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 ABSTRACT 
 This paper deals with the nonlinear free vibration of thick annular functionally graded material 

plates. The thickness is assumed to be constant. Material properties are assumed to be graded in 
the thickness direction according to a simple power law distribution in terms of the volume 
fractions of the constituents. The formulations are based on the first-order shear deformation plate 
theory and von Kármán-type equation. For harmonic vibrations, by using assumed-time-mode 
method sinusoidal oscillations are assumed, then the time variable is eliminated by applying 
Kantorovich averaging method. Thus, the basic governing equations for the problem are reduced 
to a set of ordinary differential equations in term of radius. The results reveal that vibration 
amplitude and volume fraction have significant effects on the resultant stresses in large amplitude 
vibration of the functionally graded thick plate. 

© 2009 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

IRCULAR and annular plates are used in many engineering applications. Such structures are often subjected to 
severe dynamic loading conditions and can exhibit large amplitude vibrations of the order of the plate thickness. 

In this case a significant geometrical nonlinearity is induced. Numerous studies on free and forced vibration for 
isotropic and composite multilayered plates with or without initial thermal and or mechanical in-plane loads have 
been reported [1- 6]. Xuefeng et al. [7] presented the coupled thermoelastic free vibration of clamped circular plate. 
Galerkin's method has been used to drive the nonlinear differential equations. Arafat et al. [8] studied the behavior 
of annular plates with clamped–clamped immovable edges subjected to axisymmetric in-plane thermal loads. A 
numerical shooting method is used to calculate the mode shapes and natural frequencies. 

Functionally graded materials (FGMs) are inhomogeneous composite materials and are made from different 
phases of materials such as ceramic and metal. FGMs have different applications especially for space vehicles, 
automobile, defense industries, electronics, and biomedical sectors. FGMs properties vary continuously from one 
interface to the other. Those are achieved by gradually varying volume fraction of constituent materials. In recent 
years, the nonlinear vibration of FGM plates has attracted increasing research efforts.  Amini et al. [9] studied the 
three-dimensional free vibration of FGM plates resting on an elastic foundation. Governing equations were based on 
linear, small-strain and three-dimensional elasticity theory and Chebyshev polynomials and Ritz’s method were 
employed to solve the equations. Ebrahimi et al. [10] presented a theoretical solution for free vibration of 
moderately thick shear deformable annular functionally graded plate coupled with piezoelectric layers based on 
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Mindlin’s plate theory. Praveen and Reddy [11] analyzed the nonlinear static and dynamic response of functionally 
graded ceramic–metal plates in a steady temperature field and subjected to dynamic transverse loads by the finite 
element method (FEM) based on the first-order shear deformation plate theory (FSDPT). Reddy [12] developed both 
theoretical and finite element formulations for thick FGM plates according to the higher-order shear deformation 
plate theory (HSDPT), and studied the nonlinear dynamic response of FGM plates subjected to suddenly applied 
uniform pressure. Woo and Meguid [13] investigated the nonlinear analysis of functionally graded plates and 
shallow shells. An analytical solution has been provided for the coupled large deflection of plates and shallow shells 
under mechanical load and temperature field, and the solution has been obtained in terms of Fourier series. Woo et 
al. [14] derived an analytical solution for the nonlinear free vibration behavior of thin rectangular functionally 
graded plates. Allahverdizade et al. [15] studied the effects of large vibration amplitudes on the stresses of thin 
circular functionally graded plates. Kitipornchai et al. [16] presented a semi-analytical solution for nonlinear 
vibration of laminated FGM plates with geometric imperfections and showed that the vibration frequencies are very 
much dependent on the vibration amplitude and the imperfection mode. They [17] also studied the random vibration 
of the functionally graded laminates with third-order shear deformation plate theory and general boundary 
conditions in thermal environments.  

The aim of this present paper is to study nonlinear free vibration of thick annular FGM plate. Material properties 
are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the 
volume fractions of the constituents. The formulations are based on the first-order shear deformation plate theory 
and von Kármán-type equation. For harmonic vibrations, by using assumed-time-mode method sinusoidal 
oscillations are assumed, then the time variable is eliminated by applying Kantorovich averaging method. Thus, the 
basic governing equations for the problem are reduced to a set of ordinary differential equations. Extensive 
numerical results are presented in both dimensionless tabular and graphical forms, and highlight the influence of 
material composition and vibration amplitude on induced stresses in large amplitude vibration of annular FGM 
plate. 

2    THEORETICAL FORMULATIONS 
2.1 Functionally graded materials (FGM) 

Consider an annular FGM plate of constant thickness h and inner and outer radius ir and or respectively (Fig. 1), 
which is made from a mixture of ceramic and metal and the composition varies from the top to the bottom surface, 
i.e., the top surface / 2z h of the plate is ceramic-rich whereas the bottom surface / 2z h  is metal-rich. In such 
a way, an arbitrary material property P (e.g., Young’s modulus E, and mass density ρ) of the functionally graded 
plate is assumed to vary through the thickness of the plate, as a function of the volume fraction and properties of the 
constituent materials as 
 

mmcc VPVPP +=  (1) 
 
in which cV  and mV  are the ceramic and metal volume fractions and are related by 
 

1=+ mc VV  (2) 
 

For a plate with uniform thickness h
 
and a reference surface at its middle surface, the volume fraction cV  follows 

a simple power law as [11] 
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Fig 1. 
Geometry and co-ordinates of the plate. 

Table 1 
Material properties 

Material 
Property 

E (GPa) ρ (kg/m3)
 

ν 

Aluminum 70 2707 0.3 
Alumina 380 3800 0.3 
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Volume fraction index g (gradient index) dictates the material variation profile across the plate thickness. It is 

assumed that the effective Young’s modulus E and mass density ρ vary along the thickness, Poisson’s ratio ν is 
considered to be constant. From Eqs. (1)– (3), one has [11, 18]  

 

( ) m
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mcz P
h

hzPPP +





 +

−=
2

2  (4) 

 
In Eq. (4) If g= 0 then the plate reduces to a pure ceramic plate (alumina). As the volume fraction index g 

increases, the ceramic volume fraction decreases until for large enough amount of g material properties tend to pure 
metal (aluminum). Typical values for alumina and aluminum are listed in Table 1 [19]. 

2.2 Governing equation 

Consider an annular FGM plate located in its initially un-deformed configuration. As usual, the cylindrical 
coordinate r, θ and z system has its origin at the center of the plate on the middle plane. The r-coordinate direction is 
radially outward from the center, the z-coordinate is along the thickness, and the θ-coordinate is directed along a 
circumference of the plate. The plate has uniform thickness h, inner radius ir and outer radius or . (Fig. 1) 

For first time, Mindlin [20] represented a new plate theory called "First Order Shear Deformation Theory" in 
which the effect of shear deformation was not neglected. Consequently, straight material lines that are perpendicular 
to the mid-plane in the un-deformed state remain straight in the deformed state even though they may not remain 
perpendicular to the mid-plane. According to this theory, the displacement fields of the plate in the cylindrical 
coordinate are given as 

 
( , ) ( , )u u r t z r tr rψ   (5)

 ( , )u w r tz   (6) 
 
where zu and ru are the displacements in the transverse z-direction and radial r-direction of the plate, respectively; 

( , )w r t  is the transverse displacement and ( , )u r t  is the radial displacement of the mid-plane; and rψ  is the rotations 
of vertical lines perpendicular to the mid-plane, measured on the z–r planes. 

The strains for FGM plate at any level z are obtained by substituting the displacement field in the von Karman 
nonlinear strain-displacement relations [21] 



331                   M.H. Amini et al. 
 

© 2009 IAU, Arak Branch                 

 
21

2
r

rr
u wz
r r r

ψ
ε

          
 (7)

 2
22

1







∂
∂

++=
θ

ψεθθ
w

rr
z

r
u

r  (8) 

r
w

rrz ∂
∂

+=ψγ
 

(9) 

where rrε and θθε are the normal strains along the r and θ directions and rzγ is the shear strain along z direction 
acting on a surface with normal parallel to r direction. In terms of Hooke’s laws, the normal and shear stresses are 
given by 
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The resultant moments, membrane and shear forces are defined as 
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Now by substituting Eqs. (5)–(13) into Eqs. (14)–(16) and integrating, the resultant moments, membrane and 

shear forces can be expressed as follows 
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The coefficients ( 1..3)iK i  are given in Appendix A. κ is the shear correction factor in Mindlin [20] plate 
model which is chosen here as 5/6 [21].  

By using the Hamilton's principle, governing equations for nonlinear vibration of the first-order plates in 
cylindrical coordinate can be expressed as follows. Since the principal vibrations take place in the direction 
perpendicular to the middle plane, it is reasonable to neglect the longitudinal and rotary inertias. 

 
,( ) 0r rrN Nθ   (22) 

 , , , ,( ) ( ) ( , )r r r r r ttrN w rQ rP r t r I w      (23)

 ,( ) 0r r rrM M rQθ    (24) 
 
where ( , )P r t  is the uniformly distributed lateral loading intensity and  I is the transverse inertia which is given in 
Appendix A. Combining Eqs. (17) – (21) and (22), (23) and (24) one can obtain 
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Eqs. (25), (26) and (27) are dynamic forms of von-Karman’s equations, where the longitudinal and rotary 

inertias are neglected. Together, they govern the finite-amplitude, axisymmetric vibration of a thick annular or 
circular plate. These governing differential equations are complicated by the obvious nonlinear coupling of 
membrane and bending theories for thick plates. 

By introducing dimensionless variables as 
 

, , , ,
o o o o

r h u wr h u w
r r r r

     

 
 ,1 , , ,m m

o
o m m m

P r tE
r p r

r E E
ρ

τ τ
ρ

Ω Ω    
(28) 

 
and 
  

31 2
1 2 32 3, , ,

o m o mo m o m

KK K IK K K I
r E rr E r E ρ

     (29) 

 
The governing equations can now be written in non-dimensional form by using the above dimensionless 

variables. In the following equations and relations we eliminate the bar sign for simplicity. 
 

( ) ( ) 0
2

1
2

,
,22

,
,,,

2
,1 =








−++








−+++

−
rr

K
r
u

r
u

uwww
r

K rr
rrr

r
rrrrrr

ψψ
ψν  (30)

 



333                   M.H. Amini et al. 
 

© 2009 IAU, Arak Branch                 

       

 
 

3 2
1 , , , , , , , ,

1 , 2 , , , , , ,

1 11 3 1
2 2 2 2

1 1 1 .
2

r rr r rr r r rr r

r r r rr r r r r r rr r r

K w w w w u u w u u
r r r r

K K w w p r I w
r r r ττ

κ ν κ νν ν

κ ν ν νψ ψ ψ ψ ψ ψ τ

                           
                                  

 (31) 

, ,2
1 , 2 , , , , 3 ,2 2

(1 ) (1 )( ) ( ) 0
2 2

r r r r
r r r rr r rr r rr

u uK w K w w w u K
r r rr r

ψ ψκ ν νψ ψ
                            

(32) 

 
In order to solve governing Eqs. (30), (31) and (32), they must be accompanied by a set of boundary conditions 

at both inner and outer boundary for any time .τ  It is assumed that the plate is immovably clamped in both inner and 
outer radius. The boundary conditions are 

Inner radius:       ( , ) 0, ( , ) 0, ( , ) 0i i r iw r u r rτ τ ψ τ    (33)

 Outer radius:      ( , ) 0, ( , ) 0, ( , ) 0o o r ow r u r rτ τ ψ τ    (34) 

3   METHOD OF SOLUTION 

In spite of many researches about the study of the nonlinear behavior of plates, there is still no analytical solution for 
Eqs. (30), (31) and (32). The reason is in coupling nature of governing equations as well as the non-linear terms of 
the derivatives of the displacements. In the analysis and solution of this kind of equations two approximate methods 
are commonly used. One is known as “assumed-space-mode” solution, generally, which is achieved by taking some 
assumed spatial shape functions and by using a variational method to eliminate the spatial variables and reduce the 
partial differential equations to ordinary ones only including time as independent variable [19, 22]. Another method 
is “assumed-time-mode” solution. Upon assuming an appropriate harmonic response for the non-linear vibrations, 
the time variable is eliminated by using a Kantorovich averaging method [5, 23, 24] and a non-linear boundary value 
problem is obtained including spatial variables. This boundary value problem is solved numerically. In the present 
investigation, the latter method is employed. 

3.1 Kantorovich averaging method 

Firstly, it is assumed the plate is imposed by a harmonic load with the following form 
 

( , ) ( )sinp r F rτ τΩ  (35) 
 
and for the purpose of the approximate analysis, the steady-state response is assume to be as follows 
 

( , ) ( )sinw r W rτ τΩ  (36)

  2( , ) ( ) sinu r U rτ τΩ  (37) 

( , ) ( )sinr rr rψ τ τΨ Ω
 

(38) 

 
where Ω  is the non-dimensional frequency of the system, ( )W r , ( )U r  and ( )rΨ  are the shape functions 
corresponding to displacement W , U  and Ψ respectively. Assumption (37) for ( )U r is consistent with the fact that 
the radial displacement of any point of the plate is independent of the up or down position of the plate. Since 
expressions (35) - (38) can not satisfy Eqs. (30), (31) and (32) for allτ , the following integrals are employed to 
obtain equations which can approximate the governing equations within the limits of the assumed form of motion as 
given in Eqs. (35) - (38). 
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For any instant, the relations (39), (40) and (41) is equal to the virtual work of all the membrane forces, 
transverse forces and bending moments as they move through a virtual displacement uδ , wδ  and rδψ . Equating 
the average virtual work over one period oscillation to zero, 
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Set of Eqs. (46), (47) and (48) along with boundary conditions (33) and (34) compose the two-point nonlinear 

boundary value problem which governs the large amplitude vibration of a thick annular FGM plate.  
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3.2 Shooting method for boundary value problem 

Since it is difficult to analytically solve the boundary value problem of Eqs. (46), (47) and (48), shooting method or 
trial and error method [5, 23, 24] is employed to get a numerical solution of the nonlinear two point boundary-value 
problem. First the higher order equations must be rewritten as a coupled set of first-order equations 
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d i or r F a r a r r
r
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in which 
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Let us consider the initial problem corresponding to boundary-value problem (49) and (50) 
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d

r r F a r
r
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where 
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{ } { }TT XZ 43217654321 , xxxxzzzzzzz ==  (60) 
 
X  is an unknown vector related to the missing initial values of Y at ar = . For a prescribe value of Ω , the 
components of X are searched for such that solution of initial value problem (58), (59) also satisfies the boundary 
condition (50b), i.e., 
 

 *(1, , , ) 0,0,0FΩ  T
2B Z X  (61) 

 
If *XX =  is a root of Eq. (61), the solution for the boundary-value problem (49) and (50) is then obtained as 

 
*( ) ( , , , )r r FΩY Z X  (62) 

 
 
 

Table 2 
Clamped isotropic annular plate with various thickness and inner-outer radius ratios: comparison of the first four linear frequency 
parametersω  

0ir r  0h r  
1ω   2ω   3ω   4ω  

Present Han and 
Liew [25]  Present Han and 

Liew [25]  Present Han and 
Liew [25]  Present Han and 

Liew [25] 
0.1 0.05 26.546 26.534  71.232 71.228  135.245 135.24  215.114 215.08 
 0.1 24.634 24.629  62.146 62.140  111.127 111.12  167.166 167.16 
 0.2 19.852 19.843  44.922 44.913  74.869 74.860  106.815 106.81 
         
0.3 0.05 43.604 43.599  115.272 115.27  214.625 214.62  334.708 334.70 
 0.1 39.395 39.389  95.598 95.593  165.267 165.26  242.176 242.17 
 0.2 30.046 30.040  64.239 64.232  104.095 104.09  145.236 145.23 
         
0.5 0.05 83.056 83.051  211.98 211.95  381.456 381.45  576.994 576.99 
 0.1 70.283 70.277  159.786 159.78  265.445 265.44  378.427 378.42 
 0.2 48.317 48.310  97.397 97.389  155.477 155.47  196.796 196.79 
 
 

Therefore, a harmonic response of Eqs. (30)- (34) is obtained in the form of Eqs. (35)-(38). A relative error limit, 
610−=ε  was taken to warrant that both the numerical integration and the successive correction were carried out 

until the error norm became less than ε . 

4    VERIFICATION OF RESULTS 

In order to show the reliability of the numerical technique employed here, we firstly give some numerical tests. The 
present results are validated by taking the linear and nonlinear steady-state free vibration of circular and annular 
clamped isotropic plates. Non-dimensional linear natural frequencies of clamped annular plates are given by Eq. 
(63) [25]. 
 

2 212(1 )o m

m

r
h E

ν ρ
ω

Ω 
  (63) 

 
Firstly, results for linear natural frequencies of clamped annular isotropic plates for different thickness ratios and 

inner-to-outer ratios are compared with ones given by Ref. [25]. Three thickness ratios 2.0,1.0,05.0  have been 
considered. Note that / 0.05oh r  corresponds to a thin plate; / 0.1oh r  correspond to moderately thick plates 
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whereas / 0.2oh r   corresponds to a thick plate. Table 2 shows the results of present study and those of Ref. [25]. 
Good agreement has been observed for all cases ranging from very thin to very thick cases. 

Secondly, consider a circular plate with / 0.04oh r  . Fig. 2 shows the nonlinear normalized fundamental mode 
shapes W(r)/Wmax of a clamped immovable circular metallic plate for two non-dimensional amplitudes of 
axisymmetric vibration Wmax/h =0.5 and Wmax/h =2. The results are in good agreement with those given in Ref. [26]. 
Thirdly, the first nonlinear normalized axisymmetric mode shapes of a clamped immovable FGM circular metallic 
plate for various values of g at Wmax/h=2 are plotted in Fig. 3 and are compared with those of Ref. [23]. The close 
agreement between the results of this study and the results of Ref. [23] can be observed. Based on the presented 
comparison studies, we can warrant that the present approach can yield accurate solutions. 

5    NUMERICAL RESULTS AND DISCUSSIONS  

Numerical results are presented in this section for FGM plates with two constituent materials. The material 
properties of the FGM constituents are listed in Table 1. A program was developed for the purpose and many 
examples have been solved numerically, including the following. Throughout the following computation, 
let / 0.3i or r  , / 0.1oh r   and 0.3.ν   Figs. 4(a) and (b) depict the variation of the dimensionless radial stress 
with dimensionless vibration amplitude, and on ceramic-rich surface for the different values of g respectively at 
inner (r=0.3) and outer (r=1) radius. For the low vibration amplitudes, variation of g has no considerable effect on 
stresses, while for higher values of vibration amplitude; the effect of variation of gradient index g on stresses is more 
significant. Figs. 5(a), (b) and 6(a), (b) show, respectively, the variation of the dimensionless circumferential and 
shear stresses with dimensionless vibration amplitude on ceramic-rich surface for the different values of g at inner 
and outer radius.  

Figs. 7, 8, and 9 highlight the influence of g on the variation of the dimensionless radial, circumferential and 
shear stresses along dimensionless radius on metal-rich surface at Wmax/h=1. Due to the curvature of the plate in the 
first mode on z= -0.5, the normal stresses are negative in r= (ro+ri)/2 and positive in both clamped edges of the 
plate. While the shear stresses are positive and negative at inner and outer radii respectively, it shows a minuscule 
amount at r= (ro+ri)/2. 

Relationship of the dimensionless radial, circumferential and shear stresses with dimensionless thickness of the 
plate for different values of g at r=1 and Wmax/h=1 are depicted in Figs. 10, 11 and 12 respectively. It is obvious that 
with increasing g, the amount of stresses decrease. For ceramic-rich and metal-rich surfaces (g = 0 and g>>10), the 
stress distribution is linear, where for the FGM plate, the behavior is nonlinear and is governed by the variation of 
the properties in the thickness direction. One of the most significant points of these figures is that the neutral plane 
of the plate is not conforming to the mid-plane in this case. It is clear that the Young’s modulus of the ceramic is 
greater than the metal, so the neutral plane is near by the ceramic-rich surface. 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
Fig 2. 
Normalized nonlinear fundamental mode shape W(r)/Wmax a 
clamped immovable circular metallic plate for various 
nondimensional vibration amplitudes. 
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Fig 3. 
First nonlinear normalized axisymmetric mode shapes of the 
clamped circular functionally graded plate for different values of g. 

 
(a) 

 
(b) 

Fig 4. 
Variation of the dimensionless radial stress with dimensionless vibration amplitude on ceramic-rich surface at (a): inner and (b): 
outer radius. 
  

 
(a) 

 
(b) 

Fig 5. 
Variation of the dimensionless circumferntial stress with dimensionless vibration amplitude on ceramic-rich surface at (a) inner 
and (b) outer radius. 
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(a) 

 
(b) 

Fig 6. 
Variation of the dimensionless shear stress with dimensionless vibration amplitude on ceramic-rich surface at (a) inner and (b) 
outer radius. 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
Fig 7. 
Variation of the dimensionless radial stress with dimensionless 
radius on metal-rich surface. 

 
 
  

 

 
 
 
 
 
 
 
 
 
 
 
Fig 8. 
Variation of the dimensionless circumferential stress with 
dimensionless radius on metal-rich surface. 
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Fig 9. 
Variation of the dimensionless shear stress with dimensionless 
radius on metal-rich surface. 

  
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig 10. 
Variation of the dimensionless radial stress along the thickness of 
the plate at outer radius. 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig 11. 
Variation of the dimensionless circumferential stress along the 
thickness of the plate at outer radius. 
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Fig 12. 
Variation of the dimensionless shear stress along the thickness of 
the plate at outer radius. 

6    CONCLUDING REMARKS 

Large amplitude vibration of a thick annular functionally graded plate has been investigated in this paper by using 
the first-order shear deformation plate theory and von-Karman-type equation. In the results, the influences of 
vibration amplitude and volume fraction index on stresses have been examined. For the low vibration amplitudes, 
variation of volume fraction index has no significant effect on the stresses, but different values of volume fraction 
index have considerable effect in the amount of stresses in high vibration amplitudes. For ceramic-rich and metal-
rich surfaces, the stress distribution in any arbitrary transverse section is linear, where for the FGM plate; the 
behavior is nonlinear and mid plane of the plate is different from the neutral surface. Comparing shear stress with 
radial or circumferential stresses concludes that for plates with large thickness ratio (h/ro) the shear stress is 
considerable and cannot be neglected in computing total stress. 

7    APPENDIX A 

Definition of variables 1K , 2K , 3K and I 
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in which 
 

cm c mE E E    
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