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 ABSTRACT 

 In this paper, an analytical solution for computing the plastic & linear plastic stresses and 

critical angular velocity in a FGM hollow & solid rotating disk is developed. It has been 

assumed that the modulus of elasticity and yield strength were varying through thickness of 

the FGM material according to a power law relationship. The Poisson's ratio were 

considered constant throughout the thickness. In the analysis presented here the effect of 

non-homogeneity in FGM rotating disk was implemented by choosing a dimensionless 

parameter, named m, which could be assigned an arbitrary value affecting the stresses in the 

rotating disk. Distribution of stresses in radial and circumferential directions for FGM 

rotating disk under the influence of angular velocity were obtained. Graphs of variations of 

stress, critical angular velocity versus radius of the rotating disk were plotted. The direct 

method is used to solve the Navier equations.    

                                                            © 2013 IAU, Arak Branch.All rights reserved.  

 Keywords: Hollow & solid disk; Non-homogenous; Axisymmetric; FGM; Elastic-plastic 

analysis 

1    INTRODUCTION 

UNCTIONALLY graded material is heterogeneous material in which the elastic and thermal properties 

change from one surface to the other, gradually and continuously. Since ceramic has good resistance to heat, 

corrosion, and erosion and metal has high fracture toughness, ceramic-metal FGM may work at super high-

temperatures or under high temperature differences and also corrosive fields. In effect, the governing equations of 

temperature and stress distributions are coordinate dependent as the material properties are functions of position.  

There are a number of analytical thermal and stress calculations for functionally graded material in the one-

dimensional case for thick cylinders and spheres [1,2]. The authors have considered non-homogeneous material 

properties as linear function of radius. Jabbari et al. [3] presented a general solution for mechanical and thermal 

stresses in a functionally graded hollow cylinder due to non-axisymmetric steady-state load. They applied separation 

of variables and complex Fourier series to solve the heat conduction and Navier equations. Poultangari et al. [4] 

presented a solution for the functionally graded hollow spheres under non-axisymmetric thermo-mechanical loads. 

Lu yunbing et al. [5] analyzed the steady state temperature distribution and the associated thermal stress distribution 

of a 3-layer composite cylinder system with material ingredient changing continuously in the middle FGM layer and 

a set of formulas for the temperature and the thermal stresses are obtained. Shariyat et al. [6] presented the nonlinear 

transient thermal stress and elastic wave propagation of thick temperature-dependent FGM cylinders, using a 

second-order point-collocation method. In another work [7], he found an algorithm for nonlinear transient behavior 

analysis of thick functionally graded cylindrical vessels or pipes with temperature-dependent material properties 
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under thermo-mechanical load. Chen and Lim [8] presented elastic mechanical behavior of nano-scaled FGM films 

incorporating surface energies. Afsar and Sekine [9] presented inverse problems of material distributions for 

prescribed apparent fracture toughness in FGM coatings around a circular hole in infinite elastic media. Tajeddini et 

al. [10] discussed the three-dimensional free vibration of thick circular and annular isotropic and functionally graded 

(FG) plates with variable thickness along the radial direction. Nosier and Fallah [11], based on the first-order shear 

deformation plate theory with the von Karman non-linearity, presented the non-linear axisymmetric and asymmetric 

behavior of functionally graded circular plates under transverse mechanical loading. Zhang and Zhou [12] conducted 

a theoretical analysis of FGM thin plates based on the physical neutral surface. Fazelzadeh and Hosseini [13] 

discussed the aero-thermoelastic behavior of supersonic rotating thin-walled beams made of functionally graded 

materials. Ootao and Tanigawa [14] analyzed the transient thermo elastic problem of functionally graded thick strip 

due to non-uniform heat supply. They obtained the exact solution for the two-dimensional temperature change in a 

transient state, and thermal stresses of a simply supported strip under the state of plane strain condition. Jabbari et al. 

[15] studied the mechanical and thermal stresses in functionally graded hollow cylinder due to radial symmetric 

loads. They assumed the temperature distribution to be a function of radial direction. They applied a direct method 

to solve the heat conduction and Navier equations. Farid et al. [16] presented three-dimensional temperature 

dependent free vibration analysis of functionally graded material curved panels resting on two-parameter elastic 

foundation using a hybrid semi-analytic differential quadrature method. Bagri and Eslami [17] analyzed the 

generalized coupled thermoelasticity of functionally graded annular disk considering the Lord–Shulman theory. 

Jabbari et al [18] studied an axisymmetric mechanical and thermal stresses in a thick short length functionally 

graded material cylinder. They applied separation of variables and complex Fourier series to solve the heat 

conduction and Navier equation. Zamani-nejad and Rahimi  [19], using the infinitesimal theory of elasticity, derived 

closed-form solutions for the one-dimensional steady-state thermal stresses in a rotating functionally graded (FGM) 

pressurized thick-walled hollow circular cylinder under generalized plane strain and plane stress assumptions, 

respectively. Batra and Iaccarino [20] found closed-form solutions for axisymmetric plane strain deformations of a 

functionally graded circular cylinder comprised of an isotropic and incompressible second-order elastic material 

with elastic module varying only in the radial direction. Cylinder’s inner and outer surfaces are loaded by 

hydrostatic pressures. Three-dimensional thermo-elastic analysis of a functionally graded cylindrical panel with 

finite length and subjected to non uniform mechanical and steady-state thermal loads are carried out by Shao and 

Wang [21].  

There are limited papers on the subject of plasticity of FGM structures. Shabana and Noda [22] presented 

thermo-elasto-plastic stresses in functionally graded materials subjected to thermal loading taking residual stresses 

of the fabrication process into consideration. Eraslan and Akis [23] presented plane strain analytical solutions for a 

functionally graded elastic–plastic pressurized tube. Eraslan and Arslan [24] discussed the plasticity of plane strain 

rotating graded hollow shafts. The elasto-plastic response of a long functionally graded tube subjected to internal 

pressure is given by Eraslan and Akis [25]. Alla et al. [26] analyzed the elastic–plastic problem of 2D-FGM plates 

made of ZrO2, 6061-T6 and Ti-6Al-4V under transient thermal loading. Lu [27] presented a stress analysis for the 

functionally graded disc under mechanical loads and a steady state temperature distribution. Jahromi [28] obtained 

the elasto-plastic stresses in a functionally graded rotating disk. Sadeghian and Toussi [29] presented the elasto-

plastic axisymmetric thermal stress analysis of functionally graded cylindrical vessel.  

The classical method of analysis with linear strain hardening curve is to combine the equilibrium equations with 

the stress-strain and strain-displacement relations to arrive at the governing equation in terms of the stress 

components. The stress equations are solved in elastic and plastic regions for the solid and hollow FGM rotational 

disk, analytically. The analysis is presented for two types of applicable boundary conditions.  In this work, an 

analytical method is presented for mechanical stress analysis of an FGM hollow disk based on the linear plasticity. It 

is assumed that the modulus of elasticity vary through the thickness of FGM material according to a power law 

relationship. The Poisson ratio is considered constant throughout the thickness. The stress equation is solved 

analytically by a direct method. 

2    EQUATIONS 
2.1 Linear plastic stresses 

The linear plastic stress-strain relations for plane-strain conditions are: 
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where (,r) denotes differentiation with respect to r. where 
ij

   and 
ij
   (i, j = r,   ) are the stress and strain tensors, 

and  λ and  μ are Lame´ coefficients related to the modulus of elasticity E and Poisson’s ratio υ as:   
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The equilibrium equation in the radial direction, disregarding the body force and the inertia term, is: 
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(3) 

 

To obtain the equation of stresses in terms of plastic strain for the FGM rotating disk the functional relationship 

of the material properties must be known. Since the disk’s material is assumed to be graded along the r direction, the 

modulus of elasticity, the density and yield strength are assumed to be described with a power law as: 
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where 
0

E  and 
0

  and 
0

  are the material constants and 
1

m  and 
2

m  and 
4

m  are the power law indices of the 

material. We may further assume that Poisson’s ratio is constant. 

Using relations (1)-(4), the equation in term of the stresses is: 
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The constants of
1g , 

2g , 
3g  ,

4g  and 
5g   are presented at Appendix A                                                                  

Eq. (5) is the differential equation with general and particular solutions. The general solution is assumed to have 

the form 

 

  g x

n r Kr  (6) 

 

Substituting Eq. (6) into Eq. (5) yields 
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Eq. (7) has two real roots 
1x  and 

2x  : 
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Thus the general solution is: 
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The particular solution  g r  is assumed to be of the form 
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Substituting Eq. (10) into Eq. (5) equating the coefficients of the identical powers that they are presented at 

Appendix A. 

The complete solution for 
rr

  is the sum of the general and particular solutions as: 
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(12) 

 

To determine the constants 
1K  and 

2K  , consider the boundary conditions for hollow disk’s stresses given by 
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Substituting the boundary conditions (13) into Eq. (12), the constants of integration  for stresses yield and they 

are presented at Appendix A.                                                                                                                 

The elastic stresses are [27] 
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The coefficients of Eq. (14) are presented at Appendix A. 

In terms of graph of (  ,  )p

rrє s we obtain the gradient (M*E) of graph then we obtain the equation of  linear plastic 

strain for thermal stresses as [30] 
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By substituting Eq. (14) into Eq. (15) the p

rrє  yields as: 
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From Eq. (15) we obtain the ,

p

rr rє  as: 
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2.2 Perfect plastic 

Tresca’s criterion is as [30] 
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By substituting the Eq. (3) into Eq. (18) we obtain  
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By solving the Eq.(19) ,the 
rr  yields as:  

 
2

4

2 2

0

0

2 4

ρ r 1

2




 


m

mp

rr r
m m

c


   
 

(20) 

 

By substituting the Eq. (20) into Eq.(18), the   yields as: 
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By substituting the Eq. (20) into Eq. (13), the constant c  yields and it is presented at Appendix A. 

The boundary conditions for solid disk are as:  

 

   finite 0 rr rra b    
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By substituting the Eq. (20) into Eq. (22) ,the constant c  yields and it is presented at Appendix B.                                                                                                                                  

Using relations (1)–(4), the Navier equation in terms of the displacement is: 
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The coefficient of 
1

d  is presented at Appendix A. 

Eq. (23) is the differential equation with general and particular solutions. The general solution is assumed to 

have the form 
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Substituting Eq. (24) into Eq. (23) yields 
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Eq. (25) has real root   as: 
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The particular solution  p

nu r  is assumed to be of the form 
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By substituting Eq. (28) into Eq. (23), the coefficients of the identical powers yields and they are presented at 

Appendix A. 

Complete solution for u(r) is the sum of the general and particular solutions as: 
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Substituting Eq. (29) into Eqs. (1), the strains are obtained as: 
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Then by substituting the Eq.(30) into Eq. (1) the plastic strains yield as: 
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By substituting Eq. (1) , Eq. (30) and Eq. (31)  into Eq. (24), the coefficient of B yields and it is presented at 

Appendix A. 

2.3 Critical angular velocity    

The critical angular velocity is a velocity that causes the stresses  go beyond the elastic region and come to plastic 

criteria. So this is one of the more important factors in designing.        

By substituting Eq. (14) into the Eq. (18), the critical angular velocity yields as: 
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The coefficients of 
3H  and 

4H  are presented at Appendix A.      

3    RESULTS AND DISCUSSION 

As an example 1, consider a hollow disk of inner radius  0.1 ma , and outer radius 1 mb , Poisson’s ratio is 

taken to be 0.3, and the modulus of elasticity at the inner radius are 200 GpaiE   and the density 

30

Kg
7850

m
  . For simplicity of analysis, the power law coefficients for ρ, E and 

0  are considered to be the 

same, i.e. 
2 1 4 m m m m . The boundary conditions for the hollow disk are assumed as  σ 0 Mparr a  , and 

 σ 0rr b Mpa and the angular velocity is  rad150
s

. As an example 2, consider a hollow disk of inner radius 

0.1a m , and outer radius 1b m , Poisson’s ratio is taken to be 0.3, and the modulus of elasticity at the inner 

radius are 79 GpaiE   and the density 30

Kg
2700

m
  . For simplicity of analysis, the power law coefficients for 
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ρ, E and 
0

  are considered to be the same, i.e. 
2 1 4 m m m m . The boundary conditions for the hollow disk are 

assumed as  σ 0 Mparr a  , and  σ 0rr b  Mpa and the angular velocity is  rad490
s

 [19]. Variations of the 

radial stress
2 2
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 r

r
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 and circumferential stress 

2 2
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
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 and radial displacement 0

2 3

0


uE

u
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are given as 

normalized. As an example 3, consider a thin disk on outer radius 1m , and the angular velocity is  rad200
s

 

and the other parameters are the same as previous example.  

Fig. 1 shows the radial elastic stress by substituting 
, 0 p p

rr rr rє є  in linear plastic stress (Example 1). Effect of 

power-law index on the radial elastic stress is shown in this figure. By increasing grading parameter m, the 

normalized radial stresses at the inner section rise in a disc. The radial stress is observed to be compressive in the 

inner region of the disk and tensile over the outer region. Fig. 2 shows the circumferential elastic stress by 

substituting 
, 0 p p

rr rr rє є in linear plastic stress (Example 1). Effect of power-law index on the circumferential 

elastic stress is shown in this figure. By increasing grading parameter m, the normalized circumferential stresses at 

the inner section rise in a disc. The absolute maximum tangential stresses occur at the inner edge.  Fig. 3 shows the 

effective elastic stress by substituting , 0 p p

rr rr rє є  in linear plastic stress (Example 1). Effect of power-law index 

on the effective elastic stress is shown in this figure. The magnitude of the tangential stress is higher than that of the 

radial Stress.  Fig. 4 shows the radial distribution of radial displacement (Example 1). Effect of power-law index on 

the radial displacement is shown in this figure. Fig. 5 shows the critical angular velocity (Example 1). Effect of 

power-law index on the critical angular velocity is shown in this figure. The absolute maximum angular velocity 

occurs at the inner edge. Fig. 6 shows the normalized elasticity modulus through the radius of hollow disc for 

different values of the power low index m (Example 1). Fig. 7 shows the radial distribution of radial plastic stress for 

positive power low coefficients. Effect of power-law index on the radial plastic stress is shown in this figure. By 

increasing grading parameter m, the radial plastic stresses at the outer section rise in a disc. Fig. 8 shows the radial 

distribution of radial plastic stress for negative power low coefficients (Example 1). Effect of power-law index on 

the radial plastic stress is shown in this figure. Fig. 9 shows the radial distribution of circumferential plastic stress 

for positive power low coefficients (Example 1). Effect of power-law index on the circumferential plastic stress is 

shown in this figure. Fig. 10 shows the radial distribution of circumferential plastic stress for negative power low 

coefficients (Example 1). Effect of power-law index on the circumferential plastic stress is shown in this figure.  

 

 

 

 

 

 

 

 

Fig. 1  

Radial elastic stress by substituting , 0 p p

rr rr rє є = in linear 

plastic stress. (Example 1) 

  

 

 

 

 

 

 

Fig. 2  

Circumferential elastic stress by  substituting , 0 p p

rr rr rє є  in 

linear plastic stress .(Example 1) 
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Fig. 3 

Effective elastic stress by substituting 
, 0 p p

rr rr rє є  in linear 

plastic stress. (Example 1) 

  

 

 

 

 

 

 

 

 

Fig. 4 

Radial distribution of radial displacement.(Example 1) 

  

 

 

 

 

 

 

 

 

Fig. 5 

Critical angular velocity.(Example 1) 

  

 

 

 

 

 

 

 

 

Fig. 6 

Normalized elasticity modulus through the radius of hollow 

disc for different values of the power low index m.(Example1) 

  

 

 

 

 

 

 

 

 

 

Fig. 7 

Radial distribution of radial plastic stress for positive power 

low coefficients.(Example 1) 
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Fig. 8 

Radial distribution of radial plastic stress for negative power 

low coefficients. (Example 1) 
 

  

 

 

 

 

 

 

 

 

Fig. 9 

Radial distribution of circumferential plastic stress for positive 

power low coefficients. (Example 1) 
 

  

 

 

 

 

 

 

 

 

Fig. 10 

Radial distribution of circumferential plastic stress for negative 

power low coefficients. (Example 1) 
 

 

Fig. 11 shows the comparing of radial elastic stress [27] (shows with square) with radial linear plastic stress by  

substituting , 0 p p

rr rr rє є  in stress formula that they should be the same (Example 2). By increasing grading 

parameter m, the normalized radial stresses at the inner section rise in a disc Fig. 12 shows the comparing of 

circumferential elastic stress[27] (shows with square) with circumferential linear plastic stress by  substituting 

, 0 p p

rr rr rє є  in stress formula that they should be the same (Example 2). Fig. 13 indicates the comparing of radial 

displacement [27] (shows with square) with radial linear plastic displacement by substituting , 0 p p

rr rr rє є in stress 

formula that they should be the same (Example 2). The maximum measure of displacmeent occurs at outer edge of 

disk. Fig. 14 shows the radial distribution of radial plastic displacement (Example 1). Effect of power-law index on 

the radial plastic displacement is shown in this figure. The maximum measure of displacmeent occurs at outer edge 

of disk. It is observed that the radial plastic displacement component is maximum at the outer surface of the disk and 

its magnitude gradually decreases towards the inner surface of the disk. Fig. 15 indicates the radial distribution of 

radial plastic strain for positive power low coefficients (Example 1). Fig. 16 indicates the radial distribution of radial 

plastic strain for negative power low coefficients (Example 1). Fig. 17 indicates the radial distribution of 

circumferential plastic strain for positive power low coefficients (Example 1).Fig. 18 indicates the radial distribution 

of circumferential plastic strain for negative power low coefficients (Example 1). Fig.19 shows the radial 

distribution of radial stress of linear plastic when 1m   for different values of slope of linear strain hardening curve 

M (Example 1). The minimum measure of radial linear stress occurs at 0M   that is plastic region (Example 1).  
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Fig.11  

Comparing of radial elastic stress[27](shows with square) 

with radial linear plastic stress by  substituting  in stress 

formula that they should be the same.(Example 2) 

 

  

 

 

 

 

 

Fig.12 

Comparing of circumferential elastic stress [27] (shows with 

square) with circumferential linear plastic stress by 

substituting 
, 0 p p

rr rr rє є in stress formula that they should 

be the same. (Example 2) 

 

  

 

 

 

 

 

Fig.13 

Comparing of radial elastic displacement [27] (shows with 

square) with radial linear plastic displacement by  

substituting , 0 p p

rr rr rє є  in stress formula that they should 

be the same.(Example 2) 
 

  

 

 

 

 

 

 

 

 

 

Fig.14 

Radial distribution of radial plastic displacement.(Example1)  

 

  

 

 

 

 

 

 

 

 

Fig.15 

Radial distribution of radial plastic strain for positive power 

low coefficients. (Example 1) 
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Fig.16 

Radial distribution of radial plastic strain for negative power 

low coefficients. (Example 1) 

 

  

 

 

 

 

 

 

 

 

Fig.17 

Radial distribution of circumferential plastic strain for 

positive power low coefficients. (Example 1) 

 

  

 

 

 

 

 

 

 

Fig.18 

Radial distribution of circumferential plastic strain for 

negative power low coefficients.(Example 1) 
 

  

 

 

 

 

 

 

 

 

Fig.19 

Radial distribution of radial stress of linear plastic for 1m  .   

(Example 1) 

 

The radial stress is observed to be compressive in the inner region of the disk and tensile over the outer region. 

Fig.20 shows the radial distribution of circumferential stress of linear plastic when 1m   for different values of 

slope of linear strain hardening curve M. The minimum measure of circumferential  linear stress occurs at 0M   

that is plastic region (Example 1). Fig. 21 shows the radial distribution of effective stress of linear plastic when 

1m   for different values of slope of linear strain hardening curve M. The magnitude of the tangential stress is 

higher than that of the radial Stress (Example 1). Fig. 22 shows the radial distribution of radial stress of linear plastic 

when 1m    for different values of slope of linear strain hardening curve M (Example 1). Fig. 23 shows the radial 

distribution of circumferential stress of linear plastic when 1m    for different values of slope of linear strain 

hardening curve M (Example 1). Fig. 24 indicates the radial distribution of effective stress of linear plastic when 

1m   for different values of slope of linear strain hardening curve M (Example 1). Fig. 25 shows the comparing of 
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radial plastic stress [28] (shows with square) with radial linear plastic stress by substituting 0M   in stress formula 

that it should give the plastic stress formula. The thing that justify the difference of two graphs is that the yield 

strength, density and modulus of elasticity are different in these two articles (Example 3). Fig.26 shows the 

comparing of circumferential plastic stress [28] (shows with square) with circumferential linear plastic stress by 

substituting 0M   in stress formula that it should give the plastic stress formula. The maximum measure of radial 

plastic stress ocurs at iner edg. The thing that justify the difference of two graphs is that the yield strength, density 

and modulus of elasticity are different in these two articles (Example 3). Fig. 27 shows the relative density versus 

the angular velocities developing incipient and plasticity in a FGM disk. The maximum measure of circumferential 

plastic stress ocurs at iner edg. (Example 1)   

 

 

 

 

 

 

 

 

 

 

Fig. 20  

Radial distribution of circumferential stress of linear plastic for 

1m  . (Example 1) 

  

 

 

 

 

 

 

 

 

Fig. 21 

Radial distribution of effective stress of linear plastic for 1m  . 

(Example 1) 

 

  

 

 

 

 

 

 

 

 

Fig. 22 

Radial distribution of radial stress of linear plastic for 1m   . 

(Example 1) 
 

  

 

 

 

 

 

 

 

 

Fig. 23 

Radial distribution of circumferential stress of linear plastic for 

1m   . (Example 1) 
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Fig. 24 

Radial distribution of effective stress of linear plastic for 

1m   . (Example 1) 

 

 

 

 

 

 

 

Fig. 25 

Comparing of redial plastic stress [28](shows with square) with 

radial linear plastic stress by  substituting 0M  in stress 

formula that it should give the plastic stress formula. (Example 

3) 

 

  

 

 

 

 

 

 

Fig .26 

Comparing of circumferential plastic stress [28] (shows with 

square) with circumferential linear plastic stress by substituting 

0M   in stress formula that it should give the plastic stress 

formula. (Example 3) 

 

  

 

 

 

 

 

 

 

 

 

Fig. 27 

Relative density versus the angular velocities developing 

incipient and plasticity in a FGM disk. (Example 1) 
 

4    CONCLUSIONS 

In the present work, an attempt has been made to study the problem of general solution for the stresses in a plastic & 

linear plastic FGM hollow & solid disk. The method of solution is based on the direct method and uses power series, 

rather than the potential function method. The advantage of this method is its mathematical power to handle 

mathematical function for the plastic & linear plastic stresses boundary conditions. The material properties and yield 

strength through the graded direction are assumed to be nonlinear with a power law distribution. Depending on 

applied boundary condition, by selecting optimum value of m, desirable level of radial and circumferential stresses 
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could be obtained in FGM cylinders with respect to those in homogenous ones. By setting 0m  in every equations, 

radial and circumferential stresses expressions turned to homogenous ones which could approve the validity of 

formulations. By setting 0M  in linear plastic equations, radial and circumferential stresses expressions turned to 

plastic stress which could approve the validity of formulations. We can find the critical angular velocity that are very 

important for designing. By increasing grading parameter m, the normalized radial stresses at the inner section rise 

in a disc. The absolute maximum tangential stresses occur at the inner edge. The normalized radial and tangential 

stresses and radial displacements in a disc due to centrifugal force increase with increasing m. The normalized 

tangential stress components at the inner edge are found to be higher than those at the outer edge. The normalized 

radial displacements at the outer surface are higher than those at the inner surface and by increasing m. The 

magnitude of the tangential stress is higher than that of the radial Stress. The measure of linear stress decreases close 

the plastic region. It is observed that the radial plastic displacement component is maximum at the outer surface of 

the disk and its magnitude gradually decreases towards the inner surface of the disk. The radial stress is observed to 

be compressive in the inner region of the disk and tensile over the outer region. 
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