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 ABSTRACT 

 The present paper is aimed to study an exact analysis of the free vibrations of a simply supported, 
homogeneous, transversely isotropic, cylindrical panel based on three-dimensional generalized 
theories of thermoelastic diffusion. After applying the displacement potential functions in the 
basic governing equations of generalized thermoelastic diffusion, it is noticed that a purely 
transverse mode is independent of thermal and concentration fields and gets decoupled from the 
rest of motion. The equations for free  vibration problem are reduced to four equations of second-
order and one fourth-order ordinary differential equation after expanding the displacement 
potential, temperature change and concentration functions with an orthogonal series. The formal 
solution of this system of equations can be expressed by using modified Bessel function with 
complex arguments.  The numerical results for lowest frequency have been obtained and presented 
graphically. The effect of diffusion on lowest frequency has also been presented graphically. Some 
special cases of secular equation are also discussed. 

        © 2010 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE Classical theory of thermoelasticity is based on the Fourier's heat conduction equation. The Fourier's heat 
conduction theory assumes that the thermal disturbances propagate at infinite speed which is unrealistic from 

the physical point of view. Two different generalizations of the classical theory of thermoelasticity have been 
developed which predict only finite velocity of propagation for heat and displacement fields. The first one is given 
by Lord and Shulman [14] which incorporates a flux rate term into the Fourier's law of heat conduction and 
formulates a generalized theory admitting finite speed for thermal signals. The second is given by Green and 
Lindsay [9] which develops a temperature rate dependent thermoelasticity by including temperature rate among the 
constitutive variables, which does not violate the classical Fourier's law of heat conduction.  

The spontaneous movement of the particles from a high concentration region to the low concentration region is 
defined as diffusion. The thermodiffusion in elastic solids is due to coupling of fields of temperature, mass diffusion 
and that of strain in addition to heat and mass exchange with the environment. Nowacki [16-19] developed the 
theory of thermoelastic diffusion using coupled thermoelastic model. Gawinecki and Szymaniec [8] proved a 
theorem about global existence of the solution for a nonlinear parabolic thermoelastic diffusion problem. Gawinecki 
et al. [7] proved a theorem about existence, uniqueness and regularity of the solution for the same problem. 
Uniqueness and reciprocity theorems for the equations of generalized thermoelastic diffusion problem, in isotropic 
media, was proved by Sherief et al. [21] on the basis of the variational principle equations, under restrictive 
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assumptions on the elastic coefficients. Due to the inherit complexity of the derivation of the variational principle 
equations, Aouadi [1] proved this theorem in the Laplace transform domain, under the assumption that the functions 
of the problem are continuous and the inverse Laplace transform of each is also unique. Recently, Aouadi [2] 
derived the uniqueness and reciprocity theorems for the generalized problem in anisotropic media, under the 
restriction that the elastic, thermal conductivity and diffusion tensors are positive definite. Sherief and Saleh [22] 
investigated the problem of a thermoelastic half-space in the context of the theory of generalized thermoelastic 
diffusion with one relaxation time. Kumar and Kansal [13] developed the basic equations of anisotropic 
thermoelastic diffusion based upon Green-Lindsay model. 

The cylindrical panels are used as structural components, and their vibration characteristics are important for 
practical design. For the last 40-50 years, anisotropic materials have been widely used in many areas because of 
their excellent static and dynamic behavior and low strength-to-weight ratio. Many researches [3, 12, 24, 25] have 
devoted themselves to the vibration analysis of anisotropic cylindrical shells and/or panels, basing their works 
mainly on two-dimensional approximate theories or numerical methods. Soldatos and Hadhgeorgious [26]used an 
iterative approach to predict the frequencies of isotropic cylindrical shells and panels based on the governing 
equations of three-dimensional elasticity. So and Leissa [23] studied free vibrations of thick hollow cylinders by the 
Ritz method. Jiang [11] employed the perturbation method to study three-dimensional vibrations of fiber reinforced 
composite laminated cylindrical shells, while Fan and Ding [6] and Ye and Soldatos [27] used a state space method 
to analyze laminated orthotropic cylindrical shells and cross-ply cylindrical panels, respectively. Mirsky [15] 
obtained a Bessel function solution for simply supported transversely isotropic cylindrical shells. Chau [5] employed 
a similar method to study the free vibration problems of simply supported transversely isotropic cylinders. Ip et al. 
[10] presented an exact analysis of the free vibrations of a simply supported, transversely isotropic cylindrical panel 
by using a modified Bessel function solution with complex arguments for the sake of complex eigen values, and 
clarified the correctness and effectiveness of their method by presenting numerical examples and comparing their 
results with existing papers. Sharma [20] presented an exact analysis of the free vibrations of a simply supported 
homogeneous, transversely isotropic, cylindrical panel, in the context of various generalized theories of 
thermoelasticity. 

In this paper, the free vibration analysis of a simply supported, homogeneous, transversely isotropic, cylindrical 
panel, based on three-dimensional generalized theories of the thermoelastic diffusion, have been studied. To solve 
the equations of motion, heat conduction and mass diffusion, three displacement potential functions [Buchwald [4]] 
are used. The outstanding advantage of displacement function approach is that it can be used to obtain solution to 
problems under any boundary conditions prescribed in terms of either stress or displacement or any combination of 
these. After solving the equations, it is observed that the purely transverse wave gets decoupled from rest of motion 
and remains independent of thermal and concentration fields. The model of the free vibration problem is reduced to 
a system of four equations of second-order and one fourth-order ordinary differential equation after expanding the 
displacement potentials, temperature and concentration functions with an orthogonal series. The Bessel functions 
with complex arguments are used to express the solution of this system of differential equations. The numerical 
solution of secular equation has been carried out to compute the lowest frequency in order to illustrate the analytical 
results. This type of work is generally applicable to circular cylindrical panels of arbitrary thickness, from thin shell 
to extremely thick ones and in particularly this can be used in applications involving aerospace, offshore, submarine 
structures, pressure vessels, civil engineering structures, chemical pipes, and even automotive suspension 
components. It can also be used to check the applicability of various kinds of two-dimensional shell theory in 
elastokinetics. 

2    FORMULATION AND SOLUTION OF THE PROBLEM 

Let us consider a homogeneous, transversely isotropic, thermoelastic diffusive cylindrical panel of length L at 
uniform temperature 0T  in the undisturbed state initially. Let 1 and 2 the inner and outer radii of cylindrical panel 

respectively and   be the central angle (see Fig.1). Following Sherief et al. [21] and Kumar and Kansal [13], the 

basic equations for homogeneous anisotropic generalized thermoelastic diffusion in the absence of body forces, heat 
and mass diffusion sources are: 

(i) Stress-strain-temperature-concentration relation 



378                  Three-dimensional Free Vibration Analysis of a Transversely Isotropic Thermoelastic … 
 

© 2010 IAU, Arak Branch 

1
1( ) ( )ij ijkm km ij ijc e a T T b C C  = + + + +   (1)

 

 
(ii) Entropy relation 

0 0 0( ) ( )E ij ijT S k C T T a T e aT C C   = + + - + +   (2)
 

 
(iii) Chemical potential relation 

1
1( ) ( )km kmP b e b C C a T T = + + - +   (3)

 

 
(iv) Equations of motion 
 

,ij j iu =   (4)
 

 
(v) Equation of heat conduction 

0 0 0 0 ,( ) ( ) ( )E ij ij ij ij ijC T T a T e e aT C C K T   + - + + + =      (5)
 

 
(vi) Equation of mass diffusion 

*
, 0

( )ij j

i

P
C C

x




¶
= +

¶
   (6)

 

  
where ( )ijkm ijkm kmij jikm ijmkc c c c c= = =  are elastic parameters. ( ),  ( )ij ji ij jia a b b= =  are tensors of thermal and 

diffusion moduli, respectively,  and EC  are, respectively, the density and specific heat at constant strain; a and b 

are, respectively, coefficients describing the measure of thermodiffusion effects and of diffusion effects, and 0T  is 

the reference temperature assumed to be such that 0/T T <<1, 1 2 3( , , , )T x x x t  is the temperature change, and C is the 

concentration, 0 1 and    are diffusion relaxation times with 1 0 0    and 0 1 and    are thermal relaxation times 

with 1 0 0   , , ,( ), ( ), ( ) ( ) / 2ij ji ij ji ij ji i j j iK K e e u u = = = = +  are components of stress, thermal conductivity, 

and strain tensor, respectively, iu  are the components of displacement vector u


. * *( )ij ji =  are diffusion parameters, 

 and P S  are the chemical potential and entropy per unit mass, respectively, k is a material constant. Here, 
0 1

0 1 0k       = = = = = = = = =  for Conventional Theory (CT) model, 1
1 0,k   = = = = =  

01,  = =  for Lord-Shulman (L-S) model and 0
0 0, , 0,      = = = =  for Green-Lindsay (G-L) model. 

The symbols “,” and “.” correspond to partial and time derivatives, respectively. 
 
 

 

 
Fig. 1 
Geometry of the problem. 
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Applying the transformation: 
 

' cos sin , ' sin cos , 'x x y y x y z z   = + =- + =  (7)
 

 
where   is the angle of rotation in the x-y plane and using the relation  sin,cos ryrx   and z=z, in the Eqs. (4)-

(6) , we obtain the  basic equations for homogeneous, transversely isotropic, generalized thermodifffusive elastic 
solid in cylindrical coordinates as:  
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Here, , ( 1,  2,  3)t tc t  = are the coefficients of linear thermal expansion and diffusion expansion respectively. In 

the above, Eqs. (11)-(12), we use the contracting subscript notations 126,135,234,333,222,111   

to relate ijkmc  to ( , , , 1,2,3inc i j k m =  and , 1,2,3,4,5,6).l n =  We define the dimensionless quantities: 
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Here, *

1  is the characteristic frequency of the panel. Following Buchwald [4], we introduce the displacement 

potential functions as 

1 1
, ,r zu u u

r r r r z
    
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¶ ¶ ¶ ¶ ¶

=- + =- - =
¶ ¶ ¶ ¶ ¶

 (14)
 

 
Using Eq.(13), into Eqs. (8)-(10), after suppressing the primes and then applying Eq . (14), in the resulting Eqs. 

we obtain 
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where " '/ ',  " '/ '.r r z z L= =  Here and in the following analysis, primes have been suppressed for convenience 
unless stated otherwise. Eq. (16) corresponds to purely transverse waves, which are decoupled from rest of motion 
and are not affected by the temperature change and concentration fields. To solve Eqs. (15)-(19), we assume the 
displacement potential, temperature change and concentration functions as 
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where / .n  =  Here, n and q are the circumferential and axial wave numbers. Eqs . (15)-(19) ,with the aid of Eq. 

(20) yield 
 

2 2 1 2 1
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Eq. (22) is a Bessel equation with its possible solution as 
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where '2 2

1 1 ,g g J=- () and Y () are, respectively, Bessel functions of the first and second kinds, while I () and 

K () are, respectively, modified Bessel functions of first and second kinds, 5A  and 5B  are two arbitrary constants. 

Generally, 2
1 0g ¹ and hence the case corresponding to 2

1 0g =  will not be discussed further. We investigate the 

further analysis by taking the form of   for 2
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Eqs. (23)-(25), we obtain 
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m q m q t t q m q t q m q t



  

 



  





-

= -

- + - + - + -

-

= - =

- + - + +

,3, 4.

  

 
Using Eq. (20) into the Eq. (14) and then in the relations (11), the displacements, temperature change, 

concentration and stresses are obtained as 
 

1
( ' ) sin( )sin( ) exp( )ru q z t

r

    


=- +  (30)
 

1
( )sin( )cos( )exp( )u q z t

r
     


¢=- +  (31)

 

cos( )sin( )exp( )L
z

t
u q z t   


=  (32)

 

2
3 311

32 2
1 0

2 1 2 1 2
2 1

(1 2 ) 2
{( (1 2 ) ) ( )

( ) }sin( )sin( ) exp( ),

rr

L t c

c

r r ra T r

t T C q z t

        

       



 

-¢¢ ¢ ¢= - - + - - -

- - - -

 (33)
 

44
2

1 0

( ) cos( )sin( ) exp( )L
rz

c t
q z t

ra T

      


¢ ¢= - - +  (34)
 

2
11 12

2 2 2
11 1 0

2 2
( )sin( )cos( ) exp( )

2r

c c
q z t

r rc a T r r
          


¢- ¢ ¢¢= - + - + -  (35)

 

( )sin( )sin( ) exp( )T T r q z t  =  (36)
 

( )sin( )sin( ) exp( )C C r q z t  =  (37)
 

 
Here, prime denotes differentiation with respect to radial co-ordinate r. 

3     BOUNDARY CONDITIONS 

The boundary conditions at the inner and outer surfaces i.e. at 1 2,r  =  of the thermoelastic diffusive cylindrical 

panel are given by 
 
(i) Mechanical conditions (stress-free surfaces) 
 

  = = =0,  0,  0rr rz r  (38)
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(ii) Thermal Conditions 
 

1 0
T

h T
r

¶
+ =

¶
 (39)

 

 
(iii) Concentration conditions 

2 0
C

h C
r

¶
+ =

¶
 (40)

 

 
Here, 1 0h   corresponds to thermally insulated boundaries and 1h ¥  refers to isothermal surfaces. Similarly, 

2 0h   corresponds to impermeable boundaries and 2h ¥  refers to isoconcentrated surfaces. 

4    DERIVATION OF SECULAR EQUATION 

Substituting the values of   , , ,rr rz r T  and C from Eqs. (33)-(37) in the boundary conditions Eqs. (38)-(40) at the 

surfaces 1 2,r  = , we obtain a system of ten simultaneous equations and for non-trivial solution of system of 

equations, the determinant of the coefficients of amplitudes vanishes which gives the free vibration secular equation 
as 
 

0, ( , 1,2,..........,10)ijX i j= =  (41)
 

 
where ( , 1,3,5, 7,9)ijX i j =  are given in appendix B. The coefficients ( 2,4,6,8,10)ijX j =  can be obtained by just 

replacing modified Bessel functions of first kind in ( 1,3,5, 7,9)ijX i =  with that of the second kind, respectively and 

the coefficients ( 2,4,6,8,10)ijX i =  can be obtained by just replacing 1k  in ( 1,3,5,7,9)ijX j =  with 2k  

respectively, where 1 1 2 2/ 1 ( * /2), / 1 ( * /2)k s k s   = = - = = +  and 2 1* ( ) /s   = -  is the thickness to the 

mean radius ratio of the panel.  
 

Remark 1: If we assume the displacement potential, temperature change or concentration functions in any of the 
following form: 
 

( , , , ) ( ( ), ( ), ( ), ( ))cos( )sin( )exp( ) ( )cos( )cos( )exp( ) or

( , , , ) ( ( ), ( ), ( ), ( ))sin( )cos( )exp( ) ( )sin( )sin( )exp( ) or

( , , , ) ( ( ), ( ), (

T C r r T r C r q z t and r q z t

T C r r T r C r q z t and r q z t

T C r r T r

           

           

   

= =

= =

= ), ( ))cos( )cos( )exp( ) ( )cos( )sin( )exp( )C r q z t and r q z t       =

  

 
We obtain same free vibration secular Eq. (41). 

 
Remark 2: If we apply the Laplace transform defined by 

0

( ) ( ) dtf f t e t
¥

-= ò   

 
In the basic equations, we obtain the secular Eq. (41) , in transform domain. To obtain the solution in physical 
domain, either numerical inversion technique or method of calculus of residues is required for tracking all the 
singularities present in the problem. 
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5    SPECIAL CASES 

(i) By taking 1 0h   and 2 0h   in the Eq. (41), we obtain the secular equation corresponding to thermally 

insulated and impermeable boundaries. 
 
(ii) By taking 1h ¥  and 2h ¥  in the Eq. (41), we obtain the secular equation corresponding to isothermal and 

isoconcentrated surfaces. 
 
(iii) By taking 1 0h   and 2h ¥  in the Eq. (41), we obtain the secular equation corresponding to thermally 

insulated and isoconcentrated boundaries. 
 
(iv) By taking 1h ¥  and 2 0h   in the Eq. (41), we obtain the secular equation corresponding to isothermal and 

impermeable boundaries. 
 
(v) By taking 
 

11 33 12 13 44 1 3 1

* *
1 3 2 1 3 1 3

2 , , , ,

, ,

c c c c c a a

b b K K K D

    

  

= = + = = = = =

= = = = = =
 (42) 

 
in Eq. (41), the results for homogeneous isotropic thermoelastic diffusive cylindrical panel can be obtained. 

 
(vi) If we neglect diffusion effects, then the above analysis is reduced to one as discussed by Sharma and Sharma  
[20]. 

6    NUMERICAL RESULTS AND DISCUSSION  

The material chosen for the purpose of numerical calculation is copper which is a transverse isotropic material. The 
physical data for a single crystal of copper material [13] is given below: 

10 -1 -2 10 -1 -2 10 -1 -2 10 -1 -2
11 12 13 33

10 -1 -2 3 3 -1 -1 5 -1
44 0 1

5 -1 4 -1 3
3 1 3

18.78 10 Kgm s , 8.76 10 Kgm s , 8.0 10 Kgm s , 18.2 10 Kgm s ,

5.06 10 Kgm s , 0.293 10 K, 0.6331 10 JKg K , 2.98 10 K ,

2.4 10 K , 2.1 10 Kg m ,

E

c c

c c c c

c T C 

  

-

- -

= ´ = ´ = ´ = ´

= ´ = ´ = ´ = ´

= ´ = ´ = 4 -1 3 4 2 -2 -1

5 -1 5 -2 * 8 -3 * 8 -3 3 -3
1 3

3 1 1 3 -1 -1
1 3

2.5 10 Kg m , 2.4 10 m s K ,

13 10 Kg m s , 0.95 10 Kgsm , 0.9 10 Kgsm , 8.954 10 Kgm ,

0.433 10 , 0.450 10 Wm K

a

b

K Wm K K

  

-

- -

- -

´ = ´

= ´ = ´ = ´ = ´

= ´ = ´

 

 
The values of relaxation times are taken as 
 

0 1
0 10.02 , 0.01 , 0.03 , 0.04s s s s   = = = =   

 
For the purpose of numerical calculation, we take the case of free vibrations of a closed circular cylindrical shell. 

For closed cylindrical shells, the central angle 2   and the integer n  must be even, since the shell vibrates in 

circumferential full waves. Thus, the frequency equation for closed cylindrical shell can be written by 
setting 1,  2,  3,... . = . 
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6.1 Muller’s method 

Figs. 2 and 3 show a flow chart to compute the lowest frequency by using the Muller’s method. The Eq. (41) is a 
complex polynomial equation. For a given value of Lt , the Eq. (41) ,can be written as ( ) 0.F  =  Muller’s method is 

used to find an estimated root of ( ) 0.F  =  The algorithm of Muller's method to find lowest frequency is as 
follows: 
 
1. Decide initially three approximations say 1 2,   and 3  of the root, number of iterations (maxit) and two error 

bounds (eps1 and eps2). 

2. Put I1. 
 
3. If I £maxit, then compute 1 2( ), ( )F F   and 3( ),F   otherwise write “Process fails to converge the root” and 

go to step 10. 
 
4. Compute *, *, *q x y  and *z  by the following relations: 

 

*23 2
3 2 1

2 1

2 *2
3 2 1 3

* , * * ( ) *(1 *) ( ) ( ),

* (2 * 1) ( ) (1 *) ( ) ( ), * (1 *) ( )

q x q F q q F q F

y q F q F q F z q F

 
  

 

   

-
= = - + +

-

= + - + + = +

  

 

5. If * 0x ¹ , then calculate discriminant *2(disc) 4 * *y x z= - , 1 * discz y= + , 2 * discz y= - . 

 
6. If 1 2z z£ , then compute 

 

3 2
4 3

2

2 *( )z

z

 
 

-
= -   

 
Otherwise compute 

4 = 3 2
4 3

1

2 *( )z

z

 
 

-
= -   

 
7. If 4 3 - <eps1 and If 4( )F  < eps2, then root 4  is obtained and go to step 9. Otherwise put 21 , =  

2 3 =  and 3 4 , 1I I = = +  and go to step 3. 

 
8. Otherwise if * 0x = , then check whether * 0y ¹  or * 0.y =  If * 0y ¹ , then calculate 

4 3 3 2( * ( ) / *),z y   = - - and go to step 7. If not, write “Muller's method fails to find the root” and go to step 

10. 
 
9. Compute lowest frequency ( )  by the relation 4 . =  

 
10. Stop the process. 

6.2 Lowest frequency 

The values of lowest frequency ( ) corresponding to different theories of thermoelastic diffusion have been given 

in Tables 1 and 2 for two values of circumferential wave number ( 1,2) =  with respect to the parameter Lt  for 
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different values of * ( * 0.02s s = and 0.2) respectively, whereas the values of lowest frequency ( ) corresponding 

to different theories of thermoelasticity have been given in table 3 for 1 =  and * 0.02s = . 
 
 

 
Fig. 2 
Flow chart to find an approximate root of F. 
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Fig. 3 
Flow chart to find an approximate root of F. 
 
 

The variations of lowest frequency ( ) corresponding to different theories of thermoelastic diffusion have been 

shown in Figs. 4 and 5 for two values of * ( * 0.02s s = and 0.2) with respect to the parameter Lt  for the values of 

circumferential wave number ( 1,2) =  respectively. The diffusion effect on the lowest frequency ( )  have been 
shown in Fig.6 for 1 =  and * 0.02.s =  In Figs. 4 and 5 and 6 for * 0.02,s =  the solid line corresponds to CT 
theory of thermoelastic diffusion and small dash and long dash lines represent L-S and G-L theories of thermoelastic 
diffusion respectively and these are represented by CTD, LSD and GLD. In Figures 4 and 5 for * 0.2,s =  the star, 
circle and triangle symbols on these lines correspond to CT, L-S and G-L theories of thermoelastic diffusion, 
whereas in Fig. 6 for * 0.02,s =  the cross, lower triangle and square symbols on these lines correspond to CT, L-S 
and G-L theories of thermoelasticity and these are represented by CT, LS and GL. 

It is observed from Fig.4 that the values of   increase for both values of *s  in different theories of 
thermoelastic diffusion. The values of   are lower with the increase in the values of *.s  Corresponding to G-L 
theory for both values of *,s  the values of   are more in comparison to CT and L-S theories, but if we compare 
CT and L-S theories of thermoelastic diffusion, we find that corresponding to the value of * 0.02,s =  the values in  
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 Fig. 4 
Variations of lowest frequency (Ω) with Lt  for  =1. 
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Fig. 5 
Variations of lowest frequency (Ω) with Lt  for  =2. 

   
   
 
 
Table 1 
Values of lowest frequency (Ω) corresponding to different theories of thermoelastic diffusion for s*=.02 and s*=.2 with respect to 
the values of tL for  =1 

Values of Ω for s*=.2 Values of Ω for s*=.02 Values of tL 
G-L L-S CT G-L L-S CT  

0.0205 0.00606 0.0078 0.0505 0.02806 0.02078 0.05 
0.0304 0.00167 0.0199 0.0710 0.0572 0.03099 0.1 
0.0646 0.022 0.0322 0.0972 0.0826 0.0628 0.15 
0.0836 0.0629 0.0735 0.1446 0.1239 0.1045 0.2 
0.1366 0.115 0.1264 0.1985 0.1769 0.1583 0.25 
0.1807 0.1593 0.1706 0.243 0.2215 0.2028 0.3 
0.2322 0.2097 0.2219 0.2946 0.272 0.2543 0.35 
0.2946 0.2726 0.284 0.3564 0.3346 0.3158 0.4 
0.3471 0.326 0.3364 0.4081 0.3871 0.3674 0.45 
0.3929 0.3715 0.3821 0.4535 0.4316 0.4128 0.5 
0.4347 0.4136 0.4238 0.4952 0.4722 0.4544 0.55 
0.4732 0.4511 0.4623 0.5338 0.5117 0.4929 0.6 
0.5089 0.4867 0.4979 0.5697 0.5475 0.5287 0.65 
0.5422 0.521 0.5312 0.6033 0.5829 0.5623 0.7 
0.5736 0.5523 0.5625 0.6351 0.6139 0.5941 0.75 
0.6033 0.5821 0.5923 0.6654 0.6432 0.6243 0.8 
0.6318 0.6103 0.6207 0.6944 0.6739 0.6533 0.85 
0.6592 0.6378 0.6481 0.7224 0.7024 0.6813 0.9 
0.6855 0.6667 0.6744 0.7494 0.7262 0.7082 0.95 
0.7108 0.6889 0.6996 0.7753 0.7531 0.7340 1 



R. Kumar and T. Kansal                  389 
 

© 2010 IAU, Arak Branch 

Table 2 
Values of lowest frequency (Ω) corresponding to different theories of thermoelastic diffusion for s*=.02 and s*=.2 with respect to 
the values of tL for  =2 

Values of Ω for s*=.2 Values of Ω for s*=.02 Values of tL 
G-L L-S CT G-L L-S CT  

2.3282 2.2834 2.2844 2.4463 2.4119 2.3939 0.05 
2.3019 2.2931 2.2761 2.4386 2.4041 2.3817 0.1 
2.2964 2.2821 2.2675 2.4273 2.3969 2.3698 0.15 
2.2844 2.2683 2.2578 2.4161 2.3889 2.3565 0.2 
2.274 2.2643 2.2476 2.409 2.3703 2.3423 0.25 
2.2646 2.2507 2.2371 2.3939 2.3619 2.3375 0.3 
2.256 2.2378 2.2263 2.3799 2.354 2.3223 0.35 
2.248 2.2256 2.2155 2.3667 2.3468 2.3168 0.4 
2.2306 2.2139 2.2049 2.3542 2.3303 2.3014 0.45 
2.2233 2.203 2.1946 2.3424 2.3246 2.2964 0.5 
2.2156 2.193 2.1849 2.3315 2.3199 2.2821 0.55 
2.2067 2.184 2.1761 2.3217 2.3065 2.2788 0.6 
2.1957 2.1761 2.1682 2.3128 2.2944 2.2666 0.65 
2.1814 2.1692 2.1611 2.3049 2.2834 2.2554 0.7 
2.1717 2.1627 2.1545 2.2972 2.273 2.2446 0.75 
2.1639 2.1554 2.147 2.2884 2.2617 2.2328 0.8 
2.1544 2.1458 2.1309 2.2756 2.2565 2.2229 0.85 
2.1401 2.1235 2.1167 2.2654 2.2402 2.2161 0.9 
2.1264 2.0952 2.0824 2.2572 2.2355 2.2064 0.95 
2.1169 2.0737 2.0669 2.2489 2.2278 2.1991 1 

 
 
 
Table 3 
Values of lowest frequency (Ω) corresponding to different theories of thermoelasticity for s*=.02 with respect to the values of tL 
for  =1 

Values of Ω for s*=.02 Values of tL 
G-L L-S CT  

0.1706 0.1584 0.9703 0.05 
0.1801 0.17 0.9871 0.1 
0.1974 0.1686 0.9934 0.15 
0.2437 0.2249 1.0005 0.2 
0.3008 0.2802 1.0064 0.25 
0.3568 0.3359 1.0138 0.3 
0.4136 0.3915 1.0192 0.35 
0.4654 0.4469 1.024 0.4 
0.525 0.5021 1.0311 0.45 
0.5793 0.5572 1.0352 0.5 
0.6316 0.6121 1.0401 0.55 
0.6978 0.6669 1.0454 0.6 
0.75 0.7216 1.0535 0.65 
0.7993 0.7762 1.0764 0.7 
0.8699 0.8308 1.1027 0.75 
0.9223 0.8853 1.1315 0.8 
0.9743 0.9398 1.1626 0.85 
1.0338 0.9943 1.1956 0.9 
1.0872 1.0488 1.2304 0.95 
1.1354 1.1033 1.2667 1 

 
 
case of L-S theory are higher than that of CT theory, whereas corresponding to the value of * 0.2,s = the values in 
case of CT theory are higher than that of L-S theory. From Fig. 5 it is evident that for both values of *s  the values 
of   decrease. The values of   decrease more as the value of *s  increases. For both values of *s  the values of 
  are more in G-L theory as compared to CT and L-S theories. Therefore, we note from Figs. 4 and 5 that for the 
value of 1 =  the values of   increase, whereas for 2, =  the values of   decrease. Therefore, for two different 
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values of ,  the opposite trend is noticed. It is noticed from Fig. 6 that for the value of * 0.02s =  the values of   
increase in different theories of thermoelasticity. The values corresponding to CT theory of thermoelasticity are 
more in comparison to LS and GL theories of thermoelasicity. On neglecting the diffusion effect, there is more 
increase in the values of   in all three theories. 

7    CONCLUSIONS 

In this article, free vibration analysis of homogeneous, transversely isotropic thermoelastic diffusive cylindrical 
panel, based upon the three-dimensional generalized theories of thermoelastic diffusion, has been investigated. We 
have used three displacement potential functions for solving the equations of motion, heat conduction and mass 
diffusion. The purely transverse wave gets decoupled from rest of motion and remains independent of thermal and 
concentration fields. After expanding the displacement potential, temperature change and concentration functions 
with an orthogonal series, the equations for free vibration problem are reduced to four equations of second-order and 
one fourth-order ordinary differential equation. The formal solution of this system of equations can be expressed by 
using modified Bessel function with complex arguments. The numerical results for lowest frequency have been 
obtained and presented graphically. From numerical results, we have noticed that the trend of the values of lowest 
frequency )( is similar for both values of thickness to the mean radius to the panel ( *)s , but opposite for different 

values of circumferential wave number ( ) . On neglecting the diffusion effect, we find that the increase is more in 

the values of lowest frequency )( . The work represented here is more general with an application to circular 

cylindrical panels of arbitrary thickness, from thin shell to extremely thick ones. This can be used in applications 
involving civil engineering structures, automotive suspension components etc. The solutions obtained are also 
applicable to both closed hollow cylinders and open ones (panels), depending upon whether n  =  is an integer 

or not. It can also be used to check the applicability of various kinds of two-dimensional shell theory in 
elastokinetics. 
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