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 ABSTRACT 

 In this paper ,the general solution of steady-state one dimensional asymmetric thermal 

stresses and electrical and mechanical displacements of a hollow cylinder made of 

functionally graded material and piezoelectric layers is developed .The material 

properties ,except the Poisson's ration, are assumed to depend on the variable radius and 

they are expressed as power functions of radius. The temperature distribution is 

assumed to be a function of radius with general thermal and mechanical boundary 

conditions on the inside and outside surfaces. By using the separation of variables 

method and complex Fourier series, the Navier equations in term of displacements are 

derived and solved. 

                                               © 2015 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 UNCTIONALLY graded materials(FGMs) have attracted widespread attention in recent years. They are 

new, advanced, heat resisting materials used in modern technologies as advanced structures such as chemical 

plants, electronics, biomaterials, and so on. 

A FGM is usually a combination of two material phases in which the elastic and thermal properties change from 

one surface to the other, gradually and continuously. The body is constructed by smoothly changing materials. Since 

ceramics has good heat resistance and metal has high strength, the ceramic-metal FGM may work at super high-

temperatures or under high-temperature gradient field. Several investigators represent analytical solutions about 

these kinds of material [1-3]. Piezoelectric materials are widely used due to their direct and inverse effects. The use 

of piezoelectric layers as distributed sensors and actuators in structures to control noise and deformations and 

suppress vibrations is quite common. In effect, the governing equation for the temperature and stress distributions 

are coordinate dependent as the material properties are functions of position. The classical method of analysis is to 

combine the equilibrium equations with the stress-strain and strain-displacement relations to arrive at the governing 

equations in terms of the displacement components, called the navier equations. Several research works have been 

contributed to model and investigate the basic structural responses of piezoelectric materials i.e. in the pioneering 

researches of Tiersten [4]. Kapuria et al. [5] presented an exact solution for a finite simply supported, transversely 

isotropic cylindrical shell subjected to axisymmetric thermal, pressure and electrostatic loading. The analytical 

solution for the stresses of FGMs in the one-dimensional case for spheres and cylinders are given by Lutz and 

Zimmerman [6,7]. Jabbari et al. [8] studied a general solution for mechanical and thermal stresses in a functionally 
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graded hollow cylinder due to nonaxisymmetric steady-state load. They applied separation of variables and the 

complex Fourier series to solve the heat conduction and Navier equations. Jabbari et al. [9] also studied the 

mechanical and thermal stresses in functionally graded hollow cylinder due to radially symmetric loads. They 

assumed the temperature distribution to be a function of radial direction. They applied a method to solve the heat 

conduction and Navier equations. Also , Jabbari et al. [10] studied the axisymmetric mechanical and thermal stresses 

in thick short length functionally graded material cylinder. They applied the method of separation of variables and 

complex Fourier series to the heat conduction and Navier's equations. Jabbari et al. [11] studied the 

nonaxisymmetric mechanical and thermal stresses in Functionally Graded Porous Piezoelectric Material(FGPPM) 

hollow cylinder. Poultangari et al. [12] presented a solution for the functionally graded hollow spheres under 

nonaxisymmetric thermomechanical loads. Ootao and Tanigawa [13] presented the transient thermoelastic problem 

of functionally graded thick strip due to nonuniform heat supply. They obtained the exact solution for the two 

dimensional temperature change in a transient state and thermal stress of a simply supported strip under the of plain 

strain. Alibeigloo and Chen [14] obtained the elasticity solution for an FGM cylindrical panel integrated with 

piezoelectric layers. Dai [15] presented an analytical solution for electro- magneto- thermoelastic behaviors of a 

functionally graded piezoelectric hollow cylinder. Chen et al. [16] presented 3D free vibration analysis of a 

functionally graded piezoelectric hollow cylinder filled with compressible fluid. He et al. [17] derived the active 

control of FGM plates with integrated piezoelectric sensors and actuators. Wu et al. [18] obtained an exact solution 

for functionally graded piezothermoelastic cylindrical shell as sensors or actuators. Fesharaki et al. [19] presented 

2D solution for electro-mechanical behavior of functionally graded piezoelectric hollow cylinder. By using the 

separation of variables method and complex Fourier series, the Navier equations in term of displacements are 

derived and solved. Eslami et al. [20] obtained an exact solution for thermal and mechanical stresses in a 

functionally graded thick sphere. Dai and Fu [21] developed the magneto thermo elastic interactions  in hollow 

structures  of functionally graded material subjected to mechanical loads. Yas and Sobhani Aragh [22] studied the 

three-dimensional analysis for thermo elastic response of functionally graded fiber reinforced cylindrical panel. 

Peng and Li [23] showed the thermal stress in rotating functionally graded hollow circular disks .Asghari and 

Ghafoori [24] investigated the three-dimensional elasticity solution for functionally graded rotating disks. 

Khoshgoftar et al. [25] presented the thermoelastic analysis of a thick walled cylinder made of functionally graded 

piezoelectric material. By using the separation of variables. Dube et al. [26] depicted the exact solution for electro 

thermo mechanical radially polarized circular cylindrical shell panel in cylindrical bending under electrostatic 

excitation and thermal fields. Dumir et al. [27] presented an analytical solution for piezoelectric orthotropic 

cylindrical panel in cylindrical bending with simply supported boundary conditions.They used the Fourier series to 

satisfying the simply supported boundary conditions along longitudinal edges. Akbari et al. [28] carried out three-

dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by differential 

quadrature method. Heyliger [29] carried out an exact three-dimensional analysis of a laminated piezoelectric 

cylinder under static loads with simply supported boundary conditions and found the elastic and electric fields of 

each layer of the laminate, using the Frobenious method. Chen and Shen [30] obtained the exact solution of an 

orthotropic cylindrical shell of finite length with piezoelectric layers acting as sensor and actuator subjected to 

axisymmetric thermo-electro-mechanical loads. In their study, the axisymmetric thermal and mechanical loadings 

were expanded as Fourier series and the power series expansion method were employed to obtain the solution. 

Shakeri et al. [31] carried out three-dimensional elasticity analysis of laminated cylinders with piezoelectric sensors 

and actuator layers, subjected to internal pressure loading and uniform electric excitation at the outer surface 

employing the Galerkin element method. A numerical analysis of piezoelectric strip under the effect of symmetric 

pressure and voltage on the upper and the lower edges with traction-free boundaries using the generalized 

differential quadrature method is presented by Hong et al. [32]. Shao et al. [33] carried out an analytical stress 

analysis of a functionally graded hollow cylinder of finite length and simply supported boundary conditions 

subjected to pressure loadings on the inner and outer surface. They assumed that thermo-mechanical properties of 

functionally graded material to be temperature dependent and vary continuously in the radial direction and employed 

Laplace transform techniques and series solving method to solve the ordinary differential equation. Ootao and 

Tanigawa [34] calculated transient thermal stresses in a cylindrical panel made of functionally graded material due 

to a nonuniform heat supply by analytical method. Tutuncu [35] obtained stress and displacement fields in thick 

walled cylinders made of functionally graded materials with exponentially varying properties subjected to internal 

pressure, using the power series solution method. Shao an Ma [36] calculated thermo-mechanical stresses in 

functionally graded circular hollow cylinders subjected to mechanical loads and linearly increasing boundary 

temperature, employing the Laplace transform technique and series solving method. Obata and Noda [37] carried 

out one-dimensional thermal stress analysis of a hollow circular cylinder  and a hollow sphere made of functionally 

graded materials under a steady state condition using the perturbation method. Shao [38] presented solutions for 
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temperature, displacement and stress fields in a functionally graded hollow cylinder using a multi-layered approach 

based on the theory of laminated composites. Alibeigloo [39] obtained thermo-elastic solution for axisymmetric 

deformation of functionally graded cylindrical shell bonded to thin piezoelectric layers assuming a Navier type 

solution for the governing equations. Jabbari et al [40] investigated on one-dimensional moving heat source in a 

hollow FGM cylinder. A direct method of solution of Navier equation is presented. 

In this paper, an analytical method is presented for thermal stresses and electrical and mechanical displacements  

analysis for a three layers hollow cylinder made of Piezoelectric-FGM-Piezoelectric under a one-dimensional 

steady-state temperature distribution. The material properties, except the Poisson's ration are assumed to be varied 

along radial direction by power function in r. The temperature distribution is assumed to be a function of radius with 

general thermal and mechanical boundary conditions on the inside and outside surfaces. The input voltage to the 

actuator is supplied with the output voltage of the sensor. By using the separation of variables method and complex 

Fourier series, the Navier equations in term of displacements are derived and solved. The effect of the graded 

index(m) and shear modulus on the thermal stresses and electrical and mechanical displacements are investigated. 

2    MATERIAL AND METHODS  
2.1 Governing Equation 

Consider a hollow cylinder with three layers made of Piezoelectric-FGM-Piezoelectric as shown in Fig.1. 

Asymmetric cylindrical coordinates  ( , )r    are considered along the radial direction. The cylinder's material is 

graded through the r-direction thus the material properties are function of r. 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Geometry and coordinates of the laminated plate 

 

The heat conduction equation in steady-state condition for one-dimensional problem in polar coordinates for 

hollow cylinder is 
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where  T r is temperature distribution and ( )k r is the thermal conduction coefficient. 

The nonhomogeneous thermal conduction coefficient ( )k r  that is a power function of r for piezo and FGM 

layers are assumed as: 
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where 0k  and m are material parameters, rpk   and rfk  are thermal conductivity constants for piezo and FGM, 

respectively. By using Eqs.(2), the heat conduction Eq. (1) for FGM and piezo layer respectively becomes 
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Integrating (3a) and (3b) twice for FGM and piezo layers, separately yields 
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   (4) 

 

where FT and ,a sT  are temperature of FGM and piezo layers. Here, the suffixes ''a'' and ''s''  are used to denote the 

actuator and sensor layer, respectively. All the unknowns can be evaluated through satisfying thermal boundary 

conditions as: 
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and the continuity conditions on the interfaces as: 
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2.2 Stress analysis 

2.2.1 Piezoelectric layers  

Consider ,a su  and ,a s  be displacement components in the radial (r) and the electric potential, respectively (the 

suffixes ''a'' and "s" denotes  actuator and sensor). Then, the strain-displacement relations and electric field-electric 

potential relations are 
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The stress-strain relations for the FGM and piezoelectric cylinder for asymmetric condition are 
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where ij  and ( , , ),ij iji j r c  and ( , 1,2), ( , 1,2),ij ij ie i j i j D  and ( ),iP i r   are stress strain tensors, 

elastic and piezoelectric coefficients , dielectric constants, radial electric displacement, pyroelectric constant and 

thermal modulus, respectively. Here, the suffixes "a" and "s" are used to denote the actuator and sensors layer, 

respectively. 
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The equilibrium equations in the radius direction, irrespective of the body force and the inertia terms is expressed 

as: 
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In absence of free charge density, the charge equation of electrostatic is 
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Solving Eq. (11), yields 
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where ,
1
a sB  is an unknown constant. Using Eq. (12), Eq. (9c) may be rewritten as: 
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Substituting Eq. (13) into Eqs. (9a), (9b), yields 
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Substituting Eqs. (14a),(14b) into Eq. (10), the basic displacement equation of a transversely isotropic 

piezoelectric hollow cylinder  is expressed as: 
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where 
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2.2.2 FGM Layers  

The host structure’s material is graded through the r-direction, thus the material properties are functions of r.  
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Let Fu  be the displacement component in the radial direction(the suffixes ''F'' is used to denote the FGM layer. 

Then the strain–displacement relations are 
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The stress-strain relations one-dimensional in the FGM plane-strain hollow cylinder are 
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where ii  and ( , , )ii i j r   are the stress and strain tensors, ( )T r  is the temperature distribution determined 

from the heat conduction equation,   is the coefficient of thermal expansion, and   and   are the Lame 

coefficients related to modulus of elasticity E and Poisson's ratio   as: 
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The equilibrium equation in the radial direction, disregarding the body force and the inertia term, is 

 

0
F FF
rrrr

r r


 



 
 

 

   (20) 

 

To obtain the equilibrium equations in terms of the displacement components for the FGM layer, the functional 

relationship of the material properties must be known. Because the cylinder materials is assumed to be graded along 

the r-direction, the modulus of elasticity and coefficient of thermal expansion are assumed to be described with the 

power laws as: 
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where 0E  and 0  are the material constants and m is  the power law indices of the material. We may further assume 

that Poisson’s ratio is constant. 

Using relations (17)–(21), the Navier equation in term ofthe displacement is 
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3   ANALYTICAL SOLUTION    

3.1 Piezoelectric layers 

By substituting Eq. (4) into Eq. (15) then, the following differential equation for electrothermoelastic analysis is 

obtained. 
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Firstly, assuming that the homogeneous solution of Eq. (23) is 
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 , ,a s a s
gu r B r     (24) 

 

Substituting Eq. (24) into Eq. (23), the characteristic equation is obtained as follows 
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Eq. (25) has two real roots 1  and 2  : 
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So the homogeneous solution of Eq. (23) is 
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The particular solution of Eq. (23) is assumed to have the form 
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After substitution of the assumed particular solution and its derivatives into Eq. (23), , ( 1,2,3)a s
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The complete solution for , ( )a su r  is the sum of the general and particular solutions as: 
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Then using Eqs. (13), (14a), and (14b) yields: 
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(37) 

3.2 FGM layer 

Substituting Eq. (4) into Eq. (22) yields 

 

 
2

2 1
0 1 22 2

( 1) 1 1
1 1 2

1 1

F F
F F F mu m u m

u m C r mC r
r rr r

 


 

                         
 

 

(38) 

 

Eq. (38) is the Euler differential equation with general and particular solutions. The general solution is assumed 

to have the form 

 

 F F
gu r B r   (39) 

 

Substituting Eq. (39) into Eq. (38) yields 

 

 2 1 1 0
1

m
m


 



 
     

 
 

 

(40) 

 

Eq. (40) has two real roots 1  and 2  : 

 

2

1,2

( 1) ( 1) 4 1
1

2

m
m m






 
      

 
  

 

(41) 

 

Thus, the general solution is 

 

  1 2γ γF F F
g 1 2r r rB Bu    (42) 

 

The particular solution ( )F
pu r  is assumed to be of the form 
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  1
1 2

F F F m
pu r D D r    (43) 

 

Substituting Eq. (43) into Eq. (38), and then  equating the coefficients of the identical powers yields 

 

 0 1
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1
1 [ ]

1

2[ 1]
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F
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(44) 
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(45) 

 

The complete solution for ( )Fu r  is the sum of the general and particular solutions as: 

 

     F F F
g pu r u r u r   (46) 

 

Thus, 

 

  1 2 1
1 2 1 2

F F F F F mu r B r B r D D r
       (47) 

 

Substituting Eq. (47) into Eqs. (18), the stresses are obtained as: 

 

     

     

1 21 1 1
1 1 1 2 2 2 1 0 1

2 0 2

2 2 2 2 2 3 2

3 2 1 3 2

F F F F F
rr

F F m

B r B r D C r

D m m C r

           

    

                   
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(48) 
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    

 

 

(49) 

3.3 Boundary& continuity conditions 

It is obvious that once the unknown parameters , , ,
1 2 1 2 3, , , ,F F a s a s a sB B B B B and ,

4
a sB can be evaluated through 

satisfying the boundary conditions and continuity requirements on the interface. Therefore, displacements, electric 

potential, stress and other responses can be evaluated. The corresponding boundary conditions can be written as: 

 

   1 1 4 2      ,         a s
rr rrr r p r r p        (50) 

 

For  sensor layer 

 

   3 4      ,         0 0s s
rrr r D r r      (51) 

 

For  actuator layer 

 

   1 2      ,         0a a ar r V r r      (52) 
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where 1p  and 2p are the inner and outer pressure, respectively. sV is the output voltage of the sensor layer as: 

 

4              ( )s s r rV    (53) 

 

Then ,the output voltage of the sensor  sV is feeded into the control algorithm, and aV  (the input voltage to the 

actuator layer)  is obtained as follows: 

 
a sV GV  (54) 

 

Here, G is the feedback gain. In addition, those of continuity requirements for the stresses and displacements on 

the interfaces must be satisfied .Therefore, we have 

 

       2 2 3 3      ,         a F F s
rr rr rr rrr r r r r r r r          (55) 

 

       2 2 3 3      ,         a F F su r r u r r u r r u r r       (56) 

4    RESULTS AND DISCUSSION      

Assume material properties for piezoelectric on first layer as an actuator Ba2NaNb5015  and for third layer 

piezoelectric as a sensor PZT-4 from the following table. 

 
Table1 

Material properties of piezoelectric. 

Material Elastic constants, Gpa 

 

PZT-4 

11c  12c  13c  22c  23c  33c  44c  

139 78 74 139 74 115 25.6 

Ba2NaNb5015 239 104 5 247 52 135 65 

 

Table2 

Piezoelectric constants, 2C m Permittivity, 9 210 C Nm Pyroelectric constants Coefficient of thermal 5 210 c Km expansion, 

1/K . 

 

PZT-4 
11e  12e  22e  11  22  0rP P P   0r      

-5.2 -5.2 12.7 6.5 6.5 5.4 2.62 

Ba2NaNb5015 -0.4 -0.3 3.4 1.96 2.01 5.4 2.458 

 

Let us consider a thick FGM hollow cylinder with the following geometry properties 

 

1 2 3 4    ,       ,       1 1.2 1.4  1. 6,  r r r r      

     

And the material properties of FGM layer are :  

 
6 1 1 1

0 0200 1.2 10       ,        0.3 2Wm  ,       ,    KmE Gpa K k           

 

As the first example, consider a thick hollow cylinder where its mechanical, thermal and electrical boundary 

conditions are, respectively, taken as: 
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Fig.2 

Temperature distribution in the piezo FGM hollow cylinder 

hollow cylinder with various m. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Radial displacement distribution in the piezo FGM hollow                                                                                                                                                                                                                                                                 

cylinder with various m.                       

  

 

 

 

 

 

 

 

 

 

 

Fig.4 

Radial stress distribution in the piezo FGM hollow cylinder 

with various m. 

  

 

 

 

 

 

 

 

 

 

 

Fig.5 

Circumferential stress distribution in the piezo FGM hollow 

cylinder with various m.       
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Fig.6 

Effective stress distribution in the FGM layer  with various 

m . 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Radial electrical displacement in the actuator layer  with 

various m. 

  

 

 

 

 

 

 

 

 

 

 

Fig.8 

Electric potential distribution in the actuator layer with 

various m. 

  

 

 

 

 

 

 

 

 

 

 

Fig.9 

Electric potential distribution in the sensor layer with various 

m. 

 

 

For different values of m , temperature profile, radial displacement, radial stresses,circumferential stresses, 

effective stress, electric potential and radial electrical displacement along the radial direction are plotted in Figs. 2-9. 

From Fig. 2, it is seen easily that the temperatures at the internal and external boundaries which satisfy the 

prescribed thermal boundary conditions, the temperature increases as the graded index  m  increases at the more 
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same radial point. From Fig. 3, one knows, the radial- displacement decreases gradually from inner surface to outer 

surface of the smart FGM hollow cylinder, the radial displacement decreases as the graded index m increases at the 

same radial point. It is seen easily from Fig.4 that the radial stresses at the internal and external boundaries which 

satisfy the given mechanical boundary conditions, the radial stress decreases as the graded index  m  increases at the 

same radial point.The distribution of circumferential stress is shown in Fig. 5, similar patterns is observed from this 

figure too. Fig. 6 shows the effective stress distributions with various m , here, lower power law indices produce 

more effective stress along the radius. 

Fig. 7 shows radial electrical displacement distributions with various m  . It is seen easily from Fig. 7 that radial 

electrical displacement decreases  as the graded index m decreases at the same radial point.The distribution of 

electric potential in actuator and sensor layers are shown in Figs. 8 and 9 , respectively. It is seen easily from Figs. 8 

and 9  that electric potential satisfie sthe prescribed electrical boundary conditions.Similar to the radial electrical 

displacement ,the distribution of Electric potential decreases  as the graded index decreases at the same radial 

point. 

In this example, smart FGM structure ( Fig.1) that , the outer and inner  piezoelectric layers serve, respectively, 

as sensor and actuator which are linked by constant gain control algorithm, and its thermal, mechanical and 

electrical boundary conditions are, respectively, taken as: 

 

       

       

1 4 3 1

1 4 4 2
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     ,               ,           ,            

a s s a a

a s s a
rr rr

T r K T r k r r r r V

u r r r r D r r r r

 

 

     

       
 

 

 

As its mentioned before, aV  is the actuating voltage as determined by the control algorithm. Fig.10 shows 

distributions of  the temperatures along the radial direction in the piezo-FGM hollow cylinder with m=1, it is seen 

easily that the temperatures at the internal and external boundaries which satisfy the prescribed thermal boundary 

conditions. Fig. 11 shows electric potential distributions with along the radial direction in sensor layer with m=1, it 

is seen easily from Fig. 11 that 6000 .sV V  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10 

Temperature distribution in the piezo FGM hollow cylinder 

where m=1. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.11 

Electric potential distribution in the sensor layer, where G=0 

and m=1. 
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For different values of G (feedback gain),radial displacement, radial stresses,circumferential stresses,effective 

stress, electric potential and radial electrical displacement along the radial direction are plotted in Figs. 12-16. Here, 

the graded index is m=1. From Fig. 12, one knows, the radial displacement decreases with negative feedback gain 

and increases by applying the positive one . It is seen easily from Fig.13 that the radial stresses increases by 

applying the negative feedback gain and with the positive feedback gain, the radial stresses of the smart FGM 

hollow cylinder decreases. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12 

Radial displacement distribution in the piezo-FGM hollow 

cylinder  with various G, where m=1 . 

  

 

 

 

 

 

 

 

 

 

 

Fig.13 

Radial stress distribution  in the piezo- FGM hollow cylinder 

with various G, where m=1. 

 

                                                          

The distribution of circumferential stress is shown in Figs. 14(a) and 14(b) . Similar to the distribution of the 

radial- displacement, the circumferential stress decreases with negative feedback gain and increases by applying the 

positive one . Fig. 15 shows radial electrical displacement distributions with various G in actuator layer , it is seen 

easily from Fig. 15 that radial electrical displacement decreases as the feedback gain decreases at the same radial 

point. Fig. 16 shows electric potential distributions with various  G  in actuator layer,  it is seen easily from Fig. 16 

that electric potential satisfies the prescribed boundary condition. 

 

 
(a) 

 
(b) 

Fig.14 

a) Circumferential stress distribution in the piezo FGM hollow cylinder various G, where m=1. b) Circumferential stress 

distribution in the FGM layer with various G, where m=1. 
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Fig.15 

Radial electrical displacement in the actuator layer with 

various G , where m=1 .   

  

 

 

 

 

 

 

 

 

 

 

 

Fig.16 

Electric potential distribution in the actuator layer with              

various G, where m=1.   

5    CONCLUSION  

In this paper, an attempt is made to study the problem of general solution for the thermal and mechanical stresses in 

a thick three layers piezoelectric-functionally graded materials piezoelectric hollow cylinder where the one-

dimensional asymmetric steady-state loads are implied. The material properties are assumed to vary with a power-

law function along the thickness of cylinder. The method of solution is based on the direct method and uses the 

power series, rather than the potential method and by using the complex Fourier series, the Navier equations were 

solved. The advantages of this method is its generality and from mathematical point of view, any type of the 

mechanical and thermal boundary conditions can be considered without any restrictions. Beware that this method 

does not have the mathematical problems to solve the general types of boundary conditions which are usually 

happened in the potential function method. By using this method and considering the special boundary conditions 

and material properties for piezoelectric-FGM-piezoelectric hollow cylinder, the mechanical and electrical 

displacements and stresses can be controlled and optimized to design and use this kind of structures. 

It is concluded that: 

Numerical results in example.1.show that the graded index has a great effect on the piezo-thermoelectric 

behavior of a Smart FGM hollow cylinder, and adopting a certain value of the can optimize the responses. The 

stress decreases as the graded index  increases. It is possible for engineers to design Smart FGM cylindrical 

structures that can meet some special requirements. 

It can be concluded that it is possible to active control of stresses displacement by applying a suitable feedback 

gain .This will be of particular importance in modern engineering design. 

By increasing the positive feedback gain on piezo-FGM hollow cylinder, radial displacement increases and by 

negative feedback gain radial displacement reduces. But the effect of feedback gain on radial stresses is inverse.   
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