in the interior of the cross-section. Problem with purely electrical boundary 
condition as given in Case 2 is analysed next. In case 3, both electrical and mechanical boundary conditions are 
applied.  
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Fig. 3 
Distribution of electric potential and radial stress through thickness for ro/ri=2 for piezoelectric cylinder. 
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Fig. 4 
Distribution of radial electric displacement and shear stress through thickness for ro/ri=2 for piezoelectric cylinder. 
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Table 2 
Electric potential   (z = l/2) through thickness in non dimensional form for piezoelectric finite length cylinder for ro/ri=2  
 
 

Present (1D) Present (2D)  l/R=4/3 Present (2D)  l/R=100/3 Analytical (1D) (Galic and Horgan [9]) 

r/ri   (z = l/2) r/ri   (z = l/2) 

   Case – 1   
1      0          0.0000 0.0000 0.997528 -8.8E-14 
1.2 -0.0416 -0.0276 -0.0430 1.197179 -0.04127 
1.4 -0.051   -0.0342 -0.0530 1.39122   -0.05159 
1.6 -0.0427 -0.0284 -0.0446 1.56967   -0.04444 
1.8 -0.0243 -0.0155 -0.0255 1.806544 -0.02222 
2   0           0.0000 0.0000 1.992399 -8.2E-08 
   Case – 2   
1    0.9992 0.9992 0.9992 0.987228 0.999231 
1.2 0.7679 0.6888 0.7593 1.20751   0.734819 
1.4 0.552   0.4542 0.5402 1.383781 0.511529 
1.6 0.3526 0.2721 0.3418 1.595061 0.306303 
1.8 0.1691 0.1251 0.1624 1.806263 0.120676 
2    0         0.0000 0.0000 1.973302 0.015373 
   Case -3   
1   0.9992 0.9992 0.9992 1.005032 1             
1.2 0.7263 0.6613 0.7163 1.210184 0.726829 
1.4  0.501    0.4199 0.4872 1.409151 0.497561 
1.6 0.3099 0.2437 0.2972 1.610227 0.307317 
1.8 0.1448 0.1095 0.1370 1.81547   0.136585 
2    0          0.0000 0.0000 1.99793   0.009756 
(cases 1, 2, 3) 
 

 
Results for infinitely long piezoelectric cylinder from the present formulation is also given. Results are compared 

for all the three cases of boundary conditions for a cylinder with l/R100/3 with that of Galic and Horgan [9], which 
is infinitely long plane strain cylinder. Excellent agreement is seen. Fig. 3 shows distribution of electric potential 
and radial stress through thickness for ro/ri 2 for piezoelectric cylinder for Case 3 boundary conditions. Fig. 4 
shows the distribution of radial electric displacement and shear stress through thickness for ro/ri 2 for piezoelectric 
cylinder for Case 3 boundary conditions. Comparison of the results is given in Table 2. 
 
Example 2: FG cylinder under external pressure loading 
In the following, material properties and loading conditions are used for the analysis Horgan and Chan [7]. 
 

8 2 20, 2 10 KN/m , 1000 KN/mo oE p = = ´ =  (13)
 

 
Non-dimesnional parameters are chosen as follows under pressure loading 

 

r r

1
,  ( , ) ( , ),  ( , , , ) ( , , , )z rz z rz

o o o

r E
r u w u w

r p r p        = = =  (14)
 

 
Figs. 5 and 6 show the variation of radial and hoop stresses for ri/ro1/10 and inhomogeneity parameters n1/20, 

1/2, 1/5 and 0 under pressure loading for l/ri1000 and l/ri5. Radial and hoop stresses are compared with analytical 
solutions given in Horgan and Chan [7] for infinitely long cylinder in Table 3. As seen from Figs 5 and 6, for 
l/ri1000, the value of radial stress decreases for higher value of inhomogeneity parameters. Thus, by selecting a 
proper value of n, it is possible to tailor the stresses as per the design requirements by engineers. Radial and hoop 
quantities are maximum at zl/2 whereas axial quantities are maximum at z0, l. 
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(a) 

 
(b) 

Fig. 5 
Radial and hoop stress through thickness with different non-homogeneity parameters for ri/ro=1/10 and for l/ri=1000 under 
pressure loading. 
 
 
 

 
(a) 

 
(b) 

Fig. 6 
Radial and hoop stresses through thickness with different non-homogeneity parameters for ri/ro=1/10 for l/ri=5 under pressure 
loading. 
 
 
 
Table 3 

Comparison of non-dimensional radial stress r  (z=l/2) and hoop stress  (z=l/2) through thickness for diaphragm supported 

elastic cylinder under pressure loading for ri/ro = 1/10 and n = 1/5 
 Present -  ( / 2)r z l =  Horgan and Chan [7] Present -  ( / 2)z l =  Horgan and Chan [7] 

r  l/ri =5 l/ri=20 l/ri =1000  l/ri =5 l/ri =20 l/ri =1000  

0.1 0.0000 0.000 0.000   0.0000 0.082 1.4449 1.583    1.5939 

0.28 0.0731 0.7120 0.7705 0.7720 0.0636 0.9868 1.0788 1.0772 

0.46 0.1771 0.8388 0.887   0.8875 0.0911 0.984   1.0685 1.0677 

0.64 0.3876 0.9143 0.9403 0.9405 0.1483 1.0104 1.0862 1.0857 

0.82 0.7416 0.9697 0.9746 0.9746 0.2459 1.0408 1.1063 1.1059 

1     1.0000 1.0000 1.0000 1.0000 0.3767 1.0692 1.1251 1.1248 

 
 
Example 3: Orthotropic and laminated 0o/90o, 0o/core/0o cylinder under external sinusoidal pressure load 
Non dimensionalized parameters are defined as follows for pressure loading. 

r r

1
,  ( , ) ( , ),  ( , , , ) ( , , , )r

z rz z rz

Er
r u w u w

R pR p            (15)
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Following material properties, Kollar and Springer [15] are taken for orthotropic (0o) for Graphite-epoxy 
material and layered (0o/90o) cylinders. Below elastic constants are in N/m2. 

 
Layer -1 (fibers are oriented in circumferential direction 0o) 
 

6 6 6 69.65 10 , 148 10 , 9.65 10 , 3.015 10 , 0.3, 0.6, 0.3r z zr r zr zE E E G                 
 
Layer-2 (fibers are oriented in axial direction 90o) 
 

6 6 6 69.65 10 , 9.65 10 , 148 10 , 4.55 10 , 0.6, 0.3, 0.0195r z zr r zr zE E E G                 
 
 

 
Table 4 
Non-dimensional radial stress, radial displacement and hoop stress for simple diaphragm supported orthotropic, layered (0o/90o) 
and sandwich composite cylinder for h/R=1/5, 1/20, 1/50 at r=R. 

 
Following material properties, Pagano [16] are taken for the (0o/core/0o) sandwich cylinder: 
Face material properties are: 

6 6 6 66.894 10 , 172.36 10 , 6.894 10 , 1.378 10 , 0.25, 0.25, 0.25r z zr r zr zE E E G                 
 

Core material properties are: 
6 6 6 63.44 10 , 0.275 10 , 0.275 10 , 0.413 10 , 0.0199, 0.0199, 0.25r z zr r zr zE E E G                

 

 
Quantity 

 
h/R 

Present Lekhnitskii [17] Infinitely long cylinder 
l/R   

1 4 100-200   

r (z=l/2) (Orthotropic) 

 

1/5   0.5263 0.5320 0.5324 0.5371 0.5371 
1/20 0.5141 0.5153 0.5153 0.5164 0.5153 
1/50 0.5062 0.5067 0.5067 0.5071 0.5071 

u  (z=l/2)(Orthotropic) 
 

1/5   0.3344 0.3435 0.3438 0.3405 0.3405 
1/20 1.3227 1.3251 1.3251 1.3243 1.3251 
1/50 3.2812 3.2822 3.2822 3.2819 3.2819 

  (z=l/2)(Orthotropic) 

 

1/5   5.2797 5.4266 5.4306 5.3834 5.4306 
1/20 20.4390  20.4767   20.4776    20.4655   20.4776   
1/50 50.4753  50.4903   50.4906    50.4858   50.4906   

r (z=l/2) –(0o/90o) 

 

1/5   0.9248 0.9833 0.9828 0.9828 0.9801 
1/20 0.9474 0.9515 0.9514 0.9514 0.9514 
1/50 0.9439 0.9443 0.9443 0.9443 0.9443 

u  (z=l/2)–(0o/90o) 
 

1/5   0.5773 0.6017 0.5991 0.5914 0.5991 
1/20 2.4200 2.4163 2.4148 2.3978 2.4148 
1/50 6.0823 6.0700 6.0687 6.0334 6.1062 

  (z=l/2)–(0o/90o) 

 

1/5   1.0635 1.1785 1.1811 1.1811 1.1811 

1/20 2.8932 2.9651 2.9685 2.9686 2.9685 

1/50 6.5333 6.5957  6.5993 6.6000 6.5993 

r (z=l/2) –sandwich 

 

1/5   0.5482 0.5528 0.5531 0.5531 0.5531 

1/20 0.5202 0.5213 0.5214 0.5214 0.5214 

1/50 0.5087 0.5091 0.5092 0.5092 0.5094 

u  (z=l/2)– sandwich 
 

1/5 1.0606 1.0870 1.0870 1.1340 1.0869 

1/20 4.0574 4.0651 4.0651 4.1095 4.0651 

1/50 10.0249  10.0278  10.0278   10.0710  10.0278   

  (z=l/2)– sandwich 

 

1/5   0.0539 0.0562 0.0562 0.0562 0.0562 

1/20 0.1738 0.1743 0.1743 0.1743 0.1743 

1/50 0.4116 0.4119 0.4119 0.4119 0.4119 
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(b) 

Fig. 7 

Distribution of radial stress r  and radial displacement u  through thickness subjected to sinusoidal loading for orthotropic 

cylinder. 
 
 
Radial and hoop quantities are maximum at zl/2, whereas axial quantities are maximum at z0, l. Analytical 

solution for radial stress, hoop stress and radial displacement from exact theory of anisotropic elasticity for infinitely 
long plane strain cylinder is given in Lekhnitskii [17]. These are used to validate and check the present results 
wherever applicable. Comparisons of the results are given in Table 4. Here, first a long cylinder is subjected to a 
sinusoidal pressure load; the results within the limited central length zone only are compared with the plane strain 
1D solution. A good agreement is obtained. It is clearly seen that for infinitely long cylinders with higher l/R ratios, 
the results are very close to the elasticity solution given by Lekhnitskii [17], for thick, moderately thick and thin 

cases. Fig. 7 shows the distribution of radial stress  r and radial displacement u  through thickness subjected to 

sinusoidal loading for orthotropic cylinder. 

7    CONCLUSIONS 

Elasticity theory is utilized here for BVPs of finite length composite, FG and piezoelectric cylinders. A simply 
(diaphragm) supported cylinder under axisymmetric mechanical and electric load is considered as a two-dimensional 
(2D) plane strain problem of piezoelasticity. Mathematical model is based on the exact theory of piezoelasticity 
without any kinematic and kinetic assumptions. Basic equations are cast in a form suitable for numerical integration 
in the radial direction. Numerical integration technique adopted here is found to be very effective and accurate. 
Stresses and displacements in axial and radial directions from mechanical and electrical loadings in cylinders having 
various l/R ratios are presented for future reference. 

APPENDIX A 

11 12 11 12 11 12
11

11 11 11 11 11 11

1
,

e c e c e e
A a a

r c c c c 
 

   
 

 
  13 11 13 1311 11

12
11 11 11 11 11 11

,
c e e ce e

A a a
z c c c c 

  
     

  

 

11 11
14

11 11 11 11

21

25

13 1311
32

11 11 11

1
,

,

1
,

,

e e a
A

c c c

A
z

A
G

e ce
A a a

c z



 

 
  
 


 




 
    

 

 

11
16

11 11

15
23

12 12 11
31

11 11 11

11
34

11 11

,

,

1
,

,

e a
A

c

e
A

G z

e c e
A a a

r c

e
A a

c



 






 


 

  
 

 
  
 

   



Two-dimensional Axisymmetric Electromechanical Response …                   415 

© 2010 IAU, Arak Branch 

36
11

1
,A a


   

 
 

 

21 11 12 11 21 12 11 12 21 12 12 12 12 11
41 222

11 11 11 11 11 11 11 11 11

21 11 11 13 21 13 21 11 13 11 13 12 12 13
42 23

11 11 11 11 11 11 11 11 11

1

1

c e c e a c c e e ac e e a e c e a
A c

c c c c cr

c e e ac c c c e e a e ac e e e
A c a

r c c c c c z

   

   

 
      

 
 

        

   

21 21 11 11 12 11
44

11 11 11 11 11 11

1
1 ,

c c e e a e e a
A

r c c c c 
 

    
 

 
 

45 ,A
z


 


   

21 11 12
46

11 11 11

1
,

c e a e a
A

r c  
 

  
 

 
 

 

11 12 11 31 31 12 31 11 12 13 12 13 12 11
51 32

11 11 11 11 11 11 11 11 11

2
31 11 11 13 31 11 13 31 13 13 11 13 13 13

52 332
11 11 11 11 11 11 11 11 11

 

 

e c e ac c c c e e a e e e c e
A c a a

z r c c c c c

c e e ac c e e a c c e e ac e e
A c a

c c c c cz

   

   

              
 

        


   

  31 11 1311 11
53 31

11 11 11 11 11 11

,
c e aee e a

A c
z c c c c 

  
      

  54

1
,A

r
     

 31 11 13
56

11 11 11

 ,
c e a e

A a
c z 

 
     

 
2

61 152
,A e

z





   

2 2
15 15

63 112 2
,

e e
A

G z z
 

 
 

  15
65 ,

e
A

G z


 


   

66 ,rD
A

r
   

11 11

11 11

1

1
a

e e

c




 
 

(A.1) 

APPENDIX B 

11 12 11 12 11 12
11

11 11 11 11 11 11

11 11
14

11 11 11 11

21

1
,

1
,

,

e c e c e e
B a a

r c c c c

e e a
B

c c c

B
l

 




 
   

 
 

  
 

 

 

13 11 13 1311 11
12

11 11 11 11 11 11

11
16

11 11

15
23

,

,

,

c e e ce e
B a a

l c c c c

e a
B

c

e
B

G l


 




 
    

 



 

  

25

13 1311
32

11 11 11

1
,

,

B
G

e ce
B a a

l c


 



 
   

 

 

12 12 11
31

11 11 11

11
34

11 11

1
,

,

e c e
B a a

r c

e
B a

c

 



 
  

 
 

  
 

   

36
11

1
,B a


   

 
 



416                   T. Kant and P. Desai 

© 2010 IAU, Arak Branch 

21 11 12 11 21 12 11 12 21 12 12 12 12 11
41 222

11 11 11 11 11 11 11 11 11

21 11 11 13 21 13 21 11 13 11 13 12 12 13
42 23

11 11 11 11 11 11 11 11 11

1

1

c e c e a c c e e ac e e a e c e a
B c

c c c c cr

c e e ac c c c e e a e ac e e e
B c a

l r c c c c c

   


   

 
      

 
 

       
 

  

21 21 11 11 12 11
44

11 11 11 11 11 11

1
1 ,

c c e e a e e a
B

r c c c c 
 

    
 

  45 ,B
l


   

21 11 12
46

11 11 11

11 12 11 31 31 12 31 11 12 13 12 13 12 11
51 32

11 11 11 11 11 11 11 11 11

2

31 11 11 13 31 11 13 31 13 1
52 33

11 11 11 11 11 11

1

1

  

c e a e a
B

r c

e c e ac c c c e e a e e e c e
B c a a

r l c c c c c

c e e ac c e e a c c e
B c

l c c c c

 


   


 

 
  

 
 

       
 

      
 

3 11 13 13 13

11 11 11

e ac e e
a

c 
 

 
 

  

31 11 1311 11
54 31

11 11 11 11 11 11

31 11 13
56

11 11 11

2 2

15 15
63 11

,

,

,

c e aee e a
B c

l c c c c

c e a e
B a

l c

e e
B

G l l


 


 

 

 
    

 
 

   
 

        
   

 

55

2

61 15

15
65

1
,

,

,

B
r

B e
l

e
B

G l





 

   
 



 

 

66

1
B

r
    (B.1) 

REFERENCES 

[1] Heyliger P. R., Pan E., 2004, Static fields in magnetoelectroelastic laminates, AIAA Journal 42 (7): 1435-1443. 
[2] Kapuria S., Sengupta S., Dumir P.C., 1997, Three-dimensional solution for a hybrid cylindrical shell under 

axisymmetric thermoelectric load, Archive of Applied Mechanics 67: 320-330. 
[3] Heyliger P. R., 1997, A note on the static behaviour of simply supported laminated piezoelectric cylinders, 

International Journal of Solids and Structures 34 (29): 3781-3794. 
[4] Timoshenko S., Goodier J., 1951, Theory of Elasticity, New York, McGraw- Hill. 
[5] Misovec A., Kempner J., 1970, Approximate elasticity solution for orthotropic cylinder under hydrostatic pressure and 

band loads, ASME Journal of Applied Mechanics 37(1): 101–108. 
[6] Chandrashekhara K., Kumar B. S., 1993, Static analysis of a thick laminated circular cylindrical shell subjected to 

axisymmetric load, Composite Structures 23: 1-9. 
[7] Horgan C., Chan A., 1999, The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly 

elastic materials, Journal of Elasticity 55: 43–59. 
[8] Galic D., Horgan C., 2002, Internally pressurized radially polarized piezoelectric cylinders, Journal of Elasticity 66: 

257–272. 
[9] Galic D., Horgan C., 2003, The stress response of radially polarized rotating piezoelectric cylinders, ASME Journal of 

Applied Mechanics 70: 426-435. 
[10] Kapuria S. S., Dumir P., 1997, Three-dimensional solution for a hybrid cylindrical shell under axisymmetric 

thermoelectric load, Archive of Applied Mechanics 67: 320–330. 
[11] Ye W G., Chen R., Cai J., 2001, A uniformly heated functionally graded cylindrical shell with transverse isotropy, 

Mechanics Research Communication 28(5): 535–542. 
[12] Cady W. G., 1946, Piezoelectricity: an introduction to the theory and applications of electromechanical phenomena in 

crystals, New York: McGraw-Hill Book. 
[13] Kant T., Ramesh C., 1981, Numerical integration of linear boundary value problems in solid mechanics by 

segmentation method, International Journal of Numerical Methods in Engineering 17: 1233-1256. 
[14] Kangming X., Noor A. K., 1996, Three-dimensional analytical solutions for coupled thermoelectroelastic response of 

multilayered cylindrical shells, AIAA Journal 34(4): 802-812. 



Two-dimensional Axisymmetric Electromechanical Response …                   417 

© 2010 IAU, Arak Branch 

[15] Kollar L. P., Springer G. S., 2003, Mechanics of Composite Structures, first edition. New York: Cambridge University 
Press. 

[16] Pagano N. J., 1969, Exact solutions for composite laminates in cylindrical bending, Journal of Composite Materials 3: 
398-411. 

[17] Lekhnitskii S., 1968, Anisotropic Plates, Gordon and Breach Science, New York. 


