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 ABSTRACT 

 Composite steel/concrete beams may buckle in hogging bending regions. As the top 

flange of I-beam in that arrangement is restricted from any translational deformation 

and twist, the web will distort during buckling presenting a phenomenon often 

described as restricted distortional buckling. There are limited studies available in the 

literature of restricted distortional buckling of composite steel/concrete I-beams 

subjected to negative or hogging bending. There is none however that includes the 

effect of partial shear interaction. In this paper, finite element models for in-plane 

analysis and out-of-plane buckling of continuous composite I-beams including the 

effects of partial shear interaction are presented.                                  

   © 2017 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 HIS paper discusses the instability of the steel joist of a composite beam composed of a steel I-beam and a 

concrete slab connected together by shear connectors which is subjected to negative or hogging bending. This is 

a relatively complicated problem. The instability analysis becomes even more complex when partial shear 

interaction between steel joist and concrete slab is taken into account. As the top flange of I-beam in that 

arrangement is restricted from any translational deformation and twist, the web will distort during buckling 

presenting a phenomenon often described as restricted distortional buckling. If this buckling is prevented, large 

rotational capacities can be achieved beyond the plastic moment of resistance and advantageous plastic design is 

feasible. Consequently, the moment redistribution in the hogging region that is possible due to the ductility of such 

beams is achievable prior to failure and significant economies can be obtained due to that distribution. 

The very early work on the concept of imperfect composite action between concrete and steel for composite 

structures were tests on six simply supported composite steel and concrete T-beams performed by Newmark et al. 

[1]. Unlike simply-supported composite beams, continuous composite beams are more complex due to concrete 

cracking in hogging regions. Theoretical studies were published in order to address the problem of the buckling of 

steel joist of composite beams with both continuously varying axial force and bending moment (Bradford and Gao 

[2]; Dekker et al. [3]; Tehami [4]; Jasim and Atalla [5]; Nie and Cai [6]; Nie et al. [7]; Ranzi et al. [8]). Bradford and 

Gao [2] presented a simple method to examine the stability of fixed-ended composite steel-concrete beams taking 

into account the difference between its sagging and hogging bending rigidities, due to the concrete cracking in 
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tension. Bradford [9] developed a rational model for predicting the elastic buckling load of thin-walled I-section 

columns, restrained fully against translation and elastically against twist at one flange and subjected to a uniformly 

distributed axial force. Bradford and Ronagh [10] extended the 12 degrees of freedom element developed by 

Bradford and Trahair [11] to the 16 degrees of freedom element for predicting the distortional buckling of restrained 

I-section members more accurately. Bradford and Ronagh [12] considered the elastic lateral-distortional buckling of 

composite cantilevers, whose steel portion was tapered, under moment gradient. Bradford and Ge [13] demonstrated 

an in-plane analysis of elastic distortional buckling of a two-span continuous I-beam with a concentrated load in 

each span. It was concluded that the distortional buckling resistance of two-span continuous beams decreased when 

the concentrated loads within each span were located toward the centre of each span, since the bending moment 

distribution was more uniform. Bradford and Kemp [14] reviewed the research to date into local and lateral-

distortional buckling in the negative moment region of continuous composite beams, and provided design proposals. 

Vrcelj [15] presented the development of a rational generic model to investigate the elastic restrained distortional 

buckling of I-section members in both half-through girder bridges and composite tee-beams in hogging regions. Her 

study, however, only addressed the issue in the light of full interaction analysis. Xu and Wu [16] presented a new 

plane stress model for the composite beams with interlayer slips using the state space method. Wang and Chung [17] 

proved that the deformation characteristics of shear connectors are very important in predicting the structural 

behavior of composite beams with large rectangular web openings. Zona and Ranzi [18] considered the shear 

deformability of the steel and slab components at various load levels. Chakrabarti et al. [19] proposed a new finite 

element model based on a higher order beam theory for the analysis of composite beams. The proposed model takes 

into account the effect of partial shear interaction between the adjacent layers as well as transverse shear 

deformation of the beams. Lezgy-Nazargah [20] presented an isogeometric approach based on non-uniform rational 

B-spline (NURBS) basis functions for the analysis of composite steel–concrete beams. Lezgy-Nazargah and Kafi 

[21] proposed a finite element model for the analysis of composite steel-concrete beams based on a refined high-

order theory. The employed theory of these researchers satisfies all the kinematic and stress continuity conditions at 

the layer interfaces and considers effects of the transverse normal stress and transverse flexibility. He and Yang [22] 

made comparisons among the classical, Reddy’s higher order and plane stress models. They also presented a higher 

order model for composite beams and verified it through comparison via other models. Chen et al. [23] presented an 

experimental study of the flexural behavior and shear transfer mechanisms of shallow cellular composite beams 

where the concrete passing through the steel web opening is combined with a steel tie-bar element to form the shear 

connection. 

In this paper, finite element models for in-plane analysis and out-of-plane buckling of continuous composite I-

beams including the effects of partial shear interaction are presented. The first finite element model is developed to 

investigate the in-plane behavior of composite beams. The model provides the bending moment distribution along 

the length allowing for the variation in the rigidities of the cross-section in hogging and sagging regions. The stress 

resultants that act in the steel joist are then used as the input data for the out-of-plane finite element. The out-of-

plane finite element model undertakes the out-of-plane distortional buckling analysis of the steel joist. Both of the 

models and some results are presented in the following. 

2    THE IN-PLANE MODEL 

In the in-plane finite element formulation, a composite beam is modelled as two one-dimensional beam elements, 

one for concrete and the other for steel. Each beam has two nodes with three degrees of freedom per node totaling to 

twelve degrees of freedom for the element (Fig.1(a)). Based on the assumption that the curvature is the same in both 

elements at the same point along the length due to the lack of transverse separation at the contact interface, 

displacements and twists can be reduced to eight degrees of freedom as is shown in Fig. 1(b). A new model with two 

nodes and four degrees of freedom per node is then proposed. 

In the first model with twelve degrees of freedom (Fig. 1(a)), the generalized displacements containing these 

freedoms are presented by the vector fq as: 

 

 1 2 3 4 5 6 7 8 9 10 11 12

T

f f f f f f f f f f f f fq q q q q q q q q q q q q  
  

(1) 
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Fig.1 

In-plane composite beam finite element. 

                                                             

In the second model with eight degrees of freedom (Fig. 1(b)), the vector pq can be written as: 

 

 1 2 3 4 5 6 7 8

T

p p p p p p p p pq q q q q q q q q  
  

(2) 

 

Introducing the shape functions 
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   
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2 3

6 2

x x
N

L L
    

  

(8) 

    

The displacements along the length of the concrete and the steel can be written as: 

Axial displacement: 

 

1 1 2 4c f fu N q N q   (9) 

 

1 7 2 10s f fu N q N q   (10) 

 

Vertical displacement: 

 

3 2 4 3 5 5 6 6c f f f fv N q N q N q N q     (11) 

 

3 8 4 9 5 11 6 12s f f f fv N q N q N q N q     (12) 

 

Rotation: 

 



354                          H. Bakhshi and H.R. Ronagh 

 
 

© 2017 IAU, Arak Branch 

3 2 4 4 5 5 6 6
c

c c f f f f

dv
v N q N q N q N q

dx
            

 

(13) 

 

3 8 4 9 5 11 6 12
s

s s f f f f

dv
v N q N q N q N q

dx
            

 

(14) 

 

Having this, the displacements at the shear connector level 1scu and 2scu  shown in Fig.2 can be calculated as: 

 

1sc c c cu u h    (15) 

 

2sc s s su u h    (16) 

 

The slip is then defined as: 

 

1 2sc scs u u   (17) 

 

( )c s c c s ss u u h h      (18) 

 

 

 

 

 
 
 

Fig.2 

Slip relations of in-plane composite element. 

 

 

Replacing Eq.(9), (10), (13) and (14) into Eq.(17), we get 

 

1 3 4 2 5 6 1 3 4 2 5 6c c c c s s s s fs N h N h N N h N h N N h N h N N h N h N q           
(19) 

 

or as: 

 

s fS D q   

 

where  

 

 1 2 3 4 5 6 7 8 9 10 11 12

T

f f f f f f f f f f f f fq q q q q q q q q q q q q  
 

 

1 3 4 2 5 6 1 3 4 2 5 6S c c c c s s s sD N h N h N N h N h N N h N h N N h N h N            

 

and SD  is given in the Appendix. 

Stiffness matrix of the composite element is the sum of the stiffness matrices of the concrete, the steel and the 

shear connector elements. Using the energy approach, the strain-energy of shear connector element is defined as: 
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(20) 

 

where 

 

0

L

T
shear s s sK k D D dx   

 

(21) 

 

Is identified as the stiffness matrix of the shear connector element. The stiffness matrix csK of the concrete and 

the steel is developed from the basic stiffness matrix of beam element. The total stiffness of composite element is 

thus obtained from 

 
1

2

T
f f fU q K q  

 

(22) 

 

where  

 

f shear csK K K   (23) 

 

On the other hand, a relation between the displacements of the element with twelve degrees of freedom and the 

element with eight degrees of freedom in Fig. 1 can be expressed as:  

 

f pq H q  (24) 

 

In which H is given in the Appendix. 

Eq. (23) can be rewritten as: 

 

1 1

2 2

T T
f f f p p pU q K q q K q   

 

(25) 

 

where  

 
T

p fK H k H  (26) 

 

Is identified as the total stiffness matrix of the composite element with eight degrees of freedom. A finite 

element program called PARTIALSHEAR is then compiled to produce the slip, the lateral displacements and twist 

of the concrete and the steel, and the stress resultants of steel joist. These will be used as input for the out-of-plane 

buckling investigation performed by the out-of-plane finite element. 

As the elements work with fixed properties along the length, the sagging and hogging properties may need to be 

defined based on the position of the contra flexure point. Since this position is unknown in prior, trial and error 

based analysis needs to be carried out to find its location. The analysis therefore starts with a set number of elements 

at set lengths. The lengths of elements neighboring the contra flexure point are then adjusted to allow the zero 

bending point to occur exactly at their junction. The process of adjustment continues until the point of contra flexure 

remains at the assumed position within an acceptable error range. 
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3    THE OUT-OF-PLANE MODEL 

The geometry of the beam-column element and the x-y-z Cartesian axis system are defined as shown in Fig.3. The 

element is a prismatic I-girder with flange width bf, flange thickness ft , web depth wh , and web thickness wt . 

Lateral displacement u and twist  of the top and the bottom of the web along the length z are used to define the 

shape of the beam during buckling. The subscripts T and B refer to the top and bottom flanges, respectively. Due to 

the restraint provided through the shear connectors to the concrete slab, the displacements at the top flange of I-

girder are assumed to be zero. 

 

 

 

 
 
 
 
 

Fig.3 

The beam element and its displacements. 

 

The element is considered to be subjected to end moments 0M  and LM , end axial forces 0N  and LN , and end 

shear forces 0V  and LV  in the manner shown in Fig. 4. 

 

 

 

 
 

Fig.4 

Configuration of element in loading. 

 

The bending moment and axial force are assumed to vary linearly along the length of the element, so that 

 

0 1 L

z z
M M M

L L

   
     

   
 

 

(27) 

 

0 1 L

z z
N N N

L L

   
     

   
 

 

(28) 

 

The shears are equal and can be obtained from static’s equilibrium as: 

 

0
0

L
L

M M
V V

L


   

 

(29) 

 

In the z-direction, the buckled shape is represented by the lateral and twist displacements of the flanges, 

,B Tu  and B . All these deflections and twists are defined as cubic polynomials along the length. The flanges’ 

displacements are therefore given as: 

 
2 3

1 2 3 4 2B

z z
u L z

L L
        

 

(30) 
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2 3

5 6 7 82 3T

z z z

L L L
         

 

(31) 

 
2 3

9 10 11 122 3B

z z z

L L L
         

 

(32) 

 

which can be written in the matrix form as: 

 

 
T

B T Bu u    
 

(33) 

 

2 3

1 2

z z
M L z

L L

 
 

  
  

 
 

(34) 

 

2 3

2 2 3
1

z z z
M

L L L

 
 

  
  

 
 

(35) 

 

1

2 2

2

0 0

0 0

0 0

M

M M

M

 
  

  
 
  

 

 

 

(36) 

 

or as: 

  

u M   (37) 

 

where  

 

 1 2 12, ,...,
T

     (38) 

 

In the y-direction, the buckling deformation of the web is also defined by cubic polynomials linking from the top 

to the bottom of the web. The deflection of any web point in the cross-section can then be expressed as:   

 
2 3

13 14 15 16 2w w
w w

y y
u h y

h h
        

 

(39) 

or 

 
T

w w wu H   (40) 

  

where 

 

2 3

2

T
w w

w w

y y
H h y

h h

 
 

  
  

 
 

(41) 

 

 13 14 15 16

T

w      
 

(42) 
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Fig.5 

Web element shape function. 

 

  

The displacement variation of web element shown in Fig. 5 can also be expressed in natural coordinates as:  

 

1 2 3w w B w T w Bu N u N N     (43) 

 

where 

 
3

1 3

1 3 2

2 2
w

w w

y y
N

h h
    

 

(44) 

 
2 3

2 28 4 2

w
w

w w

h y y y
N

h h
      

 

(45) 

 
2 3

3 28 4 2

w
w

w w

h y y y
N

h h
     

 

(46) 

 

Eq.(43) can be written as: 

 

1 2 3w w w wu N N N u  (47) 

 

where 

 

 
T

B T Bu u    
(48) 

 

and from Eq.(37): u M 

 Hence, Eq. (47) becomes 

 

1 2 3w w w wu N N N M   (49) 

 

or  

 
T

w wu N   (50) 

 

where 

  

1 2 3
T
w w w wN N N N M  (51) 
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Fig.6 

Buckling displacements q. 

 

Generalized buckling displacements used are shown in Fig. 6. A prime (’) denotes differentiation with respect to 

z. The vector q containing these freedoms is written as: 

 

 1 1 1 1 1 1 2 2 2 2 2 2, , , , , , , , , , ,
T

B B T T B B B B T T B Bq u u u u              (52) 

 

The generalized buckling displacements q are related to the natural coordinate system .  The relation can be 

easily obtained by looking at the shape functions at the boundaries. This relation can be expressed as: 

 

q C   (53) 

 

where the matrix C is a matrix of order 12 and is given in Appendix. Eq.(53) can then be rewritten with the inverse 

of the matrix C as:  

 
1C q   (54) 

 

In a similar manner, buckling displacements u are related to the generalized displacement system q by 

substituting Eq.(54) into Eq.(37). This gives:  

 
1u M C q  (55) 

 

where 1C  is given in Appendix. 

3.1 Derivation of the stiffness matrix 

In order to derive the stiffness matrix using an energy approach, it is necessary to calculate the total energy stored in 

the beam during buckling. The beam elements representing the flanges and the plate element representing the web 

would deflect sideways and twist. The strain energy stored can be expressed as: 

 

fu f wU U U U    (56) 

 

where fuU is the energy associated with the bending of flanges about their major axis, fU   is the energy associated 

with the twist of flanges and bending about their minor axis, and wU is the strain energy associated with the bending 

and twisting of the web as a plate. 

These energy components can be calculated as: 

 

 
2

0

1

2

L

fu s yf BU E I u dz   
 

(57) 

 

   

2 22 2 2
2 2
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2

1
2(1 )

2

f

f

b

L

T B
f f T B

b

v v
U D v v v dxdz

x z x z




                              
   

 

 

(58) 
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w
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L

T
w

h

U dy dz 



    

 

 

(59) 

 

fU   is composed of two components, the first component 

 

   
2

2 2

0

2

1

2

f

f

b

L

f f T B

b

U D v v dxdz



   
    

 

 

(60) 

 

Is associated with the bending of flanges about their minor axis.The second component of fU   is equal to 

 

2 22 2 2

0

2

1
2 (1 )

2

f

f

b

L

T B
f f

b

v v
U D v dxdz

x z x z




     
                 

   

 

 

(61) 

 

and is associated with the twist of the flanges. 

Since the flanges are assumed to remain rigid, the vertical (y-direction) displacement of the flanges can be 

expressed as: 

 

T Tv x  (62) 

 

B Bv x  (63) 

 

Substituting Eqs.(62-63) into Eq.(60) and then integrating over the width of the flanges shows that this 

component contains the usual twisting terms of the Saint Venant linear torsion as: 

 

   
2 2

0

1

2

L

f T BGJ dz   
   

 

(64) 

 

where G is the shear modulus equal to: 

 

2(1 )

sE
G

v



 

 

(65) 

 

and fJ  is the torsional rigidity of each flange, which is equal to: 

 
3

3

f f
f

b t
J   

 

(66) 

 

Hence, fU   can be rewritten as: 

 

       
2

2 2 2 2

0 0

2

1 1 1

2 2 2

f

f

b

L L

f f T B f T B

b

U D v v dxdz GJ dz  



                

 

 

(67) 
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The term yfI is the second moment of area of each flange about the y-axis, which is equal to: 

 
3

12

f f
yf

b t
I   

 

(68) 

 

The parameter fD represents the plate rigidity of flanges and is given by 

 
3

212(1 )

s f
f

E t
D

v



 

 

(69) 

 

As the web is considered a plate, the generalized strain and stress vector of Eq.(59) can be written as: 
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y zy z
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(70) 
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   
   

 

 

 

 

(71) 

 

 

where   

 
3

212(1 )

s w
w

E t
D

v
 

 

(72) 

 

 

From Eqs. (54):  

 
1C q   (73) 

 

Therefore: 

 
T T Tq C   (74) 

 

Using Eqs. (57-59), the strain energy equation can be mathematically manipulated to produce 

 

1

2

T aU K   
 

(75) 

 

Substituting and T from Eqs.(54, 74) into Eq.(75) we obtain 

 

11 1

2 2

T T TU q C K C q q K q    
 

(76) 

 

From which 

 
1TK C K C   (77) 
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Is identified as the stiffness matrix of the element. 

3.2 Derivation of the stability matrix 

The stability matrix relates to the work done by the surface tractions or the loss of the potential energy of the 

stresses. This loss of potential energy can be written as: 

 

fu f wW W W W    (78) 

 

where fuW the work is associated with the bending of flanges about their major axis, fW   is the work associated 

with the twist of flanges and bending about their minor axis, and wW is the work associated with the bending of the 

web as a plate. 

 

 
2

0

1

2

L

fu f B BW A u dz    
 

(79) 

 

   
2

2 2

0

2

1

2

f

f

b

L

f f T T B B

b

W t v v dxdz  



   
    

 

 

(80) 

 

2

0

2

/ /1

/ /2 0

w

w

h

TL

w w
w w

w wh

u z u z
W t dydz

u y u y

 




       
     

       
   

 

 

(81) 

 

In which fA is the area of each flange and yfI is the second moment of area of each flange about the y-axis. 

The terms and represent the stresses along the web obtained in the usual way as: 

 

x x

N My

A I
    

 

(82) 

 

w w

v

h t
    

 

(83) 

 

where  0 LM M
V

L


  from Eq.(29). The terms T and B the stresses at the top and bottom flanges, are calculated 

as: 

 

2

w
T

x x

MhN

A I
    

 

(84) 

 

2

w
B

x x

MhN

A I
    

 

(85) 

 

In the matrix form, the work done by the surface tractions or the loss of the potential energy of the stresses 

becomes  
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1

2

T aW S   
 

(86) 

 

Similar to Eq.(75), Eq.(86) has to be derived in terms of the generalized displacement q. Using Eqs. (54, 74), this 

transformation can be performed as: 

 

11 1

2 2

T T TW q C S C q q S q    
 

(87) 

                                    

where  

 
1TS C S C   (88) 

 

Is identified as the stability matrix of the element. 

3.3 Buckling solution 

The global stiffness and stability matrices of the structure are calculated by assembling the stiffness and stability 

matrices of all members. The buckling load factor   can be found using an eigen technique that can solve the linear 

non-standard eigen problem of  

 

  0gK S q   (89) 

 

where K and  S are the assembled stiffness and stability matrices and gq is the global buckling degrees of freedom. 

The solution of Eq. (89) for nontrivial gq is a standard eigen problem, and is solved herein for the buckling load 

factor  and buckling mode shape or eigenvector gq . 

In order to minimise the numerical efforts, the stiffness and stability matrices, K and S, are derived symbolically 

as much as possible. Here, the stiffness and stability matrices are calculated symbolically using MATHEMATICA. 

The elements of these matrices are then input into a finite element program called FED12 written in FORTRAN. 

This program processes the input of the elements, calculates the matrices, solves for the eigenvalue and provides the 

associated eigen modes.
 

4    EXAMPLES 

A standard two-span continuous composite I-beam, 10m in span-length subjected to 50 KN/m uniformly distributed 

load is considered. Cross-sectional dimensions of the beam are 
2 232,000 , 200,000c sE N mm E N mm  , 

1,000 , 400 , 28 , 16 .f f wh mm b mm t mm t mm     The concrete slab dimensions are 2,500 150mm mm and the 

reinforcement ratio ( )r cA A is set at 1.8%. 

Figs. 7, 8 and Fig. 9 contain the results of the in-plane analysis for various degrees of interaction. The stress 

resultants of steel joist are then used as the input data for the out-of-plane buckling investigation. The in-plane 

bending moment of steel joist in hogging region is larger for beams with a lower degree of interaction. These beams 

are therefore more susceptible to out-of-plane buckling.  

As is seen in Table 1., the partial interaction design has affected the buckling resistance of the beam. The 

buckling mode shapes have minor influences due to partial shear interaction and are illustrated in Fig. 10 and Fig. 

11. 



364                          H. Bakhshi and H.R. Ronagh 

 
 

© 2017 IAU, Arak Branch 

 

 

 

 

 

 

 

 

 

 

 
Fig.7 

Slip of continuous composite beam. 

  

 

 

 

 

 

 

 

Fig.8 

In-plane bending moment of steel joist. 

  

 

 

 

 

 

 

Fig.9 

In-plane axial force of steel joist. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10 

Lateral displacement of bottom flange along the length. 
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Fig.11 

Buckling twist of bottom flange along the length. 

 

 
Table 1 

Partial interaction (PI) effects on critical buckling load. 

Degree of Interaction  

( )  

Critical Buckling Load  

 ( )crw KN m  

 

PI Effects 

 
, ,

, (%)

100
wcr PI cr FI

cr FI

w

w



     

0.2 2,252 15.4 

0.4 2,350 11.8 

0.6 2,466 7.4 

0.8 2,592 2.7 

1.0 2,663 0.0 

5    CONCLUSIONS 

The finite element models for analyzing the in-plane analysis and out-of-plane restricted distortional buckling of 

continuous composite I-beams including the effects of partial shear interaction are presented. The proposed models 

can be used effectively to account for the differences in the beam’s flexural rigidities in hogging and sagging regions 

due to the concrete cracking in tension. These versatile models are capable of accommodating different types of 

boundary and loading conditions. They can be used to develop more economical and efficient designs.  

The example presented shows that the two-span continuous composite I-beam is more prone to buckling at lower 

degrees of interaction. Since the degree of interaction affects the buckling resistance of steel joist, the partial 

interaction design is found to be critical in terms of strength and stability of continuous composite I-beams subjected 

to uniformly distributed loads. 

APPENDIX  

The degree of interaction,  , is defined in this paper as 1 minus the ratio of the slip at the steel/concrete interface in 

a shear span with partial interaction to the slip in case of no-interaction.   Varies from 0 (no-interaction) to 1 (full-

interaction). The relation for the degree of interaction can be written as: 

 

,

1 x

ni x

S

S
    

 

 

where xS is the slip at position x of the steel/concrete interface of composite beam with partial interaction (with any 

sk  as the stiffness of the shear connectors); ,ni xS is the slip at position x of the steel/concrete interface of composite 

beam with no-interaction (with 0sk  ). Often x is chosen at the location of maximum slip. 

The matrices developed in the finite element models can be presented in the following. 

 

 1 2 3 4 5 6 7 8 9 10 11 12s s s s s s s s s s s s sD d d d d d d d d d d d d   
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2 2

1 2 32 3 2

2 2

4 5 62 3 2

2 2

7 8 92 3 2

2 2

10 11 122 3 2

6 6 4 3
1

6 6 2 3

6 6 4 3
1

6 6 2 3

c c c c
s s s c

c c c c
s s s

s s s s
s s s s

s s s s
s s s

h x h x h x h xx
d d d h

L LL L L

h x h x h x h xx
d d d

L LL L L

h x h x h x h xx
d d d h

L LL L L

h x h x h x h xx
d d d

L LL L L

       

     

       

      

 

 

 

The matrices H and TH are defined as: 

 

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1

TH H

 
 
 
 
 
 
  
 
 
 
 
 
 
  

0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

 

The transformation matrices C and 1C  are given as follows: 

 

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

u

uL

L

L

C

C

C
C

C

C

C









 
 
 
 
 

  
 
 
 
 
 

 

 

 

where:   

 

0 0

1 0 0 0
0 0 0

1
0 1 0 0 0 0 0

1 1 1 1

1 2 3
0 1 2 3 0

u

uL L

L
C C

L

L L L L
C C

L L L





 
   

    
    

 

 
   

    
    

 
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0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

1
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

1
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 2 3 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

1 2 3
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

1 2 3
0 0 0 0 0 0 0 0 0

L

L

L

L L L L

L L L

L L L

C

 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 




 

1

1
0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

3 3
2 0 0 0 0 1 0 0 0 0

2 2
1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 3 2 0 0 0 0 3 0 0

0 0 2 0 0 0 0 2 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 3 2 0 0 0 0 3

0 0 0 0 2 0 0 0 0 2

L

L L

L L

L

L L

L L

L

L L

L L

C 


 



  



  























 











































 

 

 

 

The web displacement matrix is given as follows: 
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3

3

3

3

3 2

3

3 3

3 2

2 3

2

2 3

2

2 3 2

2 2

2 3 3

2

1 3 2

2 2

1 3 2

2 2

1 3 2

2 2

1 3 2

2 2

8 4 2

8 4 2

8 4 2

8 4 2

w w

w w

w w

w w

w

w w

w

w w

w

w w

w

w w

T

w

y y
L

h h

y y
z

h h

y y z

h h L

y y z

h h L

h y y y

h h

h y y y z

h h L

h y y y z

h h L

h y y y z

N

h h L

 
  

 

 
  

 

 
  

 

 
  

 

   

 
  



 
 

 
    
 

 
    
 

3

2 3

2

2 3

2

2 3 2

2 2

2 3 3

2 3

8 4 2

8 4 2

8 4 2

8 4 2

w

w w

w

w w

w

w w

w

w w

h y y y

h h

h y y y z

h h L

h y y y z

h h L

h y y y z

h h L
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 
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 

 
   

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

 


 
 
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