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 ABSTRACT 

 In this paper, a six-stage interactive model is presented for the perforation of metallic 
plates using blunt deformable projectiles when plastic wave propagation in both target and 
projectile is considered. In this analytical model, it is assumed that the projectile and target 
materials are rigid – plastic linear work hardened. The penetration of the projectile into the 
target is divided into six stages and governing equations are derived. The analytical model 
shows that residual velocity, diameter of the flattening area of the projectile, and ballistic 
limit velocity, show close agreement with the data from experiment. 

                                                   © 2014 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 ENETRATION of a projectile into a target has been the interest of countless number of researchers over the 
years. Backman and Goldsmith [1] documents theories and experiments from the 19th century until 1978 and 

Ref. [2] is a more recent collection of a large number of the experimental data. Also Goldsmith [3] summarized the 
analytical, numerical and experimental investigations of targets subjected to nonstandard collisions, penetration and 
perforation of strikers. 

The objective of these investigations has been the assessment of materials to provide maximum protection under 
attack by projectiles. This was accomplished by the firing of strikers of certain geometry and material against 
targets. For thin and moderately thick targets, the performance measure was the ballistic limit, i.e. the velocity at 
which 50% of the strikers would just barely penetrate the target. 

The present research uses plastic wave theory to model the perforation of metallic plate by deformable blunt 
projectile striking at normal incidence with impact speeds in the sub ordnance velocity range (i.e. below 500 m/s.). 
In the sub ordnance velocity range, impact of projectile can cause both global deformation and localized failure of 
the target plate. The global deflection surrounding the impact point is defined as `dishing'. For thin to moderately 
thick ductile metal plates struck by a blunt projectile, the dishing occurs and the subsequent failure mechanism is 
either plugging (predominantly shear rupture) or discing (predominantly tensile rupture). 

A projectile can be either ductile or relatively deformable in comparison with the target plate. As a ductile 
projectile penetrates a metal plate its front end spreads radially or mushrooms. The mushrooming of a ductile 
projectile striking a rigid target was analyzed by Whiffin [4] ,Taylor [5],  Hashmi and Thompson [6].  

Multi-stage models have been proposed to study the perforation of relatively thick plates when structural 
response is negligible. Awerbuch and Bodner [7] extended a three-stage model for the perforation of a plate by a 
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non-deformable projectile. In the first stage, only inertia and compressive forces were introduced to decelerate the 
effective mass of the projectile. The second stage was initiated when a shear plug of the target material was formed, 
during which the compressive resistance was replaced by the surrounding shear force. The projectile was subjected 
to the inertia and the compressive resistance of the target material as well as the shear resistance around the plug in 
the middle stage. This model has been further modified in Ref. [8], where a two dimensional model assumes five 
stages of plate penetration, namely dynamic plastic penetration, bulge formation, bulge advancement, plug 
formation and projectile exit. Liss et al. [9] proposed another five-stage interactive model for the penetration and 
perforation process, where plastic wave propagation in both the thickness and the radial directions of the plate is 
considered. In this model,the projectile is considered to be rigid and non -deformable whereas the target material is 
assumed to be rigid plastic linear work hardened. A numerical procedure is necessary to solve the equations of 
motion of the projectile in the five stages. 

Wenexue et al [10] proposed a one- dimensional wave propagation model of plate perforation by deformable 
projectiles. This model assumed that the projectile and plate material are rigid-linearly strain hardened and rigid-
perfectly plastic respectively. The failure mechanism in this model is plugging, dishing outside the plug is neglected. 
The perforation process based on deformation of projectile and plug was divided into six stages.  
In the five-stage perforation model in Ref. [9], the shear wave propagation in the target plate outside the plug 
interface was considered. However, the structural response outside the shear plug is generally neglected in most 
multi-stage models [11]. 

In this paper, which is based on the Wenexue et al [10] model, a six-stage interactive model is presented for the 
penetration of blunt deformable projectiles into metallic plates where plastic wave propagation in both target and 
projectile is considered. The model uses the principle of  linear momentum for a controlled volume. The governing 
equations of motion for the projectile, the plug and the region outside the plug are derived. As penetnation of the 
projectile causes both dishing and plugging failures in the target plate modifications have been applied to the 
modeling of the deformation outside the shear plug (dishing) based on the shear stress wave propagation and to the 
modeling of strain hardening of the projectile and target plate. Residual velocity, the flattened area of the projectile 
and the ballistic limit velocity predicted by the new model is compared with experimental results. 

2    ANALYTICAL MODEL  
2.1 Analysis of the processes 

As shown in Fig. 1, the impact of a blunt projectile onto a thin or moderately thick plate target can cause both global 
deformation (dishing) and localized failure (Plugging) of the target plate. Consider a flat-end projectile penetrating a 
target. The plastic wave propagates with a speed pC  in the axial direction in the projectile and with a speed tC  in 

the plug. A shear stress wave also propagates in the radial direction in the outer region of the plug with a speed sC . 
The analysis assumes the projectile and target material are rigid – plastic linear work hardened. The stress- strain 

relation of the projectile is written as: 
 

p p pA Bp        (1) 

 
In normal perforation, the projectile is considered to be in a state of one-dimensional stress so the plastic wave 

speed is determined as following equation [12]: 
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Accordingly, stress- strain relationship in the target plate is: 
 

t t pA B        (3) 
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A plug is formed as the plate deforms. Within the plug, the deformation is assumed to be planar and the material 
is compressible, a state of one-dimensional strain is assumed for the plug material. Based on the Von Mises yield 
criterion and considering the fact that plastic deformation occurs in a constant volume, the one-dimension 
relationship between axial stress and axial strain is given by [12]: 

 
2
3x t xd K d d     

 
   (4) 

     
where tK  is the bulk modulus of target material. Therefore, the speed of the plastic wave is computed as: 

 
1

1/2 21 2
( . ) ( )

3
x t

t t
t x t t

K
C B


   


  


 

 
   (5) 

 
The shear stress wave propagation speed, sC  in the outer region of the plug is:  
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   (6) 

 
Fig.1 illustrates plug formation. The regions of the target in front of the projectile and on either side of the plastic 

wave are termed the deformed and non-deformed sections. Behind the wave front, the deformed plug has a particle 
velocity 1V  equal to the interface velocity. 

At the periphery of the deformed plug there is a fracture shear stress f . Ahead of the plastic wave front, the 

non-deformed plug is accelerated to a velocity 4V  and the stress in the wave front is the yield stress under one-
dimensional strain. The diameter of the plug is equal to that of the deformed projectile. 

During the penetration, the tip of the projectile deforms and the propagation of the plastic wave produces the 
deformed and rigid section in the projectile. The deformed section of the projectile and the plug move together with 
a velocity equal to 1V  and the non-deformed section moves with the velocity of 7V . The deformation of the 
projectile during the penetration depends on the plastic wave speed and can be categorized in the following stages 
[6]: 
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Deformation and motion of the plug occurs in two stages, a plug formation 0rV   and a plug ejection 0rV   

i.e. 1 4 0rV V V   . 

As shown in Fig. 1, the outer region of the plug is deformed continuously with the velocity of 3V  and its radius 
increases as the shear plastic wave propagates. 

2.2 Governing equations 

By considering the linear momentum equation for a controlled volume containing the projectile and plug and 
neglecting the friction force during the penetration process, we can write [13]: 
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   (7) 

 
where:  
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F : Total force exerted on a fixed part of a material instantaneously in a control volume. 
M

t




: Time rate of change of total linear momentum inside the control volume.  

 : Net out flux of linear momentum through the control surface. 
As shown in the flow chart, Fig. 2, the perforation process can be divided into six stages. This process will be 

continuing according to one of paths shown in Fig. 2. This depends on the plastic wave speed and relative velocity 
of the projectile and plug. In each stage, equations of motion will be derived.  

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1  
Deformation of the projectile and target at perforation 
process. 

 
 
 
 
 
 
 
 

   
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 2 
Six-stage perforation process assumed in the theoretical model. 

I 

Projectile  Erosion 0sV   

Plug Formation 0rV   

IIb 

Projectile Erosion s pV C  

Plug Ejection 0rV    

IIa 

Projectile Flattening s pV C  

Plug Formation 0rV   

IIIb
Projectile Flattening s pV C  

     Plug Ejection 0rV     

IIIa 
Projectile Rigid 0sV    

Plug Formation 0rV   

IV 
Projectile Rigid 0sV   

Plug Ejection 0rV    
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Stage I: Projectile erosion - plug formation 

This stage starts when the relative velocity of the projectile is more than the plastic wave speed and the plastic wave 
propagates into the plug. In this stage, the projectile starts to erode and plastic deformation occurs in the section of 
plug where the plastic wave propagates, Fig. 3. 

The principle conservation of momentum at the interface surface of the projectile and plug can be used to 
compute the minimum initial velocity for erosion of projectile tip as follows; 
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The increase in the  cross-sectional area of the projectile- plug interface surface is equal to: 
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   (9) 

 
The linear momentum of the projectile 7(M ) , deformed 1(M )  and non-deformed plug 4(M )  are computed as 

follow: 
 

7 0 1 7 7PM A (X X ) V         (10) 

4 t 0 4 2 4M A (X X ) V           (11) 

1 t 0 2 1 1M A (X X ) V           (12) 

1 4 7tM M M M     

 
External shear force exerted on the periphery of the deformed plug is equal to: 

1
2
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   (13) 

 
In this equation, f   is failure shear stress of the target material. Net out flux of linear momentum through the 

control surface or erosion rate of the projectile is equal to: 

7 1 1 p 0(V V ) V A          (14) 

 
By considering the principle of linear momentum Eq. (7) ,we have: 
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By substituting Eqs. (10) to (14) in Eq. (15) and simplification, governing equations for calculation of 1 4 7, ,V V V  

are as bellow: 
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Rate of change in projectile length is equal to: 
 

1 7 1 7
dL d

(X X ) V V
dt dt
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   (19) 

 
In this stage, the rate of projectile flattening is equal to zero. This stage continues until: 
 

7 1 1 4 0P rV V C or V V V       

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  
Geometrical parameters in stage I. 

Stage IIa: Projectile flattening - plug formation 

This stage begins when the velocity of the projectile is less than the plastic wave speed  and the plastic wave passes 
though the plug. 

In this case the combination of the projectile, deformed and non-deformed plug constitute the controlled volume, 
Fig. 4. The linear momentum of the rigid and deformed part of the projectile and plug is: 

 

7 P 0 6 7 7M A (X X ) V `         (20) 

4 t 0 4 2 4M A (X X ) V           (21) 

1 t 0 2 1 1 p p 1 1 0A (X X ) V C (t-t ) V AM                  (22) 

 

1t is the completion time of stage I. 
Also: 
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By considering the momentum conservation principal (7), the following equations can be derived: 
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where cM  is the mass of the separated projectile affected by shearing. And: 
 

C P 1L .( )C t t      (26) 

 
Due to the flattening of the projectile, the decrease in projectile’s length is: 
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Based on Newton’s second law we can write: 
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The thickness of the flattened edge of the projectile is equal to: 
 

p 1 6H X X    

 
This stage continues until 7 1V V 0   or 1 4V V 0  . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 
Geometrical parameters in stage IIa. 

Stage IIb: Projectile erosion - plug ejection  

This stage begins when the relative velocity of the projectile is greater than the velocity of the plastic wave and the 
plastic wave reaches the end of plug. 

In this stage, the momentum of the projectile and plug are: 
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where as the net out flux of linear momentum through the control surface ( erosion rate) is equal to: 
 

p 0 1 7 1A V (V -V )         (30) 

 
The external shear force exerted on the periphery of the deformed plug is equal to  
 

4 1F - D(x ) fx       (31) 

 
At this stage, the conservation of momentum principle leads to the following equations: 
 

1 21 2
0 0 0 3 0 1 0 7 1 0

dV
( . . . ) . . .( ). . .( ) ( ).

dtt f P P PA T D X T X A V V A B A              
  

(32) 

1 1 1
20 3 02 2 2

0 0 3
dV

[ ( . . ) . ] . . . 2 .( . . )( . . )
2 dt 2t S Yt S Yt t S

D D
C t A D C t V C                 

  
(33) 

 

7dV

dt .
P P

P

A B

L


   
  

(34) 

 
The rate of decrease in the length of the projectile is: 
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The flattening of the projectile edge stops when propagation of the plastic stress wave in the projectile ceases. 

Stage IIIa: Projectile rigid - plug formation 

This stage begins when the plastic wave in the projectile vanishes while that in the plug is still propagating. 
In this stage the linear momentum of the projectile, rigid and deformed plug are as follows: 
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 Also: 
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In this stage, the linear momentum principal equations for projectile and plug can be simplified to: 
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This stage continues until 1 4V V 0   or 7 1V V 0  . 

Stage IIIb: Projectile flattening - plug ejection 

In this stage, a plastic wave may be propagated away from the interface into the projectile ( 7 1 PV V C  ) while the 

plug is beginning to eject as a rigid body r 1 4V V V 0   . Linear momentum principle equations as applied to rigid 
and deformed part of the projectile and plug are as below: 
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2CL  is the length of projectile affected by plastic wave propagation at the end of second stage. Also: 
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(45) 

 
These stages continue up the time that following relation is maintained: 
 

7 1V V 0    

Stage IV: Projectile rigid - plug ejection  

When the interface pressure is not large enough to sustain a plastic wave in either the projectile or the target, it may 
be possible to continue plug ejection. In this stage, both the projectile and plug move as rigid bodies. The governing 
equations in this stage are: 
 

1 1 1
20 3 02 2 2

0 0 3
dV

[ ( . . ) . ] . . . 2 .( . . )( . . )
2 dt 2t S Yt S Yt t S

D D
C t A D C t V C                 

 
(46) 

1
1 2

0 0 0 12 3 0 3 0 1 3
dV

[ . . . . .( ) ] . . .( ).( . . )`
dtt P C C f t SA T A L L M D X T X V C               

 
(47) 

 

12L  indicate rigid length of projectile and 3CL  is the length of projectile affected by plastic stress wave 
propagation at the end of the third stage. This completion phase of the penetration process continues until 

2 3 0X X T   or the plug is ejected from the target plate. 
The perforation process is stopped when one of the following apply: 
The velocity of the projectile reaches zero at one of the stages ( ( ) 0p tV  ). Complete penetration does not occur. 
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The plug is ejected from the plate target i.e. 2 3 0X X T  . Complete penetration occurs. 

The projectile is eroded completely ( ) 0tL  . 

3    RESULTS AND DISCUSSION 

The model developed above has been programmed in C++ language to solve the governing equations in these six 
stages. The program data input includes material constants, problem geometry and initial impact velocity of 
projectile. The computational output predicts residual velocity and length of projectile, ballistic limit velocity as well 
as plug mass and the diameter of the flattened projectile. 

The validity of the model can be assessed with the experimental results other workers, for example with those 
from the experimental tests of Forrestal and Hanchak [14]. They performed several experiments to investigate the 
ballistic performance of HY-100 steel plates struck by flat-end 4340 steel cylindrical rod projectiles. The target 
thickness was 10.5 mm and the projectile diameter and length were 30mm and 282mm respectively. Based on the 
mechanical property of HY-100 and 4340 steel in reference [14], stress-strain constants have been computed and 
presented in Table 1. 

Figs 5, 6 and 7, compare model predictions and experimental results for residual velocity, diameter of flattening 
area of projectile and mass of the plug at different initial velocities. It can be seen that there is good agreement 
between the two data sets. Geometrical parameters including projectile diameter and length and target thickness are 
shown in Table 2.  

Also it is clear that, with increasing initial impact velocity, flatted diameter of the projectile will increase and 
consequently diameter and mass of plug will increase as well. 

As expected, comparison of Figs. 5 and 6 shows that increasing the target thickness decreases the residual 
velocity of the projectile in all cases. Also from Figs. 5 and 7, decreasing the projectile mass decreases the residual 
velocity of projectile. 

Previous theoretical models do not predict the diameter of the flattened area of projectile. This new model 
overcomes the problem, see Fig.6. 
 
 
 
Table 1 
 Mechanical properties of projectile and target [16] 

B  
Mpa  

A  
Mpa  


3/Kg m  

Material 

318 117078204340 St. (projectile) 
418 7397800HY-100 (target) 

 
 
 
Table 2 
Geometrical parameters of projectile and target 

 Target thickness 
(mm) 

Projectile diameter 
 (mm) 

Projectile length  
 (mm) 

Projectile mass  
(gr) 

Fig. 5 10.5 30.8 282 1560 
Fig. 6 5.3 30.8 282 1560 
Fig.7 10.5 30.8 89 520 

 
 
 



407                    Plastic Wave Propagation Model for Perforation of Metallic Plates by Blunt Projectiles 

© 2014 IAU, Arak Branch 

Impact velocity (m/s)
100 150 200 250 300

-150

-100

-50

0

50

100

150

200

250

300

28

30

32

34

36

38

40Experimental Results -Vr [16]
Theoretical Results -Vr
Experimental Results- Mplug [16]
Theoretical Results-Mplug

Mplug

Vr

Residual velocity-Vr (m/s) Plug mass - Mplug (gr)

 
 
 
 
 
 
 
 
 

Fig. 5 
Comparison of theoretical and experimental residual velocity 
and projectile flatted diameter at different initial velocities. 
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Fig. 6 
Comparison of theoretical and experimental residual velocity 
and plug mass at different initial velocities. 
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Fig. 7 
Comparison of theoretical and experimental residual velocity 
and plug mass at different initial velocities. 

 
 

The theoretical predictions of the model were also compared with the experimental results of Liu and Stronge 
[15]. Their target was made of 3.03mm thick Al 1200. The density was 2700 Kg/m3 and Stress-strain constant data 
are assumed as 115 , 200t pA Mpa B Mpa  . The projectiles material was deformable and made from three 

different materials 1200 AL, 6063 TF and 6061 T6 Aluminum alloy with the mass of 3.8 gr, diameter of 12.5 mm 
and length of 11.46 mm. Table 3 lists stress- strain constants for the projectile. Table 4 lists the experimental and 
predicted values of ballistic limit velocity ( bV ) and residual length ( X ) of the projectile. It can be seen that there is 
close agreement between the data sets and thus provides confidence in the validity of the model. Model predictions 
can also be compared with the experimental data obtained by Liu and Stronge [15] for a flat-ended projectile made 
of hardened steel. The hardened steel projectile experienced negligible inelastic deformation during the impact 
process and consequently can be considered as a rigid projectile. The coefficients of stress-strain constants for 
hardened steel are 1540 , 474p pA Mpa B Mpa  . These coefficients have also been used by Borvik et al [16] for 

Arne tool steel. 
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Table 5 lists the values of ballistic limit velocity for different target materials and thicknesses and of target and 
different lengths of projectile along with model results. It is clear that for hardened steel projectiles the theoretical 
ballistic limit velocity shows good agreement with experimental results. Tables 4 and 5 show that the ratio of the 
plate thickness to the projectile diameter is less than one, i.e. the target is thin. For thin metallic targets especially at 
the near of ballistic limit velocity, the deformation on the outside of the shear plug is high. In the new theoretical 
model, deformation of outside of the shear plug is considered. 
The present model is only valid for the perforation controlled by the shear plugging failure mode with or without the 
presence of deformation outside the shear plug. For the experiment test of Liu and Stronge [15], if the plate 
thickness is smaller than or as large as the projectile diameter, the rupture mechanism is plugging. 

It appears valid to use rigid-plastic linear work hardening model for the projectile and target material. However, 
it should be noted that the local material response during a penetration/perforation process may involve large plastic 
deformation, strain rate hardening and temperature or damage softening. The current model does not include these 
complex factors. 
 
 
Table 3 
Stress- strain constant data of projectile [17]  

( )B Mpa  ( )A Mpa  Material type 

376 60 1200 Al 
465 1506063 TF
956 3206061 T6

 
 
Table 4  
Comparison of ballistic limit velocity and residual length of projectile between theoretical and experimental results [17] 

New theoretical model Experimental results [17] 
( / )bV m s  ( )X mm  ( / )bV m s  ( )X mm  Projectile material 

342 4.9 354 75.7 1200 AL  
323 6.7 319 75.7 6063 TF 
263 6.68 247 37.8 6061 T6 

 
 
Table 5 
Comparison of theoretical and experimental [17] ballistic limit velocity 

Theoretical 
Ballistic limit 

velocity 
( / )bV m s  

Experimental 
Ballistic limit 
velocity [17] 

( / )bV m s  

Target 
Thickness(mm)     material    ( )tA Mpa      ( )tB Mpa  

Projectile  
( )pm gr                  0 ( )D mm  

140 147 3 6.27                   2014Al          288              350 23.6                      12.5 

115 122 5 3.25                    2014Al          302              900 24.6                      12.5 
140   145 3.5 3.03                   1200Al          115              200    9.7                      12.5 
212 218 5 6.42                    1200Al          114              275   9.7                      12.5 
214       229.5 5.5 3.03                    1200Al          115              200   3.8                      12.5 
360      357.5 5.5 6.42                    1200Al          114              275   3.8                      12.5 

4    CONCLUSIONS 

The theoretical model presented in this paper is a new method which analyzes perforation of a thin metallic target 
struck by a blunt projectile by considering plastic wave propagation.  Comparison with experimental results shows 
that the proposed theoretical model can successfully predict the values of residual velocity, ballistic limit velocity, 
residual length and diameter of flatted area of the projectile and plug mass. 
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