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 ABSTRACT 

 In this paper, axisymmetric free vibration analysis of a circular Nano-plate having 

variable thickness was studied. The variation in thickness of plate was considered 

as a linearly in radial direction. Nonlocal elasticity theory was utilized to take into 

account size-dependent effects. Ritz functions was utilized to obtain the frequency 

equations for simply supported and clamped boundary. To verify accuracy of Ritz 

method, differential transform method (DTM) also used to drive the size dependent 

natural frequencies of circular nano-plates. The validity of solutions was performed 

by comparing present results with those of the literature for both classical plate and 

nano plate. Effect of nonlocal parameter, mode number and taper parameter on the 

natural frequency are investigated. Results showed that taper parameter has 

significant effect on the non-dimensional frequency and its effects on the clamped 

boundary condition is more than simply support.  

                                                 © 2018 IAU, Arak Branch. All rights reserved. 

 Keywords: Nonlocal theory; Axisymmetric vibration; Variable thickness plate; 

Ritz method; Differential transform method.  

1    INTRODUCTION 

 ECENTLY, usage of micro and nano scale structures have widely spread in modern technology fields such 

as aerospace, electronics, MEMS and NEMS [1], [2]. Because of size effect, these structures have excellent 

mechanical, thermal and electrical properties compared to ordinary scale structures [3]. For example, studies shows 

elastic modulus and strength of single layer graphene sheets (GSs) are more than 1 TPa and 130 GPa, respectively 

[4]. Therefore, they can be properly utilized in sensitive devices and high performance application such as gas 

detection grapheme sensor, ultra capacitors and ultra-strength composite material [3], [5]. Modeling using 

continuum mechanic approach offers the advantages of less computational expense in compared to atomistic 

modeling and continuum-atomistic modeling approaches [3]. However, applicability of classical continuum 

mechanic models at micro/nano scale is questionable. Therefore, several non-classic continuum theories has 

proposed such as strain gradient theory [6]–[10], couple stress theory [11]–[14], and nonlocal elasticity theory [10], 

[15], [16] to take into account size effects through continuum mechanics models. Among these theories, nonlocal 

theory was initiated by Eringen [15]  which assumes strain of a reference point as a function of every neighborhood 

particles. Peddieson indicated this theory could be employed in analysis of nano structures [16], [17]. Based on the 

nonlocal elasticity theory, size-dependent classic beam [18], first order shear beam[19], third order shear beam[18], 

[20] and that of plate [20]–[22] were developed for vibration problems. Furthermore, Wang et al considered small 
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scale effects on the longitudinal wave propagation in nano-plates using the nonlocal elastic theory [23]. Newly, this 

theory has incorporated in Functionally graded material (FGM) beams[24], [25] and plate [26], [27] models. 

Rahmani and Pedram obtained close-form solution for vibration behaviour of the functionally graded (FG) 

Timoshenko beam based on nonlocal elasticity theory [24]. Simsek studied nonlinear free vibration of functionally 

graded nano-beams using Euler-Bernoulli beam theory. Afterward, influence of characteristic length, vibration 

amplitude and material composition was investigated [25]. Hashemi-hosseini et al conducted free vibration analysis 

of thick circular disks for various boundary conditions [26].  

In other hand, it can be observed beams and plates of variable thickness are employed in micro and nano-scale 

applications. In fact, tapered beam and plates are utilized due to more weight reduction, structural performance and 

vibrational efficiency. Variable thickness is used to optimize design, redistribute stress and reduce weight [28]–[30]. 

Various works related to variable thickness structures are found in several references ([31]–[34]). Danesh et al 

explored axial vibration of taped nano-rod using nonlocal elasticity theory. They employed Differential Quadrature 

Method (DQM) to solve governing equations for various boundary conditions [33]. Efraim and Eisenberger obtained 

exact solution for vibration analysis of variable thick annular FG plates employing first order shear deformation 

[35]. The Differential Transform Method (DTM) is a semi-analytic method based on Taylor series to solve 

differential equations proposed by Zou[36] in 1986. The merit of this method is that can be applied to coefficient 

variable partial differential equations without linearization, discretization, or perturbation. This method provide high 

accurate or exact solution for initial value problems and also boundary value problems [37]. Furthermore, Plates 

resting on elastic foundation are used in versatile engineering applications such as in flexible supports modeling. 

Mohammadi [38] et al studied free vibration of rectangular graphene sheet resting in elastic medium subjected to in-

plane shear load. The effects of boundary conditions and elastic medium parameters were investigated using DQM 

and Galerkin methods. Pradhan et al investigated nonlocal parameter’s influence on vibration of graphene sheet 

layer and the result showed nonlocal effect is significant for graphene sheet [39]. Behfar et al[40], Mohammadimehr 

et al[41] and Pradhan et al [39] researched nano-scale vibration of multilayered graphene on elastic foundation. 

Furturmore, Ghorbanour Arani et al carried out vibration analysis of double-layered graphene sheets on Visco-

Pasternak foundation[42].Despite of extensive use of variable thickness circular plate in all fields, free vibration of 

nonlocal variable thickness plates has not published up to our knowledge.  

In this paper, free vibration analysis of variable thickness plate is performed based on nonlocal elasticity theory 

to investigate size effect phenomena. The appropriate governing equations are derived using energy methods 

incorporated nonlocal Eringen constitutive equation. Those are solved by applying Ritz method and Differential 

transform method (DTM) to obtain natural frequencies and to study influence of some parameters. 

2    THEORETICAL FORMULATIONS 

2.1 Nonlocal elasticity theory  

Nonlocal theory was proposed by Eringen [15], [43]  which assumes strain of a reference point as a function of 

every neighborhood particles. Therefore, size effect and atomic forces are included via a characteristic length 

0 /e a L [43]. Based on this theory, constitutive equation is a differential equation as follows. 

 

 
2 2

0(1 / ) nle a L      (1) 

 

where 
0e  is a material constant, which is experimentally obtained; a is an internal characteristic length depending on 

granular size or molecular diameter; parameter L defines an external characteristic length. Also, nl denotes stress 

induced in medium due to nonlocal effects. 

2.2 Ritz method procedure 

A nano-plate defined in polar coordinate are studied as shown in Fig. 1. The parameters R, ho, m are the radius of 

nano-plate, the thickness at 0r  , and thickness variation slope, respectively. Ritz method makes reliable prediction 

in vibration analysis[44]. The appropriate linear elastic strain energy 
bU  for analyzing an orthotropic circular nano-

plates using Ritz method may be given by [48] 
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(2) 

 

where ,rD D  are flexural stiffness of plate in radial and circumferential directions respectively. Furthermore,   

denotes nonlocal parameter. By assuming ( , , ) ( , ) i tw x y t w x y e  , where   is vibration frequency and ( , )w x y  is 

transverse deflection of nano-plate the kinetic energy 
aT  of the plate can be expressed as [48]: 
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(3) 

 

The total potential energy can be expressed as: 

 

a aU T    (4) 

 

So an explicit equation for natural frequency via Rayleigh quotient that can be expressed as: 
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(5) 

 

where 
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(6) 

 

As for local plate, Eq. (5) is employed for frequency analysis of nonlocal nano-plates varying thickness. 

According to Ritz method, approximate solution is assumed a linear combination of N known basis functions 

 

 
1

N

k k

k

W C  


  
 

(7) 

 

where the 
kC  are unknown coefficient and the 

k  are arbitary basis functions satisfying essential boundary 

conditions [45]. Here, the basis functions are chosen as: 

 
1              ,        1,2, ,      s k

k u k  (8) 

 

where  21 , u   and 

 

1                           

 2                                           

simply supported
s

clamped


 


 
 

(9) 

 

Inserting Eq. (7) in Eq. (5) and minimizing   as a function of coefficients kC , following algebraic equations 

system is obtained 
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(10) 

 

where 
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(12) 

 

The thickness slope parameter can be expressed as: 

 

  1f     (13) 

 

where 

 

tan     (14) 

 

In Eq. (10), 
mna  and 

mnb  are stiffness and mass matrix, respectively. The Eigen value problem of Eq. (10) is 

solved for natural frequency of non-uniform nano-plate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Non-uniform nano plate. 

2.3 Equilibrium equations based on classical plate theory for DTM  

2.3.1 Deriving governing equations 

According to classical plate theory, displacement field can be assumed as: 

 

           0 0 0, , , , ,   ,  , , , , ,   , , , , , ,
w w

u x y z t u x y t z v x y z t v x y t z w x y z t w x y t
x y

 
    

 
 

 

(15) 

 

where 0 0,u v  are displacement along coordinate line on x-y plane. The strain-displacement relations neglecting 

nonlinear terms are as follow: 

 
2 2 2

0 0 0

2 2xx xx yy yy xy xy

w w w
z z z
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     

  
     

  
 

 

(16) 
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where 
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(17) 

 

Using Eq. (1), for a single layer nano-plate the strain -stress relationships are obtained as: 
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(18) 

 

where 
11 22 12 21, , ,E E v v  are longitudinal elastic modulus, transverse elastic modulus, and in-plane Poisson’s ratio in 1 

and 2 directions, and 
0 ie l   is nonlocal parameter respectively. The plane stress condition is considered due to 

high radius to thickness ratio, therefore nonlocal stresses of ,nl nl

xx yy   and nl

xy  are only stresses induced in nano-

plate. Stress resultant are defined as: 
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Integrating Eq. (20) from / 2z h  to / 2z h , we get nonlocal moments as: 
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(22) 

 

In order to derive the governing equations using Hamilton principle, the variation of the internal energy is 

considered as: 

 
/2
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(23) 

 

Also, the variation of work done by external forces is given as: 

 

δ xx xy yy xy
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(24) 

 

Considering only the transverse motion, the variation of the kinetic energy of the plate can be expressed by: 
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(25) 

 

Hamilton principle for elastic bodies is given as: 

 

 
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Π 0
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t
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(26) 

 

Inserting Eqs.( 9), (10) into (12) and integrating the resulting expressions by parts and collecting similar terms 

turn out following equilibrium equations. 
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Substituting moment resultants in Eq. (28) and neglecting in-plane resultant, the governing equation is obtained 

as: 
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Changing Cartesian coordinate to polar system result in following equations, for the sake of convenience: 
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where 

 

0   ,    0xx yy xyN N N f     (32) 

 

Eq. (31) can be expressed as following by defining some non-dimensional parameter. 

 

 

 



                                                                                  Free Vibration Analysis of Non-Uniform Circular Nanoplate                     406 
 

© 2018 IAU, Arak Branch.  

     ,             ,    
R w h

r W H
a a a

    

 

   

4 3 2 2
2

4 3 2 2 2

22 2
2 2 4

3 2 2 2

2 1
2

   1 1
  0

W D W D D W
D D r D r r

r r rr r r r r

W WD D W
D r r ha W

r r r rr r a r






       
        

       

      
                   

 

 

 

 

(33) 

 

Eq. (33) can be expressed as following by defining linear variation in the thickness. 
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where 
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(36) 

 

Boundary conditions equations needed to solve governing equation are given as: 

Simply-supported  
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1

1
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(37) 

 

Clamped 
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(38) 

 

Also, it required to satisfy following equation to avoid infinite value at 0r   
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(39) 

2.3.2 Differential Transform Method (DTM) procedure  

This method is a semi-analytic method based on Taylor series to solve differential equations by transform to 

algebraic equations. The Taylor series of a real valued function ( )f r that is infinitely differentiable at 0r r  are 

shown as: 
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(40) 

 

where
0r , n!, k denote domain center, factorial of n and k th derivative of ( )f r obtained at 

0r r , respectively. 

From above Taylor series, Eq. (40), differential transform of the K th derivative is defined as: 
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(41) 

 

The differential inverse transform of the 
kF  is given as: 

   0

0

n
k

kf r r r F   
 

(42) 

 

The number of terms i.e. value of n depends on the convergence of natural frequencies. Some basic theorems, 

which are frequently used in the practical problems, are given in Table 1. 

Using basic properties of DTM (Table 1), we get transformed form of the Eq. (35) as: 
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(43) 

 

Repetitive using of the recursive relation of Eq. (43) gives us all 
iF  coefficients excepting 

0F  and
2F . In fact all 

coefficients are obtained in term of 
0F  and 

2F  after simplifying. 

Using above mentioned rules, following equations is obtained for boundary conditions  

Simply supported 

 

 
0 0

0  .       1 0
N N

k kF k k k F        
 

(44) 

 

Clamped 

 

0 0

0  .       0
N N

k kF kF    
 

(45) 

 

Conditions at 0r  : 

 

 1 3 2

2
0  .    1

3
F F F      

 

(46) 

 

Appling boundary conditions above, Eqs. (44-46), results in a homogenous system of linear equations as 

following: 
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(47) 

 

For non-trivial solution, determinant of coefficient matrix must vanish and thus 
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(48) 

 

It is noticeable that ( )m

ij  coefficient are function of frequency , therefore solving above nonlinear algebraic 

equations, Eq. (48), yields natural frequencies for nano-plate varying thickness. 

 
Table 1  

Some basic theorems frequently used in the practical problems. 

Original functions  Transformed functions 
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3    NUMERICAL RESULTS AND DISCUSSIONS  

The formulation derived in previous sections is employed to investigate free vibration analysis of axisymmetric 

circular nano-plate. Firstly, a comparison study is perfumed to show accuracy of formulation and solution. Secondly, 

analyzing impact of various parameters were carried out in sake of parametric study. 

3.1 Comparison studies 

For validation purpose a comparison is performed with a classic nano-plate. A nano-plate with elastic module 1060 

GPa and Poisson’s ratio 0.34V  , and initial thickness 0.34 nm is considered. Table 2. demonstrates the result 

obtained for simply supported and clamped boundary condition. The result obtained are in good agreement with 

literature data and show accuracy of formulation and solution. Another comparison also is done with nano-plate 

varying thickness. Table 3. compares the dimensionless natural frequency for three boundary condition obtained 

using DTM, Ritz methods and another study [31]. The good agreement observed in the table depicts precision of 

frequency obtained. Table 4. depicts natural frequency obtained from two different solution method for nano-plate 

having various thickness variation slope. Furthermore, Table 5. compares values of frequencies of higher vibration 

modes calculated employing DTM and Ritz method for simply supported and clamped boundary conditions.  

Finally, the convergence analysis is shown in Figs. 2, 3. The figures demonstrate 9, 50 terms required to attain 

convergence for Ritz and DTM, respectively. However, the higher frequencies need more term due to their 

complicated mode shape. 
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Table 2  

Value of natural frequency of simply supported nano-plate.  

Boundary 

conditions 
0 ( )e a nm  Mode number 

 

  

 1 1 1 2 2 2 3 3 

[46] Ritz DTM Ref1 Ritz DTM Ritz DTM 

Simple 

supported 

 

 

0 4.9345 4.9352 4.9351 29.7198 29.7200 29.7200 74.1561 74.1561 

.5 4.8997 4.8998 4.8998 28.6485 28.6488 28.6488 68.0584 68.0584 

1 4.7979 4.7980 4.7980 26.0189 26.0191 26.0191 56.0753 56.0753 

1.5 4.6409 4.6416 4.6416 22.8917 22.8918 22.8918 45.2576 45.2576 

  2 4.4455 4.4462 4.4462 19.9529 19.9532 19.9532 37.1012 37.1012 

Clamped 

 

0 10.2158 10.2158 10.2158 39.7706 39.7711 39.7711 89.1041 89.1041 

.5 10.1283 10.1285 10.1285 38.2059 38.2061 38.2061 81.3694 81.3694 

1 9.8784 9.8789 9.8789 34.4275 34.4275 34.4275 66.4873 66.4873 

1.5 9.4999 9.5002 9.5002 30.0446 30.0446 30.0445 53.3723 53.3723 

2 9.0348 9.0351 9.0351 26.0253 26.0253 26.0253 43.6484 43.6484 

 

 
 

Table 3  

Dimensionless natural frequency for simply support boundary condition obtained using DTM and Ritz methods. 

 mode 1 2 3 

Boundary condition method    

  .5      

 Ritz 6.2929 37.7455 93.0764 

Simply support DTM 6.2927 37.7422 93.042 

 [47] 6.2928 37.743 93.042 

  .3      

 Ritz 5.7483 34.5633 85.6318 

 DTM 5.7483 34.5625 85.6206 

 [43] 5.7483 34.5625 85.6206 

  .1      

 Ritz 5.2061 31.3465 78.0332 

 DTM 5.2061 31.3465 78.0323 

 [47] 5.2061 31.3465 78.0323 

  0     

 Ritz 4.9351 29.7200 74.1561 

 DTM 4.9351 29.7200 74.1561 

 [47] 4.9351 29.7200 74.1561 

  .1     

 Ritz 4.6637 28.0775 70.2132 

 DTM 4.6637 28.0774 70.2127 

 [47] 4.6637 28.0774 70.2127 

  .3     

 Ritz 4.1158 24.7268 62.0726 

 DTM 4.1158 24.7265 62.0704 

 [47] 4.1158 24.7265 62.0704 

  .5     

 Ritz 3.5499 21.2391 53.4435 

 DTM 3.5498 21.2386 53.4402 

 [47] 3.5498 21.2386 53.4402 
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Table 4 

Natural frequency obtained from two different solution method for nano-plate having various thickness variation slope and  
1  . 

 mode 1 2 3 

Boundary conditions method    

   0.5      

 Ritz 6.0974 32.9109 70.0513 

Simply support DTM 6.0637 32.8659 69.8449 

 Ritz 13.7565 44.0732 83.2819 
clamp support DTM 13.6506 44.0954 83.0025 

  0.3      

 Ritz 5.5764 30.1859 64.5762 

Simply support DTM 5.5569 30.1699 64.4861 
 Ritz 12.2037 40.2832 76.7279 

clamp support DTM 12.1460 40.3053 76.5920 

  0.1      

 Ritz 5.0574 27.4216 58.9632 

Simply support DTM 5.0512 27.4195 58.9369 

 Ritz 10.6535 36.4071 69.9725 
clamp support DTM 10.6362 36.4167 69.9315 

  0.1     

 Ritz 4.5380 24.5993 53.1217 

Simply support DTM 4.5439 24.5981 53.1443 
 Ritz 9.1044 32.4143 62.9163 

clamp support DTM 9.1195 32.4024 62.9520 

  0.3     

 Ritz 4.0130 21.6918 46.9665 

Simply support DTM 4.0297 21.6783 47.0232 
 Ritz 7.5535 28.2598 55.4510 

clamp support DTM 7.5922 28.2181 55.5428 

  0.5     

 Ritz 3.4701 18.6477 40.3437 
Simply support DTM 3.4959 18.6083 40.4187 

 Ritz 5.9934 23.8617 47.3794 

clamp support DTM 6.0460 23.7833 47.5045 

 

Table 5 

Values of frequencies of higher vibration modes calculated employing DTM and Ritz method. 
Boundary 
conditions 

0e a  Mode number 
 

 mode 1 2 3 

  Ritz DTM Ritz DTM Ritz DTM 

.5   

Simple supported 0 6.2927 6.2927 37.7455 37.7455 93.0368 93.0368 

.5 6.2421 6.2330 36.3375 36.3242 85.2380 85.1579 

1 6.0973 6.0637 32.9083 32.8659 70.0126 69.8449 

1.5 5.8768 5.8097 28.8644 28.7925 56.3730 56.1878 

2 5.6048 5.5025 25.0947 25.0004 46.1469 45.9783 

clamped 0 14.3022 14.3021 51.3485 51.3480 112.6385 112.6361 

.5 14.1598 14.1309 49.1988 49.2046 102.4920 102.3765 

1 13.7563 13.6506 44.0703 44.0954 83.2490 83.0025 

1.5 13.1520 12.9461 38.2252 38.2788 66.5699 66.2803 

2 12.4228 12.1176 32.9554 33.0369 54.3415 54.0490 

.5    

Simple supported 0 3.5498 3.5498 21.2386 21.2386 53.4408 53.4408 

.5 3.5294 3.5361 20.4917   20.4794 49.0219 49.0538 

1 3.4701 3.4959 18.6477 18.6083 40.3435 40.4187 

1.5 3.3776 3.4319 16.4381 16.3713 32.5305 32.6246 

2 3.2597 3.3480 14.3485 14.2599 26.6574 26.7566 

clamped 0 6.1504 6.1505 27.3003 27.3002 63.0615 63.0611 

.5 6.1100 6.1238 26.3034 26.2802 57.7431 57.7919 

1 5.9934 6.0460 23.8617 23.7833 47.3791 47.5045 

1.5 5.8130 5.9229 20.9690 20.8261 38.1231 38.3043 

2 5.5853 5.7631 18.2625 18.0584 31.2040 31.4286 
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Fig.2 

Variation of three first frequencies as the number of basis 

functions increases for Ritz method. 

  

 

 

 

 

 

 
Fig.3 
Variation of three first frequencies as the number of series 

terms increases for DTM. 

3.2 Parametric studies 

In this section, result obtained using validated solution above are given to study influence of various parameters.  

3.2.1 Effect of characteristic length   

Fig. 4 presents variations of first three non-dimensional natural frequencies of circular nano-plate versus 

characteristic length with two thickness slope parameter for clamped boundary condition. The figure shows as the 

nonlocal characteristic length increases the non-dimensional frequency decreases especially in higher frequency 

modes. Furthermore, positive thickness slope parameter results in higher frequencies. Fig. 5 shows variations of first 

three non-dimensional natural frequencies of circular nano-plate versus nonlocal characteristic length with two 

thickness slope parameter for simply supported boundary condition. Comparison of Figs. 4, 5 suggests 

corresponding frequencies of clamped boundary condition are more than those of simply supported boundary 

condition.    

 

 

 

 

 

 

 

 

Fig.4 

Variations of first three non-dimensional natural frequencies 

of clamped circular nano-plate versus characteristic length 

with two thickness parameter. 

  

 

 

 

 
 

Fig.5 
Variations of first three non-dimensional natural frequencies 

of simply supported circular nano-plate versus characteristic 

length with two thickness parameter.  
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3.2.2 Effect of thickness parameter  

Fig. 6 depicts first three non-dimensional natural frequency of circular nano-plate vs. thickness slope parameter with 

two nonlocal characteristic length. It is observed that increasing the thickness slope parameter causes rise of non-

dimensional frequency. However, the increasing rate of non-dimensional frequency is lower in higher value of 

thickness parameter. Fig. 7 illustrates first three non-dimensional natural frequency of circular nano-plate vs. 

thickness slope parameter with two nonlocal characteristic length and two plate radius. The figure shows as nano-

plate radius increases, the non-dimensional frequencies decline. This decrease of frequencies is more for higher 

vibrational modes and larger thickness slope parameters. 

 

 

 

 

 

 

 

 

Fig.6 

Variation of first three non-dimensional natural frequency of 

circular nano-plate vs. thickness slope parameter with two 

nonlocal characteristic length. 

  

 

 

 

 
 

 

 

Fig.7 
Variation of first three non-dimensional natural frequency of 

circular nano-plate vs. thickness slope parameter with two 

nonlocal characteristic length and two plate radius. 

3.2.2 Effect of nano-plate radius   

Effect of plate radius on first natural frequency of nano-plate is shown for various thickness slope parameter in Fig. 

8. It is observed as plate radius increases plate non-dimensional frequencies increases and finally converges to 

classical plate result. The figure shows the nano-plates having lower thickness slopes parameters converges rapidly. 

Fig. 9 presents first three non-dimensional frequencies vs radius plate with two different thickness slope parameter.  

It is concluded the first natural frequency approximately remained constant, whereas higher mode frequencies 

rapidly rise as nano-plate radius increases. Furthermore, non-dimensional frequencies of nano-plates having positive 

thick slope parameter go up rapidly compared to the negative parameter. 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Variation of first non-dimensional frequency vs radius plate 

with two different thickness slope parameter and characteristic 

lengths. 
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Fig.9 
Variation of first three non-dimensional frequencies vs radius 

plate with two different thickness slope parameter. 

3.2.4 Effect of orthotropic properties 

Fig. 10 illustrates variations of non-dimensional natural frequency of nano-plate vs. orthotropic parameter with two 

different thickness slope parameters and characteristic lengths. As can be seen in the figure when orthotropic 

parameter increases, non-dimensional frequency rises. Also, a decrease in characteristic length causes a significant 

rise in non-dimensional frequency value. However, frequency rise is negligible for 0.5    compared to that 

of 0.5  . 

 

 

 

 

 

 

 

Fig.10 

Variations of non-dimensional natural frequency of nano-plate 

vs. Orthotropy parameter  
r

E
p

E

   with two different 

thickness slopes parameter and characteristic length. 

4    CONCLUSIONS 

In present study, free vibration analysis of non-uniform thin nano-plate was investigated. Eringen nonlocal elasticity 

theory was used to take into account size effects. Afterwars, approperiate govening equations were derived for Ritz 

method and DTM. Convergense study was performed to find enough terms for accurate results. Results for 

local/classical plates and constant thickness plate was obtained as a special case and was compared to the available 

literature. The influense of nonlocal characteristic length, thickness slope parameter, nano-plate radius and  

boundary condition on natural frequency was studied. It was observed nonlocal characteristic length has a profound 

effect on higher frequencies modes. Also, the results showed corresponding frequencies of clamped boundary 

condition are more than those of simply supported boundary condition. It was demonstrated increasing in the 

thickness slope parameter causes rise of non-dimensional frequency.  However, increasing rate of non-dimensional 

frequency was lower in higher value of thickness parameter. It was shown the free vibration response of nano-plates 

having lower thickness slopes parameters converges rapidly to that of classical plates as plate radius increases. 

Higher natural frequencies rapidly rose compared to lower natural frequencies when nano-plate radius increased. A 

decrease in nonlocal parameter resulted in a substantial rise in natural frequencies of nano-plate having positive 

thickness slope parameter (i.e. 0.5  ) in comparison with nano-plate having negative thickness slope parameter 

(i.e. 0.5   ).   
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