
 

© 2015 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 7, No. 3 (2015) pp. 344-363 

On the Magneto-Thermo-Elastic Behavior of a Functionally 
Graded Cylindrical Shell with Pyroelectric Layers Featuring 
Interlaminar Bonding Imperfections Rested in an Elastic 
Foundation 

M. Saadatfar, M. Aghaie-Khafri 
*
 

Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Postal Code: 1999143344, Tehran, Iran 

Received  29 June 2015; accepted  28 August 2015 

 ABSTRACT 

 The behavior of an exponentially graded hybrid cylindrical shell subjected to an 

axisymmetric thermo-electro-mechanical loading placed in a constant magnetic field is 

investigated. The hybrid shell is consisted of a functionally graded host layer  

embedded with pyroelectric layers as sensor and/or actuator  that can be imperfectly 

bonded to the inner and the outer surfaces of a shell. The shell is simply supported and 

could be rested on an elastic foundation. The material properties of the host layer are 

assumed to be exponentially graded in the radial direction. To solve governing 

differential equations, the Fourier series expansion method along the longitudinal 

direction and the differential quadrature method (DQM) across the thickness direction 

are used. Numerical examples are presented to discuss effective parameters influence 

on the response of the hybrid shell. 

                                                © 2015 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 UNCTIONALLY graded material (FGM) is a class of inhomogeneous composite materials at a microscopic 

scale, which are widely studied and used in various industrial applications [1]. On the other hand, the coupling 

nature of piezoelectric materials are considered in electro-mechanical and electrical devices, such as actuators, 

sensors and transducers [2-4]. When the host structure is integrated with the piezoelectric layers, the integrity has the 

ability of sensing and actuating and is named as smart structures. In order to improve the performance and reliability 

of the smart structures, it is necessary to know exactly the mechanical behavior. Thus, many investigations were 

carried out in the subject area in the last decade [5-13]. In addition, investigation of the behavior of smart structures 

in multiphysics environment is essential for several applications concerning structural health monitoring, energy 

harvesting and green energy production, space vehicles, and self-powered biomedical devices [14]. The static and 

free vibration of FGM cylindrical shell bonded to a piezoelectric layer is analyzed by Alibeigloo et al. [15, 16]. 

Furthermore, the coupled interaction of physical phenomena involve elastic, electric, and thermal fields in 

multiphysics behavior of smart layered cylindrical composites is investigated by many researchers. Alibeigloo [17, 

18] provided a thermo-elastic solution for deformations of a simply-supported FGM cylindrical shell and panel 
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bonded to piezoelectric layers. Akbari Alashti and Khorsand [19, 20] carried out static and dynamic analysis of 

FGM cylindrical shells with piezoelectric layers under thermo-electro-mechanical loads, using the DQ method. 

Multiphysics analysis behavior of FGMs are very important due to their many applications in magnetic storage 

elements, plasma physics and the corresponding measurement methods of magneto-thermo-elasticity. Ghorbanpour 

et al [21-23] studied the magnetothermoelastic interactions in cylindrical and spherical FGM and piezoelectric 

structures. Thermo-magneto-dynamic stresses in a non-homogeneous hollow cylinder was investigated by Kong et 

al [24]. Analysis on the effect of centrifugal load in FGM hollow sphere subjected to a magnetic field is carried out 

by Khalili et. al. [25]. Recently, the electromagnetoelastic behavior of a FGPM hollow cylinder under multifield 

loading was analyzed [26].Imperfect interfacial bonding or delamination is an ordinary type of flaw in laminated 

composite structures owing to manufacturing defects or environmental conditions. This becomes more significant in 

hybrid laminates because of high transverse stresses developed at elastic-piezoelectric interfaces under electric 

potential loading.The actuation/sensing authority of smart layers may extensively be affected due to the imperfection 

at the interfaces. Furthermore, analyzing composite structures on elastic foundations has always attracted the 

attention of both researchers and engineers [27-33]. Concerning the application of smart composite structures under 

different environmental conditions, it is vital to analyse the effect of imperfect bonding and elastic foundations for 

an accurate prediction of the structural behavior.Regarding the application of smart composite structures under 

different external loadings and various environmental conditions, Saadatfar and Aghaie-Khafri [34] presented 

analytical solution for the multiphysics magneto-thermo-electro-elastic problem of a long FGM hollow cylinder 

bonded to smart layers. To the best of the authors’ knowledge, however, the electro-magneto-thermo-elastic analysis 

of an exponentially graded cylindrical shell imperfectly bonded with pyroelectric layers resting on an elastic 

foundation has not yet been reported. 

In the present study, a simply supported FGM cylindrical shell with surface bounded pyroelectric layers as 

sensor and/or actuator under pressure, electrical excitation, thermal condition where placed in a constant magnetic 

field is studied. The material properties of the FGM shell are assumed to be exponentially graded in the radial 

direction. The highly coupled partial differential equations are reduced to ordinary differential equations with 

variable coefficients by means of trigonometric function expansion in the longitudinal directions. Then, the DQ 

method is used across the thickness direction to solve the resulting equations. Numerical examples are given to 

reveal the impact of effective parameters on the behavior of a FG smart cylindrical shell. 

2    BASIC EQUATIONS 

As  it is shown in Fig. 1, an axisymmetric FGM shell with inner and outer surfaces bonded to pyroelectric layers is 

considered. Owing to the symmetry of the shell geometry and the boundary conditions, the thermal, mechanical and 

electrical fields are assumed to be independent of the circumferential coordinate. The shell material is assumed to be 

FGM and isotropic. Besides, the pyroelectric material is assumed to be transversely isotropic and the radial direction 

is the axis of the transverse isotropy.  

 

 

 

 

 

 

 

 

Fig.1 

FGM hollow cylinder with pyroelectric layers resting on an 

elastic foundation. 

2.1 Heat conduction problem 

A steady state heat conduction without internal heat source is considered and the governing equations of the steady 

state temperature field for FGM and pyroelectric layers are [17]: 
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where krp and kzp are the thermal conductivity of the pyroelectric in the radial and longitudinal directions and kf is 

the thermal conductivity of FGM layer. Tf and Tp denote the temperature distribution of the FGM layer and the 

piezoelectric layer, respectively. The thermal boundary conditions are: 

 

( ,0) ( , ) 0, , ,

( , ) , ( , ) 0,

j j

i a o

T r T r L j i f o

T a z T T d z

  

 
           

 

   (2) 

 

The solution of the thermal problem is governed by Eqs. (1-2) and satisfies temperature boundary conditions at 

the end faces as: 
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where 
n

n
p

L


  The exponential law is assumed for the thermal conductivity constant, Young’s modulus, magnetic 

permeability and the coefficient of the thermal expansion of FGM as: 
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where subscript f denotes the material properties in the inner surface of the FGM layer and i are their grading 
parameters. Poisson’s ratio (ν) is taken to be constant through the shell thickness. Using Eqs. (3, 4), the Eqs. (1) are 

obtained as: 
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2.2 FGM layer  

The following relations are used to express the stresses in the shell [17]: 
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The strain-displacement relations are defined as [17]: 



                                                                                                                                M. Saadatfar and M. Aghaie-Khafri                347            

© 2015 IAU, Arak Branch 

, , ,r r z r z
r z zr

u u u u u

r r z z r
   

    
     

    
           

 

   (7) 

 

The shell is placed initially in an axial constant magnetic field. There is an interaction between deformation and 

perturbation of the magnetic field vector in the shell. Omitting displacement electric currents, the governing 

electrodynamic Maxwell equations for a perfectly conducting elastic body are given by [35]: 
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where, , ,U H h  are displacement vector, magnetic intensity vector and perturbation of the magnetic field vector, 

respectively. Equilibrium equations for axisymmetric deformations of the shell by taking into account the Lorentz 

force are written as [19, 24]: 
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where fr is defined as the Lorentz’s force. By applying an initial magnetic field vector in the cylindrical coordinate 

system to Eq. (8), the Lorentz’s force is: 
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Using Eq. (10) and Eq. (6) , Eq. (9) can be rewritten as: 
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2.3 Pyroelectric layers 

 

The constitutive equations of a pyroelectric material in cylindrical coordinate can be expressed as [17]: 
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where σi, εi, Di and Ei represent stress, strain, electric displacement and electric fields, respectively. Cij, eij and gij 

denote the elastic, piezoelectric and dielectric constants, respectively. i and Pi are the thermal modulus and 

pyroelectric constants, respectively. T expresses the temperature variation in the pyroelectric layer and i are [26]: 
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Considering the electric potential ψ, the electric field E, is given by [17, 19]: 
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For the pyroelectric layers, the equation of the electrostatic charge is [17]: 
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Using Eqs. (12), (14) and (10), Eqs. (9) and (15) can be written as: 
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The simply supported boundary conditions are [17]: 
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Since the outer surface of the hybrid shell is assumed to be subjected to a Winkler-Pasternak elastic foundation, 

the surface boundary conditions can be considered as [36]: 
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where Winkler spring stiffness and shear layer stiffness are indicated by KL and KS.  

For the imperfect interfaces, the displacements as well as the temperature field at the interfaces may be 

discontinuous. However, the tractions at the interfaces and the heat flux are always continuous. The continuity 

conditions that must be met at interfaces of all the adjacent layers between kth and (k+1)th interfaces are expressed as 

following [19]: 
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The linear spring model is considered for the displacement field and thermal field discontinuity is assumed. 

According to this model, the discontinuities in the displacements and temperature at the interfaces are proportional 

to their respective traction components and transverse rate of the heat flow. These discontinuity conditions are [37]: 
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where χi

k
 are the compliance constants of inner and outer interfaces for displacements and thermal field. It is clear 

that for a perfectly bonded interface we have χi
k
 =0 (k = 1,2). A non-zero normal compliance coefficient 

k
r , 

characterizes the normal opening delamination, whereas the shear slip delamination is characterized by non-zero 

tangential compliance coefficients
k
z . For the normal opening delamination mode, the normal stresses at interfaces 

should not be negative to allow no material penetration. The thermal imperfections are just applicable when a 

normal opening delamination is present ( 0k
r  ). 

3   SOLUTION OF GOVERNING DIFFERENTIAL EQUATION 

The solution satisfying the boundary conditions may be assumed as: 
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where 
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n
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L


 . Substituting Eq. (21) into governing equations, partial differential equations reduce to ordinary 

differential equations and governing equations for the FGM shell can be expressed as: 
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and corresponding equations for the pyroelectric layers can be expressed as: 
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According to the DQM, the nth-order derivative of the function f(r) at any sample point can be approximated by 

the following formulation [38]: 
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where Aij are the weighting coefficients associate with the nth-order derivatives, and N is the number of grid points in 

the r direction. The weighting coefficients can be determined as [38]: 
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For numerical computation, the Chebyshev–Gauss–Lobatto points with the following coordinates are used [38]: 
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Using the DQ technique, the equations of the FGM layer, PYROELECTRIC layers and thermal field can be 

expressed as: 
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Pyroelectric layer: 
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Thermal field: 
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In the above equations, Aij and Bij are weighting coefficients for pyroelectric and FGM layers, respectively. In a 

similar way, the boundary conditions can be discretized. So, the boundary conditions at r=a and r=d becomes: 
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Domain and boundary degrees of freedom are separated. In vector forms, they are denoted as (d) and (b), 

respectively. Based on this definition, the matrix form of governing equations and related boundary conditions take 

the following form: 
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It is worth mentioning that the grid point of each pyroelectric layer and FGM layer are considered as Np and Nf. 

Thus, in the Eq. 32, the matrix dimension of the matrix A is (2×3Np+2Nf)×(2×3 Np+2Nf) and the dimension of F 

and U is (2×3Np+2Nf)×1. By eliminating the column vector {Ub}; the matrix Eq. (33) is reduced to the following 

system of algebraic equations: 

 

[ ]{ } { }dA U F        (34) 

 

where, 

 

1

1

[ ] [ ] [ ][ ] [ ]

{ } { } [ ][ ] { }

dd db bb bd

d db bb b

A A A A A

F F A A F





 

 
 

    

      (35) 

 

Eq. (34) is a system of algebraic equations which can be solved using various direct or iterative methods. As 

displacement vector is known, strains and stresses can be evaluated. Since, the size of resulting algebraic equations 

is large, the direct methods may not be efficient. The use of iterative methods, such as the Gauss–Seidel method, 

thus, is recommended for the solution of the resultant algebraic equations. 

4   NUMERICAL RESULTS AND DISSCUTIONS 

Considering numerical calculations, the FGM layer is assumed to be consisting of the inner surface made of 

Zirconia and the outer one made of Monel. Also, the pyroelectric layers is assumed to be Ba2NaNb5O15 and PZT-4 

that commonly used in the industry as actuator and sensor layers [17]. Material constants for pyroelectric layers are 

listed in Table 1. [17, 39] and the material constants of Zirconia and Monel are [19]: 

 
6227.24( ), 15 10 (1 ), 25( )h h hE GPa K k W mK        

6
0 0 0125.83( ), 10 10 (1 ), 2.09( )E GPa K k W mK        

 

The material properties of the host shell are assumed to vary according to the exponential form and material 

property parameters 1, 2 and 5 are: 
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In the present work, 3=1 is considered. It should be noted that 40 terms are considered in the series expansion 

and all numerical results are calculated and presented for the value of z=L/2. In all numerical simulations, unless 

otherwise stated, the values of a=0.8 m, d=1 m, hFGM=20 hpyroelectric and L=6 m. Also, following dimensionless 

quantities are introduced: 
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In order to demonstrate the convergence and accuracy of the present approach, numerical results for the static 

behavior of the FGM shell with perfectly bonded piezoelectric layers under thermomechanical boundary conditions 

are presented and compared with the results reported in Ref. [17, 19]. In this case, the material properties of the 
FGM host layer vary according to the power law function and χi

k
=KL=KS=0. Fig. 2 shows a good agreement for the 

distribution of temperature and radial stress with one reported in the literature. It is obvious from Fig. 2(b) that by 

increasing the number of grid points, the DQ method converges rapidly and approaches to the reported results. 
In all examples to be considered, we assume χr

k
= χT

k
=0 to avoid the material penetration phenomenon [40, 41]. 

So, the hybrid shell with a uniform shear slip imperfection is considered. It is worth noting that the delamination 

problem of a hybrid cylindrical shell subjected to static normal tension loads, i.e. outward at the outer surface and 
inward at the inner surface, can be considered by taking χr

k
≠ 0 [42].  
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Table 1 

 Materials constants. 

55c
 33c

 23c  22c  13c  12c  11c  Property (GPa) 

25.6 139 78 139 74 74 115 Sensor (PZT-4) 

66 239 104 247 5 52 135 Actuator (Ba2NaNb5O15) 
5

11 10P   9
33 10g   9

11 10g   53e  31e  21e  11e  Property*
 

5.4 6.5 5.6 12.7 -5.2 -5.2 15.1 Sensor (PZT-4) 

5.4   1.96   0.28   2.8 -0.4 -0.3  4.3 Actuator (Ba2NaNb5O15) 

 p  710p
  

r
k  

zk k   z   610r
  Property* 

 7500 4π  2.5 2.1 1.99×10-6 2.62 Sensor (PZT-4) 

 5300 4π  13.9 8.6 4.39×10-6 2.45 Actuator (Ba2NaNb5O15) 
* The units are: e in C/m2, g in C2/Nm2, P11 in C2/m2K, α in 1/K, k in W/mK, μ in H/m and  in kg/m3 

 

 

 
(a) 

 
(b) 

Fig.2 

Distribution of (a) temperature, (b) the radial stress. 

 

 

To illustrate the influences of a magnetic field on the behavior of a smart cylindrical shell, the shell is placed in a 

constant magnetic field of H=H
*
×2.23×10

6
 (A/m). The shell is considered to be subjected to an inner pressure Pi=1 

MPa and we have: Ti=5, V=100 v, χz
k
=KL=KS=0. Fig. 3 shows effects of the magnetic field on the distribution of 

stresses and the radial displacement along the radial direction of the hybrid shell.  Fig. 3(a) shows that by increasing 

the magnetic field, the curvature of the graph became inversed and the compressive radial stress is decreased 

significantly in most part of the shell. In contrast, the trend is vise versa near the inner surface. Fig. 3(b) shows that 

an increase in the magnetic field results in increasing the compressive hoop stress  of FGM shell. According to Figs. 

3(c) and (d), increasing the magnetic field has no significant effect on the longitudinal stress and transverse shear 

stress. Fig. 3(e) shows that the outward radial displacement decreases by increasing in the magnetic field. Whereas, 

more increase in the magnetic field results in inward radial displacement which increases by an increase in the 

magnetic field. Therefore, the radial displacement can be approximately vanished for a specific magnetic field. The 

magnitude of the Lorentz force depends on the magnitude of the magnetic field. In the pyroelectric materials there 

are an interaction between thermal, electric and mechanical field. Each of these fields can create stresses and 

displacements in the pyroelectric cylindrical shell. In addition, by existence of a magnetic field, the radial 

displacement results in creating the Lorentz force in the radial direction. Then, this force affects the stresses and 

displacements. It should be noted that by changing each of the effective parameters, the effect of Lorentz force on 

the behavior of smart structure may be changed.  

Effects of the internal temperature (Ta) of the hybrid shell on stresses and the radial displacement are presented 

in Fig. 4. In this case, H
*
=80 is considered and other parameters and conditions remain unchanged. It is observed 

from Fig. 4(a) that there are two points within the thickness of the hybrid shell that the radial stress is independent of 

the thermal loading applied on the inner surface. These two points are located at R=0.1658 and R=0.8719. Between 

these two points, an increase in the applied thermal loading decreases the absolute value of the radial stress and the 

radial stress tends to be positive. Outside of these two points , however, the radial stress  behavior is vise versa. Fig. 

4(b) shows that by increasing the inner temperature the tensile hoop stress decreases and approximately vanishes. 

More increase in Ta leads to a compressive hoop stress. Moreover, the absolute value increases by increasing of the 

inner temperature. For a certain electro-magneto-thermo-mechanical condition , consequently, the hoop stress that is 

a key parameter in the crack growth can be approximately vanished. Furthermore, the difference between the hoop 
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stresses of pyroelectric layers consisted of FGM layer is increased by increasing the inner temperature. As shown in 

Fig. 4(c), there are two points within the thickness of the hybrid shell that the transverse shear stress is independent 

of the thermal loading applied on the inner surface. These two points are located at R=0.1364 and R=0.4813. 

Between these two points, an increase in the applied thermal loading increases the positive transverse shear stress, 

where as outside of these two points the transverse shear stress exhibits a reverse behavior. The increase in the 

absolute value of the transverse shear stress in the outer surface of FGM layer is more significant than that of the 

inner surface. Besides, Fig. 4(d) shows that there existed a certain point (R=0.3063) at which the value of 

longitudinal stress shows no change while the thermal loading is changed. Before this point, an increase in the 

applied thermal loading increases the compressive longitudinal stress. After this point , in contrast, the longitudinal 

stress becomes tensile and rises by rising in Ta. It is shown that applying thermal loading leads to an increase in the 

tensile longitudinal stress in the outer surface as well as a compressive longitudinal stress in the inner surface of the 

FGM layer. This effect is more intensive in the outer surface. Fig. 4(e) shows that the positive radial displacement 

decreases by increasing the inner temperature and more increase in the inner temperature results in increasing the 

radial displacement in the opposite direction. So, there is a specific electro-magneto-thermo-mechanical condition 

wherein the radial displacement of the hybrid shell can be approximately close to the zero value.  

 

 
(a) 

 
(b) 

  

 
                                                    (c) 

 
          (d) 

  

 
                                                        (e) 

 

Fig.3 

Distribution of (a) radial stress, (b) hoop stress, (c) transverse shear stress, (d) longitudinal stress, (e) radial displacement for 

different H*. 
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    (b) 

  

 
                                                    (c) 

 
          (d) 

  

 
                                                        (e) 

 

Fig.4 

Distribution of (a) radial stress, (b) hoop stress,  (c) transverse shear stress, (d) longitudinal stress, (e) radial displacement for 

different Ta. 

 

The effect of the elastic foundation on the behavior of the hybrid shell is shown in Fig. 5. In this case: Pi=1 MPa, 

and other parameters remain unchanged (KS=kS×10
8
, KL=kL×10

8
). Fig. 5(a) shows that an increase in the stiffness of 

the Winkler spring and shear layer of the elastic foundation results in an increase in the value of the radial stress in 

the outer surface of the shell. It is valuable to note that kL=kS=0 simulates the situation in which the shell is traction 

free on the outer surface. Fig. 5(b) shows that higher foundation stiffness leads to a slight decrease in the hoop stress 

of the hybrid shell. Regarding the inward radial displacement, the compressive hoop stress, and the reduction of this 

inward radial displacement by increasing in elastic stiffness, the decrease in the compressive hoop stress is 

reasonable. Fig. 5(c) depicts that the transverse shear stress experience no noticeable change by altering the 

foundation stiffness. More investigations show that by changing the elastic stiffness, the shear strain is not changed 

considerably. Thus, this is reasonable that the transverse shear stress experience no noticeable change with different 

elastic stiffness. Fig. 5(d) shows that the radial displacement decreases by increasing the stiffness of the elastic 

foundation. Regarding to Figs. 5(a) and (d), due to the inward radial displacement the presence of an elastic 

foundation helps to resist the radial displacement. This results in a tensile radial stress in the outer surface as well as 

a reduction in the radial displacement. It can be concluded that by changing the direction of the radial displacement, 

the elastic foundation shows a reverse effect on the behavior of the shell. 
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   (a) 

 
          (b) 

  

 
                                                    (c) 

 
          (d) 

Fig.5 

Distribution of (a) radial stress, (b) hoop stress, (c) transverse shear stress, (d) radial displacement for different kL and kS. 

 

The effect of imperfection on stresses and displacements are listed in Table 2. and Fig. 6. In Table 2. , the 

magnitude of variables are declared at the middle point of the thickness and S is defined as: S=(middle 
radius)/(thickness of shell). Parameters and boundary conditions are like the previous one and χz

1
=χz

2
= χ×10

-10
 . As 

the compliance coefficient of the imperfection increases the absolute value of radial and hoop stresses are increased 

and the longitudinal stresses are decreased. For the case that the radial stress is tensile (S=20), the radial stress 

decreases by increasing the compliance coefficient of the imperfection. The positive transverse shear stress increases 

and the minus transverse shear stress decreases by increasing the compliance coefficient of the imperfection. By 

increasing the compliance coefficient of the imperfection the longitudinal displacement decreases. However, the 

radial displacement shows a reverse behavior. Furthermore, as S increases the absolute values of hoop, longitudinal 

and transverse shear stresses as well as radial and longitudinal displacements are increased. However, the behavior 

of radial stresses is vice versa. 

Fig. 7 shows the effect of the imperfect bonding on the sensor authority. In this case: Pi=1KPa, H0=0, V=100 V 

and T0=0 K. As it is expected, the measured voltage in the sensor decreases by increasing the compliance coefficient 

of the imperfection. For large values of compliance coefficient of the imperfection, the curve becomes nearly flat 

representing no further significant change in the measured voltage. 

The effect of the inhomogeneity index of FGM layer on the static response of the hybrid shell is shown in Fig. 8. 

In this case: the inner surface of FGM layer remain unchanged whereas =1=2=4  and Pi=1 MPa. Other 

parameters remain unchanged. According to Fig. 8, through-thickness distribution of stresses, displacement and 

temperature in the isotropic shells lay between the diagrams. Figs. 8(a)-(b) show that by changing the sign of the 

inhomogeneity index the curvature of graphs became vice versa. Altering the inhomogeneity index from a minus 

value to a positive value leads to an increase in the absolute value of the radial and hoop stresses. Fig. 8(c) shows 

that in the most part of the shell, increasing the inhomogeneity index from a minus value to a positive value leads to 

an increase in the positive value of the transverse shear stress in the middle part of the shell. However, it results in 

the minus value of the transverse shear stress in the inner and the outer surface of the FGM layer. Fig. 8(d) shows 

that by changing the sign of the inhomogeneity index the curvature of graphs became vice versa and increasing the 

inhomogeneity index results in an increase in the longitudinal stress. This increase is more significant in the outer 

surface of the FGM layer. Generally, it can be concluded from Figs. 8(a)-(d) that for the sake of decreasing the value 

of stresses at any point in the thickness direction it is necessary to use the FGM shell with a hard inner surface. Fig. 

8(e) shows that the radial displacement decreases by decreasing in the inhomogeneity index. Fig 8(f) shows the 

distribution of the temperature in the hybrid shell. As it is observed, the direction of the curvature depends on the 

sign of the inhomogeneity index and an increase in the homogeneity index leads to an increase in the temperature of 

the point.  
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Table 2 

Effect of imperfection on the static response of hybrid shell. 

Entity S χ=0 χ=5 χ=10 χ=15 χ=20 

σr
* 

           5 -0.19499 -0.21993 -0.23391 -0.24263 -0.24831 

10 -0.03945 -0.05281 -0.06076 -0.06845 -0.07533 

20    0.024135    0.016395    0.014591 -0.00915      -0.0077 

σθ
* 

           5 -4.76751 -4.93437 -5.03325 -5.09918      -5.14688 

10 -8.23908 -8.41072 -8.55193 -8.65318 -8.73249 

20 -14.8276        -14.9877    -15.2002     -15.1241     -15.3111 

σz
* 

           5    2.290138     1.791042   1.486702    1.283603     1.138754 

10    4.405712    3.882783  3.472729     3.144736      2.877753 

20    8.546134    7.993948 7.532758    7.094078      6.712753 

τrz
*(×10-19)            5  2.68069     23.02767    33.69917 40.32056  44.62369 

10    -33.75967    -21.89417   -12.96661 -7.08783   -2.59358 

20    -51.18824    -44.87115   -42.31643    -35.29529 -31.17190 

ur
*(×10-4)            5      -0.68830      -0.69087     -0.69177      -0.69240 -0.69308 

10      -3.70503      -3.71107     -3.71995      -3.72026 -3.71866 

20    -16.58073    -16.57166   -16.65656    -16.40878     -16.49310 

uz
*(×10-19)            5      -0.22783      -0.21256     -0.20321 -0.19696   -0.19250 

10      -0.68076      -0.64843     -0.62317 -0.60274   -0.58607 

20      -2.21414      -2.14473     -2.08983 -2.02698   -1.98194 

 

 

 
   (a) 

 
          (b) 

  

 
                                                    (c) 

 

Fig.6 

Distribution of (a) transverse shear stress, (b) longitudinal stress, (c) longitudinal displacement for different χ. 

 

 

 

 

 

 

 

 

 

Fig.7 

Influence of imperfect bonding on sensory potential. 



                                                                                                                                M. Saadatfar and M. Aghaie-Khafri                359            

© 2015 IAU, Arak Branch 

 

 
   (a) 

 

 
          (b) 

 

 
                                                (c) 

 

 
                                               (d) 

 

 
                                                      (e) 

 

 
                                             (f) 

Fig.8 

Distribution of (a) radial stress, (b) hoop stress, (c) transverse shear stress, (d) longitudinal stress, (e) radial displacement, (f) 

longitudinal displacement for different . 

 

Fig. 9 shows the distribution of stresses and radial displacement of the hybrid shell under different inner 

pressure. All of the parameters and conditions are as before. Fig. 9(a) shows that the radial stress in the points within 

the thickness is independent of the inner pressure. As it is observed, the compressive radial stress increases for 

higher inner pressure between these two points. However, for other parts this behavior is vise versa. This behavior 

shows that the effect of pyroelectric layer decreases for a higher inner pressure. Fig. 9(b) shows that the hoop stress 

of the FGM layer reduces for a higher inner pressure. It should be noted that this trend of stresses is just observed 

under the certain magnetothermomechanical boundary and environmental conditions. By eliminating the magnetic 

field or thermal field responses may be changed. Fig. 9(c) shows that a higher inner pressure leads to a reduction in 

the transverse shear stress of the hybrid shell. This reduction is more obvious near the outer surface of the FGM 

layer. Fig. 9(d) shows that the inward radial displacement (due to high magnetic field value) decreases by rising in 

the inner pressure. In fact, the graph of the radial displacement shifts upward by the inner pressure enhancement. 

Fig. 10 depicts the effect of the aspect ratio of the shell (S) on the stresses and radial displacement distribution. 

Fig 10 shows that increasing S increases the hoop and transverse shear stresses as well as radial displacement. 

However, the radial stress exhibits a reverse behavior. It should be noted that this behavior is because of interaction 

of thermal, electric and mechanical fields as well as the effect of the magnetic field. In this mutiphysics analysis 

case, effects of the magnetic environment and thermal loading can overcome the effect of the mechanical loading in 

a thin shell.  
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          (b) 

  

 
                                                    (c) 

 
              (d) 

Fig.9 

Distribution of (a) radial stress, (b) hoop stress, (c) transverse shear stress and (d) radial displacement for different Pa. 
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          (b) 

  

 
                                                    (c) 

 
              (d) 

Fig.10 

Distribution of (a) radial stress, (b) hoop stress, (c) transverse shear stress and (d) radial displacement for different S. 

 

Fig. 11 illustrates the effect of the electric excitation of the actuator layer on the behavior of the hybrid shell. In 

this case, we have: Pi=100 Pa, Ti=0 and H
*
=40. As is shown in Figs. 11(a) and (b), the radial stress near the inner 

surface of the FGM layer as well as radial displacement of the hybrid shell decrease by increasing in the electric 

excitation of the actuator layer. However, this reduction is more significant in the radial displacement. So, using 
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pyroelectric actuator layer an electric excitation is a way to reduce displacement and vibration of the FGM 

cylindrical shell. 

 
 

 
        (a) 

 

 
          (b) 

Fig.11 

Distribution of (a) radial stress, (b) radial displacement for different V. 

5    CONCLUSION  

A numerical solution for deformation of an exponentially graded hollow cylindrical shell with the inner and the 

outer surface imperfectly bonded pyroelectric layers and subjected to magneto-thermo-electro-mechanical loads is 

presented. The analysis was carried out by using a series type solution and DQ method. The numerical results are 

presented for  sample problems and the following conclusions are obtained: 

 By increasing the magnetic field, the radial stress decreases and the hoop stress increases. Besides, the 

radial displacement decreases and further increase results in changing the direction of the radial 

displacement. Therefore, the radial displacement can be vanished approximately for a specific magnetic 

field. 

 Results show that there are some points within the thickness of the shell at which the radial, longitudinal 

and transverse shear stresses are independent of the thermal loading. Furthermore, for a certain electro-

magneto-thermo-mechanical condition the hoop stress can be vanished approximately. There is a specific 

thermal condition wherein the radial displacement can be approximately close to the zero value.  

 By an increase in the stiffness of the elastic foundation, the radial displacement decreases and the value of 

the radial stress in the outer surface of the shell alters proportional to the direction of the radial 

displacement.  

 As the compliance coefficient of the imperfection increases, the absolute value of the radial displacement 

as well as radial and hoop stresses are increased. However, the longitudinal stress and the longitudinal 

displacement decreased. The measured voltage in the sensor decreases by increasing the compliance 

coefficient of the imperfection.  

 Increasing the inhomogeneity index leads to an increase in the absolute value of radial and hoop stresses as 

well as the radial displacement. It is observed that for the sake of decreasing the value of stresses at any 

point in the thickness direction it is necessary to use the FGM shell with a hard inner surface.  
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